l.e. each point in Ji is the limit of a sequence of points from P. If xg is an at-
tractive fixed point we consider its basin of attraction

Alxo) ={xET: R¥(x)~—xg as k—co};

Alxo) collects all points x whose forward orbits Or*(x) approach x. This set
includes, of course, the inverse orbit of xg, Or ~(xg). If ¥ is an attractive cycle
of period n, then each of the fixed points Rixg), i=0, ..., n—1, of R have
their basins and A(y) is simply the union of these basins.

We now list a first set of fundamental results about J from [Jul, [Fal:

Fundamental Properties of Julia Sets

(2.2) Jgp=+ @ and contains more than countably many points.

(2.3) Theduliasets of Rand R* k=1,2,. ., are identical.

(24) R(Jg)=dr=R~(Jg).

(2.5) Forany xEJgthe inverse orbit Or~ (x)is dense in Jg.

(26} If yisanattractive cycle of R, then A(y)C Fr=T\Jgand dA(y)=Jg.

(Here 2A(y) denctes the boundary of A(y), i.e. xE 2A(y) provided x& A(y)

but x is an accumulation point of a sequence with elements from A(y).) Fig-

ures 3, 4, 10 and Maps 3-10, 18, 20, 22, 24, 25, 6166, 75-78, 89-98 are

examples of Julia sets bounding two, three or even four different basins of at-

traction of attractive fixed points.

Further results on Julia sets are:

(2.7)  If the Julia set has interior points {i.e. there are points T€ Jg such that
for some £> 0 {x: |x— % < g CJg) then Jzg=C.

This situation appears to be rare, but the mapping R(x)={{x—2)/x)2 is an

example. {See Special Section 3.)

(28) ltx€Jg e>0,andJ*={xEJg:|x—~F < g,
then there is an integer n such that R"(J”)=dJp.

A number of comments seem to be in order. Property (2.2) implies that every
rational map has a considerable repertoire of repelling periodic points. Ac-
cording to (2.4) the Julia set is invariant under R, and the dynamics on Ji is
chaotic in some sense as a result of (2.1 ). Property {2.5) suggests a numerical
way to generate pictures of Jz. Unfortunately the inverse orbit of a point € J
usually does not distribute uniformly over the Julia set. (See Fig.27 for the
distribution of Or~(x) for a typical Julia set.) Therefore sophisticated algo-
rithms are necessary to decide which branches of the tree-like structure in
Or~ (%) should be chosen for an effective picture generation. Such algorithms
have been developed and used for our images. Property (2.6) immediately
suggests that Jg must be a fractal in many cases. For example, if R has more
than two attractive fixed points g, b, ¢, . - . then {2.6) implies

ZAla)=dg=A(b)=dr=6Alc}=. ..
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i.e. the boundaries of all basins of attraction coincide. For example, if R has
3 or 4 attractive fixed points, then Jg is a set of 3-cormer-points or 4-corner-
points with regard to the respective basins of attraction.

The Dynamics Near Indifferent Periodic Points 3

Since attractive periodic points belong to Fg, and repelling periodic points be-
long to Jg, we may ask about indifferent points. This question is in fact very de-
licate and still not completely understood. Without loss of generality we may
assume that R(0)=0 and R{0)=1 with |1|=1, i.e. A=exp (27ia) with
a€[0,1]. Let

Rix)=Ax+ apx?+asx3+. ..

be the power series for R. There are two types of indifferent points: the fixed
point 0 is called rationally indifferent if & is a rational number; it is called irra-
tionally indifferent if « is an irrational number. A rationally indifferent fixed
point (or cycle) is also called parabolic.

It was known to Julia and Fatou that

(29) xgE€Jgif xqis a parabolic periodic point of R.

Moreover, they knew that in this case A(y)+ @, y={xo, Rlxo), .. .., R"{xo)}
and yC JA(y). Figures 6, 8, and 9 illustrate this situation.

A more comprehensive characterization of indifferent points requires a closer
look into the dynamics of R near R{(0)=0. The following result from [Cam]
accounts for the parabolic case:

The Parabolic Case
(2.10) Let A=R'(0), A"=1 and 1%+ 1 for 0<k<n. Then either R" is the

identity or there exists a homeomorphism h (defined in a neighbor-

hood of 0) with h(0)=0 and
heReh~1(x)=Ax{1 4+ x*")

1

for some k=1, s

Siegel Disks

The irrational case is considerably more difficult. We need the concept of sta-

bility:

(2.11) R(0)=0is called stable if for any neighborhood U of O there exists a
neighborhood Vof 0 such that Vc Uand

RYV)cU

forany k=>1.

Attractive fixed points are obviously stable. To describe the stability of indiffer-
ent fixed points we use a result of J. Moser and C.L.Siegel [MS]:




(212) Let R(x).= Ax+ a~2x2+ < w]A=1and A"+ 1 for any né IN.Then 0is
-a stable fixed point if and only if the functional equation

P(Ax)=R(d(x))
has an analytic solution in a neighborhood of 0.

The above functional equation is called Schrader’ i

¢ | chréder’s equation in h
E.Schréder who studied its solvability in 1871. What dges it actur;llyor?l(;;no"f
Assume that it holds for a ] = exp (2ria), then '

Ax= @~ R(D(x))).

l.e. Ris locally equivalent (or conj i

R is . jugate) to a rotation by 2za T
Schréder’s equation one tries an Ansatz for @: let R(x)= lx+yanggaf|- . .o. SI(;IVQ
(213) D(x)=x+box2+ . ..
then (2.12) yields

(214) 3 (F-Apxi= 5 afx+ 3 bexk)
=2 . v i=2 k=2

and formally one can obtain the b,i=23,. .. i ici
problem t.hen. however, is to show converéené:.yég\r:g:srll;%lfiosenffgsggsHEZE
not wgrk if Ais a root of unity, i.e. 1= exp(27ip/q). When « is irrational then
(2.14) is called a smalf divisor problem.In 1917 G.A. Pleifer gave an exa’m |
where Schréder’s series (2.13)-does not converge. In 1938 H.Creme -
able to provide a whole class of examples for which (2.13) diver'geS' e

(2.15)  {1:|4]=1 and lim inf |27~ 1|0}

ghen in 119.42 C.L.Si?gel [Silina groundbreaking work (which eventually
S(e:;?(rjnde a 1 important 1r;1the Kolmogoroff-Arnold-Moser theory) showed that
ers series actually converges provided isti i i

condition (s atly ges p ed that « satisfies a diophantine
{2.16) There exist >0 and 1> 0 such that

£

nll

for all integers m and positive integers n.

;lf'he cogdition ona loosely says « is badly approximated by rational numbers
m\;/feu;}r]x'te t?et irrational number « in its continued fraction expansion, we caﬁ
1S statem i = i i
s S ent precise. Let g= (0’0, ay, ay, .. .) be this expansion, i.e.,
a=agt —u b

o — 1

e~ >
n

apgt —L
ag+.
Then set 2 -
" (ag, ay,..., a,0, 0,0,...). These numbers are the best rational
approximants to o and it is well known that
<la—Brjo 1

(a,41+2)q? &' Oy1qd

R AL B R LR e ———— ORI
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Fig.22. Siegel disk around the irrationally indifferent fixed point x4=0 for the map-
ping x +» X% +Ax A=e%¥, g =(\/5 —1)/2. On the invariant curves (3 are shown) the
dynamics is equivalent to a rotation about the angle «

pn‘)

(Here best means that no rational p/q with q< g, is closer to « than

n
Hence, for example, if the a\’s stay bounded, one can verify the diophantine
condition in (2.16). It is known and not difficult to prove that any algebraic
number of degree 2 has such a continued fraction expansion and thus such
numbers ¢ (and in fact all algebraic numbers) satisfy the diophantine condi-
tion. A prominent example is the golden mean

a={y5-1)/2, a=(0,1,1,1,..)).

It is known that the set of @ €[0, 1], for which Siegel’s condition is satisfied is
a set of full measure. If Schréder’s series (2.13) converges, one says that R is
linearizable in 0. The maximal domain D(0), containing R(0) =0, in which
@(Ax)=R(D(x)) holds is called a Siegel disk. Maps 22 and 25 show an exam-
ple from the quadratic family x w x2+ c. These color maps show a Siegel
disk, its preimages under R, and the basin of atiraction of . The coloring in
Map 25 reveals the invariant circles to which the dynamics near the irratio-
nally indifferent fixed point is confined. Figure 22 shows such a fixed point,
some invariant curves and the Julia set.

In this example we observe that the critical point x, = —e?™#/2 belongs to the
Julia set confirming a recent result of M. Herman (see also Special Section 3).
Also note that

(2.17) xo€ Fg, if xq is the center of a Siegel disk.

In 1972 H.Ri{iBmann was able to extend Siegel’s result even to certain Liou-
ville numbers. (Liouville numbers A are-very close to rational numbers.) The
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exact condition on « for which Schréder’s series converges is an open and
apparently very deep problem. Consequently, one cannot as of yet always de-
termine if a given irrationally indifferent fixed point is in either the Julia set or
the Fatou set.

If R(x)=x?+ Ax, then of course for every 1€ S! we have that xq=0 is an in-
different fixed point. Imagine that A is varying on S'. Then, no matter how
small the change is, the dynamics near xg=0 will undergo most dramatic
changes. This is because any change of A will always result in infinitely many
parabolic and Siegel disk cases.

The Hausdorff Dimension

According to B.B.Mandelbrot a set Xis called a fractal provided its Hausdorff
dimension h(X) is not an integer. Intuitively h(X) measures the growth of the
number of sets of diameter ¢ needed to cover X, when £—0. More precisely, if
X IR™ let n(e) be the number of m-dimensional balls of diameter £ needed
to cover X. Then if n{g) increases like

(2.18) n(eg)ce=P as £—0,

one says that X has Hausdorff dimension D. It is not hard to show that if Cis
the familiar Cantor set, then

h(C)=log 2/log 3.

Arigorous definition for h(X) proceeds as follows: let Xbe a subset of a metric
space and let d> 0. The d-dimensional outer measure my(X)is obtained from

mg(Xe)=inf|{ 3! (diam S;)¢}, where the inf is over all finite coverings
i€l

(2.19) § of X by sets S, with diameter less than £> 0.
mg(X)= Lijpomd( Xe).

Now my(X), depending on the choice of d, may be finite or infinite. F. Haus-
dorff showed in 1919 that there is a unique d=d” at which m4(X) changes
from infinite to finite as d increases. This then leads to the definition

(2.20)  h{X)=sup{dE€R ;:my(X)= co}.

{See [Fal] for more details and examples.)
Recently, D.Ruelle [Ru2] obtained the following remarkable result: let J, be
the Julia set for x-+ x2 + ¢. Then for |c| < 1 one has

2
(221) h{J)=1+ _d® + higher order terms.
4 log 2

It is also known (see [Brol) that for ¢ small J, is a Jordan curve (i.e. the ho-
meomorphic image of the unit circle). In fact J; is a Jordan curve for any ¢ in
the main part (the cardioid) of the Mandelbrot set. Though Julia sets are typi-
cally of fractal nature, almost nothing is known about their Hausdorff dimen-
sion. Ruelle’s result seerns to be the first sharp result in that direction.
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Julia Sets for Transcendental Maps

In Section 6 we will continue to discuss some special classes of Julia sets,
namely those for Newton’s method in the complex plane. In Section7 we
compare our results from Section 6 with some first findings for Julia-like sets
obtained from Newton’s method for real equations. Our experiments there re-
veal structures which look quite different from the baroque structures which
we have seen so far for rational mappings in the complex plane. One is
tempted to attribute this apparent baroqueness to the underlying complex
analytic structure. This is a little premature, however, as the following exam-
ple indicates. R.Devaney [De] recently has studied some first examples of
transcendental mappings, as for example

(2.22)  Eilx)=2 exp(x),
(2.23) S,(x)=Asin(x),

AEC, in C. He obtéined some very remarkable results, a few of which we
want to include here. Defining the Julia set for E; (or S;) according to (2.1},
ie.

(224) J,=closure {xE€ C: x is a periodic repelling point of E; (resp. S;)}
then a first result is
(2.25) Jy=closure {x€C: E(x)-—>oo (resp. Sj(x)—c0) as n—oo}.

Note that there is a distinctive change in the behavior of E,, for example, as A
passes through 1/e along the real axis (see Fig:23).

If 1< 1/e there is an attractive fixed point Q; and a repelling fixed point P,
while if 1> 1/e there is none. Also, if 1< 1/e one has apparently that

(2.26) {xER:xz2PjjCd).

/

Q N P},

Fig.23. The graph of x » A exp(x), xER, AER. Left: 1> 1/e;vight: A< 1/e
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Devaney calls this ray a hair. It turns out to be crucial in the description of J;.
One of his main results is:

ffA>1/e thend,=C.
(2.27) { If A<1/e, then J; is a nowhere dense Cantor set of curves which
form the boundary of a single basin of attraction.

Thus, as A increases and passes through 1/e, J; experiences an explosion.
Pictures of Julia sets for this family are quite difficult to obtain and we refer to
[De] for a sketch of a picture.

Inspired by Mandelbrot's work {see Special Section4) Devaney also dis-
cusses a bifurcation set for E; in the A-plane:

(2.28) B={1€C:J;=C}and

(229) C=C\B.

He shows that the interior of C contains components which are indexed by
the period of attractive periodic points. Figure 24 gives a sketch of B in
black.

This study is based on another result of Devaney:

(2.30) If E5(0)— oo, then J;=C.

This result suggests to color a point in the A-plane black if [E3O0)| =M,
M> 1, for some n< Ny, The picture in Fig.24 has to be interpreted with
some care. For example, the white set contains points like A= 2ki. Le,
E3(0)= Ej(A)=A.In general:

(231) [fOis preperiodic {i.e. EF(0) is periodic for some nx 1 ),thenJ;=C.

are an artifact of the

Npox=90)
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Fig.24. Mandeibrot-like set
for E; (the solid black domains

low iterational resolution

For each 4 such that |EZ(0)| = M for some n< Niax, there is a first n of this
kind. This associates an index to each such A, which can be used to determine
a color in a Color Look Up Table to generate beautiful color graphics.
Comparing Devaney’s results with pictures of other Julia sets, they seem to
share mare properties with the Julia-like sets in Section 7 than with Julia sets
of rational mappings. For example, J; is not locally connected, like many of
the Julia-like sets in Section 7. Also we have found that the Julia-like sets
there typically contain “hairs” like (2.26). (XC C is called locally connected if
for Uopenin € and UN X+ & one has that for any x€ Un Xthere is a neigh-
borhood Vc U, x€ V, such that VN Xis connected.)

Generating Pictures of Julia Sets

There are essentially two different ways to generate pictures of Julia sets. One
is based on (2.5) and the other builds on (2.6). None of the methods has an
advantage over the other. In some cases the first method is very successful
while the second is quite unsatisfactory, and vice versa. Then there is a large
class of cases in which both work fine. But there is also a large class of Julia
sets for which it is very difficult if not impossible to generate satisfactory pic-
tures. This class contains Julia sets bounding parabolic domains, i. e. the map-
ping has a parabolic periodic point.

The Inverse lteration Method (IIM)

Given a rational mapping R and a periodic repeller X€E dp, property (2.5) sug-
gests to compute

(2.32) JR={xEC: R*x)=xfor some k=< nj.

Since Jg=closure { Uo J%) one expects that plotting J% for a sufficiently large

n should give a good picture of Ji. Indeed, if J} is uniformly distributed over
Jg, then this method generates a satisfactory picture of Jg. Intuitively speak-
ing, we say that the inverse orbit Or~(x) distributes uniformly provided the
number of points in {&> 0, ¢ small) ‘

JEN Dixe), (x&€dJg Dlx.e)={y:|y—x| < £})

is essentially independent of x for large n. Unfortunately, this is not typical.
More typically one has neighborhoods on Jr which are visited only extremely
rarely. In these cases the direct [IM is inappropriate. Recall that the number of
elements in J% grows like d”, where d is the degree of R. Figure 25 shows a
typical situation.

The shortcomings of this experiment become apparent if one compares
Fig.25 with Map 18, where the red domain identifies the basin of attraction of
an attractive cycle of period 11 and the Julia set is its boundary. Figures 26
and 27 show another Julia set from the quadratic family R(x)=x?+ ¢ togeth-
er with a demography of J% based on a covering of J.

In these experiments, Jg is put on a square lattice in C with small mesh size.
The number of points from J% in each little box of that lattice is measured and
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3 Sullivan’s Classification and Critical Points

From the complexity of the computer experimental results it may appear im-
possible to understand the global dynamics of a given rational map R. ButJu-
lia and Fatou already knew that many of its qualitative aspects are intimately
linked to the dynamics of the critical points of R.

{3.1) A number c€CT is called a critical value of R if the equation
R(x)—c=0 has a degenerate zero, i.e. a zero of multiplicity greater
than 1. Any such zero is called a critical point. Finite critical points are
obtained as solutions to R'(x)=0.

To report on the remarkable results of D.Sullivan (1983) [Sul, we need the
concept of an immediate basin of attraction:

Let xq be an atiractive or rationally indifferent fixed point of R and let A(xg)
denote its basin of attraction. Then the immediate basin of attraction A* (x¢}is
the connected component of A(xg) containing xo. In Fig.3 A”(xp)=A(xo)
which is one of the reasons why J. is in fact a Jordan curve in that example
(i.e. a homeomorphic image of the unit circle}. In Fig.6 we see a parabolic
fixed point with the shaded region being A*(xy). In Fig's. 53 g~j we have typi-
cal examples of atiractive fixed points (xo= 1) with A”(xg)+ A(xq) (see also
Map 10). It is a fact that A*(xp) is either simply connected (no holes) or has
infinite connectivity {infinitely many holes). Maps 7~9 illustrate the latter situ-
ation: the white specks designate holes in a blow up of a part of A" (xo).

We can also define the immediate basin of attraction of a periodic orbit
y={xo. Rlxo), R¥(xo). ..., R"~'(xo)} of period n (i.e. R"(xq)= xp) which is at-
tractive or rationally indifferent. First let A”(x.S) denote the immediate basin
of a fixed point x for any mapping S. Then for periodic orbits of period n we
set

n-1"
(32) A(y)= kL=JO A*(RKxp), R").

In Fig.4 the shaded region illustrates A *(y) of an attractive 3-cycle. Similarly,
if y=1{xg, R(xg), ... R"~Y(xo)} is & periodic orbit of period n, which is irratio-
nally indifferent and such that B is linearizable in xo, we set

n-1

(3.3) Dly)= kl;JO RH(Do),

where Dy is the Siegel disk of xg for R™. (In case x¢ is a fixed point, ¥ is simply
the set {xg}.)

We can now state Sullivan’s results {Su] which completely characterize the
Fatou set Fg:
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No Wandering Domains

(34) The Fatou set Fg=C\Jg has countably many connected components.
If X is such a component, then Xg is eventually periodic, i. e. for some
k one has that R¥(Xg)is a periodic component of Fg. In short: R has no
wandering domains.

This answers one of the major problems left open in the work of Julia and Fa-
tou. {Sullivan’s proof uses Teichmiiller theory and the theory of Fuchsian and
Kleinian groups.) Building on fundamental results of Julia and Fatou, a com-
plete classification is thereby possible. .

Classification into Five Types

(3.5) Let Xgbea periodic connected component of F of period n, and

n-1

= kUO RK(X,)

the associated cycle”. Then I"is one of the following:

(A) An immediate basin A*(y) associated with a superattractive cy-
cley :

(B) Animmediate basin A" (y)associated with an attractive cycle y.

(C) Animmediate basin A" (y) associated with a parabolic cycle 7.

(D) A collection of Siegel disks D(y) associated with an irrationally in-
different cycle y [see (3.3) ].

(E) A collection of Herman rings

n—1
H= U R*Ho).
k=0

The last alternative was discovered a few years ago by M.Herman. It is not as-
sociated with a periodic point but it is similar to case D: On Hy, R" is analyti-
cally equivalent to an irrational rotation of the standard annulus.

Each of the cases {A)-(E) is furthermore characterized by critical points:

Detection by Critical Points

(3.6) In cases (A)-(C) A*(y) contains at least one critical point. In cases (D)
and (E) the boundary of D(y}or His in the closure of the forward orbit
of a critical point (i.e. there is a critical point x such that Or* (x.) gets
arbitrarily close to 0D(y) or 3H).

Now if dis the degree of the rational function R, it is easy to see that R has at
most 2d — 2 critical points. (If R is the quotient of two relatively prime polyno-
mials, then the degree of R is the maximum of the degrees of these.) Thus R

" Note that we use the term cycle for /™ although " may not contain any periodic
point {e.q. in case (E} ).
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1

can only have finitely many cycles of type (A)~(E). It is not known whether
2d—2is an upper bound. ltis conjectured that the boundary of D(y)(see (C))
always contains a critical value. In fact M. Herman was able to support this by
showing that it is true for R(x})=2z"+a, m=2,3, ... a€C.

As a remarkable application of {3.6) we mention the following example from
[MSS]: Let Rix)=(({x—2)/x)?, then Jg=T! To see this, note that the critical
points of Rare {20} and that 21> 0+ 0 1> 1 and R'(1)= —4. Thus C\Jx
must be the empty set, because otherwise (3.5) and (3.6) would apply.
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4 The Mandelbrot Set

For polynomials of second order, p(x)= ayx?+ a1x+ ag, an almost complete
classification of the corresponding Julia sets can be given in terms of the Man-
delbrot set. First note that p(x) is conjugate to p.(z)}=2z2+ c by means of the

coordinate transformation x = z=ax+a;/2, with c=agaps— % <l — 92—1> .
This transformation shifts the finite critical point x= — a;/2a; into the origin.
It is thus sufficient to study the nature of the Julia sets of p.(z).

The point = is a superattractive fixed point of the mapping z ~ p.(z). The Ju-
lia set J,, for given c€ C, can therefore be characterized as J.=08A( e ). From
the theory of Julia and Fatou it follows that J. is either connected or a Cantor

set [BI]. This distinction is reflected in the definition of the Mandelbrot set:
(4.1) M={c&C:J,is connected}.

Figures 3, 4, 6-10, 12 and 14 are examples of connected Julia sets whereas
Figs.11. 13 and 15 show Julia sets with Cantor set structure. Among the con-
nected Julia sets there are those which enclose an interior and others, like
Fig.12, which are dendrites without an inner region.

To compute M, B.B.Mandelbrot employed the powerful results of Julia and
Fatou according to which the main dynamical features of a rational mapping
can be inferred from the forward orbits of its critical points (see special Sec-
tion 3): Any attractive or rationally indifferent cycle has in its domain of attrac-
tion at least one critical point. But p.(z} has only two critical points, z=0 and
oo, which are independent of ¢. The point « is already an attractive fixed
point, so only 0 remains as an interesting critical point to study. By choosing
c=1, e.g, we see that there are values of ¢ for which 0E€ A(w ), since
01125526677 .. .. In these cases there cannot be another at-
tractor besides oo. On the other hand, as the case ¢=0 shows, there are also ¢
such that there is another attractor: under po(z)= 2, the point z=0 attracts
all zwith |z{<1,i.e.J,= S

Now according to Julia and Fatou, J, is connected if and only if 0 € A( ), see
(Bl i.e.

(4.2) M={cEC:pk0) oo as k—oo}.

This characterization is very suitable for numerical studies. One chooses a lat-
tice of points c&€ C and tests for every such ¢ whether after Niterations the
modulus of the sequence 0 + ¢ = c2+c . . . is still below a given bound m.
(For Fig. 2 we took N=: 1000 and m=100.)

A.Douady and J.H. Hubbard [DH1] have found a deep analytic characteriza-
tion of M. They studied the nature of filled-in Julia sets K,

(4.3) K.={z€C:pkz) woo as k— oo},

e £ Sy s
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and noticed that for c € M their complements can be mapped onto the com-
plement of the closed unit disk D, by means of a conformal mapping ¢,

(44) . . C\K-~T\D.
Remarkably, this mapping can be chosen in such a way that
(45) @epeg.~t=po.

Note that locally ¢ is guaranteed by Boettcher’s result (2.34). This identifies
Mas :

(4.6) M={cE€C:p.on Al )is equivalent to z - z2).

The conjugation (4.5) is even possible for c& M, but then it does not hold in
all of A(<0 ). Nevertheless, it can be extended far enough to hold at the point
z=_, and by setting

4.7} wlic): =pdlc),

we have a mapping w:C\M—C\D which is a conformal isomorphism. In
this way Douady and Hubbard demonstrated that

(4.8) Misa connected set

(i.e. Mis not contained in the union of two disjoint open nonempty sets). It is
still unknown, however, whether Mis also locally connected, i.e. whether any
piece UNM of M {Uc € open) has the property that for any z& Un M there
is a neighborhood Vc U, z€ V, such that VN Mis connected. The difficulty is
that one cannot draw on properties of K. because there are ¢ for which K. is
not locally connected. Nevertheless, it is believed that the local connected-
ness of M does in fact hold. This would have important consequernces one of
which is discussed in Special Section 5.

Yet another characterization of M has recently been given by F.v.Haeseler
[Hal. Using the coordinate change z=1/u one first transforms p, into the ra-
tional mapping R.(u)=u?/(1+ cu®). The superattractive fixed point for all cis
then u=0, and in a neighborhood of 0 R, can be conjugated to Rg (only for
cEM, of course, can this conjugation be extended to the entire basin of at-
traction A(0)). Let @fu)=u+ az(c)u2+ az(cjud+. .. be that local conjuga-
tion. Then

(49) M={cEC:|ac)|<k k=2,3,.. ).

This bears an intriguing relationship to the Bieberbach conjecture which was
recently proved by L..de Branges [Br]. Let

S={f: D~C:fix)=x+ax?+. ., fanalytic and injective},

where Dis the open unit disk; the functions in S are called schiicht functions.
The Bieberbach conjecture was:

(4.10) HfESthen|a<k k=23, ...

As a consequence of (4.9) F.v.Haeseler obtained

(411} Mci{ceC:|d<2}

Since c¢= ~2 belongs to M, the estimate could not be better.
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Let us now consider M in more detail. A particularly interesting part of Mis
{4.12) M'={c€C:p, has a finite attractive cycle}.

Since each attractor absorbs a critical point, there can be only one such cycle
for each ¢ It turns out that M’ is an open set with infinitely many connected
components. Each component is characterized by the period of the corre-
sponding cycle. The main cardioid, e.g., contains all ¢ for which pc has a
stable fixed point. By computing 1= dp./dz at the fixed point and imposing
the stability condition |4} < 1, we find that this comprises the set

(4.13) Mi={cEC:c=%(1—%), <1}

To characterize the components W of M’ further, Douady and Hubbard con-
sider the eigenvalue pufc} of the attractive cycle that exists for c€ W. They
show that the mapping

(4.14)  pu: W—D

is a conformal isomorphism. Thus each component W has a well-defined
center cyywhose corresponding attractive cycle is superstable, pyfcw)=0. Let
{21, 22, . . ., z} be the attractor for a given ¢€ W. Then pyfc)= 2% Iz I this is

to be zero, the critical point z=0 must belong to the cycle. The centers of
components with k-periodic attractors are therefore given by

(4.15) pkO)=0.

This equation is of degree 2~ in ¢ so that there may be up to 25~ compo-
nents with k-periodic attractors. We give a list of centers with periods up to 4.

(4.16) k=1: ¢=0; the corresponding component of M’ is M} as given in
(4.13).

(4.17)  k=2: ¢+ ¢=0 with 2solutions c=0 and c= — 1. The center c=0
has already been obtained for k= 1. There is thus one compo-
nent W= M} with stable orbits of period 2; it is the disk of radi-
us 1/4 around ¢= — 1.

(4.18) k=3: (c®+¢)?+c=0. lgnoring the solution ¢=0, it remains to
solve c3+2¢%+c+1=0. The real solution c= —1.7549 is
the center of the secondary Mandelbrot set shown in Map 32
while the two complex solutions c= —0.1226 +0.7449; are
the centers of the most prominent buds on Mj.

(4.19)  k=4: Two of the eight solutions of p*(0)=0 have already been ob-
tained with k= 2. Of the remaining 6, two are on the real axis:
c=—1.3107 is the center of the bud that develops from M}
by period doubling, c= ~1.9408 is from a satellite near the
tip of the main antenna. The four complex solutions are
c=0.282+0530i, corresponding to buds on M}, and
c= —0.1565+ 1.0323i one of which is the center of the Man-
delbrot figure in the cover picture of this book.
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In addition to the center c=0, we have 15 centers of period 5, and so on. Ob-
viously, by going to higher and higher periods we would find centers closer
and closer to the boundary of M.

The mapping (4.14) can be extended to the boundaries of Wand D If cEdW
and pw(c)=exp(2nia), it is said that cis a point of intemal angle a. The point
of internal angle a=0 is called the root of W: this is where Wbuds from an-
other component of M’ or, if Wis a primitive component not budding from
another one, the root is the cusp of the cardioid. If c€ 3 W is a point of rational
internal angle a= p/q, then there is a satellite component budding from W at
the point ¢, whose attractive cycles have qtimes the period of the cycles of W,
For example, for 1= exp(2xip/q)in (4.13) we can identify the points on M,

where satellites are attached. For p/q=1/2 we find c= —3/4: the period 3
buds (p/q = +1/3) are attached at c=(-1£3/3i)/8=—-0.1250+

0.6495i, and period 4 buds grow from c=1/4+ i/2. For all these values of ¢,
the mapping p, has rationally indifferent cycles. Figures 6 and 8 correspond
to p/q=3/5 and 1/20 respectively; for Map 18 we chose p/g=1/11.If, on
the other hand, the internal angle is sufficiently irrational in the sense of the
diophantine condition (2.16), we find Siegel disks occurring. -Fig.7 and
Map 25 derive from c= p 5! fexp|2ia}), see (4.13), with = (V/5-~1)/2.

So far we have discussed the components of M’ with their centers and roots.

_Another conspicuous feature of M are the tips and the branch poinits of its an-

tennas. For example, the point c= — 2 is characterized by the critical point be-
ing mapped into the repulsive fixed point, 0 = — 2 2 s 2. More generally,
for the c-values in question, the point z=0 is preperiodic but not periodic; it is
eventually drawn into a repulsive cycle.

(4.20) pl0)=p:40),n>3, n—-2=kx=1.

Such c-values are'known as Misiurewicz points.
Consider only the simplest cases n=3 and n=4-

(421) n=3k=1:
(c®+c)2+ec=cl+c Discarding the solution c=0 (for which we
know that z=0 is itself periodic) we only have c= — 2, the tip of the
main antenna.

(4.22) n=4,k=1:
({c*+c)2+c)?+c=(c?+c)?+c. Again discarding c¢=0 and also
c= ~2, we obtain three solutions. The real solution c= — 1.54369 is
a “band-merging point” in the analysis of GroBmann and Thomae
[GT]; the complex solutions c= 022816 +1.11514 are perhaps
best seen in Map 28, where they are the antenna tips that reach far-
thest in the imaginary direction.

(423) n=4,k=2:
((c®+c)2+c)2 4+ c=c2+c. Ignoring the solutions ¢=0, —1, —2
which have already been discussed, we are left with ¢ +i. These c-
values mark ends of the side antennas at the top and bottom of
Map 28.



