200 HIGHER DIMENSIONAL DYNAMICS

t .
f:e:ta: Orfe:;langlesz 'all we .really needed was that the boundaries of th
ments stab‘fep:;gt;onthglm appropriate stable and unstable sets. The ljsele;’
nstable sets as above to construct M : e
; ark iti i
tc}(:mpletely general operation. All that is necessary is that tolr o s
ese sets. For example, the vertical rectan constaere

the horseshoe is a Markov partition for thegles e O Construction of

that no identifications in the sequence space ZSSOC]ated oy uon set A Note

there are no overlapping rectangles.

Exercises

1. Let Ly be a hyperbolic toral automorphism. Prove that:

a. transverse homoclinic points are dense in T
¥

b s .
all points in T’ are nonwandering (in the sense of Exercise 1.7 2);
7.2);

c. homoclinic points are not i i
T recurrent points (in the sense of Exercise

2. One may define an n-dimensi rus T X h
: : r ! 3 act ana.logy with our con-
struction of the two-dimensional torus in this section. That is, let l[:cl ]
s yee ey @y

denote the set of all equi
quivalence cl C
relation classes of points in R™ under the equivalence

(®1,...,20) ~ (y1,--.,9n)
if and only if z; — y; is an integer for each j. The n
set of all such equivalence classes of points i;l R" ;
a hyperbolic toral automorphism on T .
satisfies the conditions in Definition 4.1
sets need no longer be curves in 7™, -

torus is then simply the
Similarly, one may define
by starting with a matrix 4 which
Note that the stable and unstable

a. Prove that the induced hypelbo}ic t()]a,l allt()]ll()ll)luslll on 1 has
. n
l . l. . .

b. l;rove that if [p] € T™, then W*[p] and W*[p] are dense in T
c. Prove that a hyperbolic toral automorphism is chaotic on 7" .

3. P i i
rove that T™ is homeomorphic to the n-fold cross product

S x...x St
e, s
n factors

4. Consider the map 4:R™ — R gi
on T" exactly as in the case of a hglven ) . A induces & he

: . erbolic t .
induced map is no longer a diﬂ'eomog‘;}:hism.lc oral automorphism, but the

a. Prove that periodic points are dense for this map

re necessary in this case since
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b. Prove that eventually fixed points are dense.
¢c. Prove that this map is chaotic on T™.

5. Let 2 1
Az(ll)

Construct a Markov partition for L4.

6. Let L4 beahyperbolic toral automorphism on T'. Let lp] € We[0ojnW™[0]
be a homoclinic point. Let £, be the segment in W*[0] connecting [0} to {p]
and let £, be a similar segment in W*[0]. Construct a rectangle R containing
¢, with sides in stable and unstable sets.
a. Show that there is an integer n such that L%(R) D Ly
b. Prove that we may choose [p] so that L%: R -~ L% (R) is topologically
conjugate to the linear map which produced the horseshoe in §2.3.

§2.5 ATTRACTORS

In this section, we introduce a third type of dynamical phenomenon
which is higher dimensional in nature, the attractor. Roughly speaking,
an attractor is an invariant set to which all nearby orbits converge. Hence
attractors are the sets that one “sees” when a dynamical system is iterated
on a computer. Thus far, all of the attractors we have encountered have
been fixed or periodic points. Here we introduce two new and much more
complicated attractors, the solenoid and the Plykin atiractor. These are
examples of a special type of attractor known as a transitive or hyperbolic
attractor. We will see that these atiractors are similar in many respects to
the horseshoe map and the hyperbolic toral automorphisms. ¥or example,
there is a set on which the map is chaotic and, through each point in this set,
there passes a stable and an unstable set. Since these are familiar phenomena,
we will leave many of the details in the verification to the reader.

The solenoid is an attractor which is contained in a “solid” torus. This
space is defined as follows. Let §1 be the unit circle and let B? be the unit
disk in the plane; that is

B? = {(z,y) e R*e* +y" <1}

The Cartesian product D = S x B? is a solid torus in R®. Its boundary
is a torus as described in the previous section. To define the solenoid, we
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consider the map F which maps D strictly inside itself by the formula:
F(@ —_ j; 1 27i
(0:9) = (26, 555 + 2c)

wheg: p € B? and 2" = (cos(278), sin(276)) € S?
eometrically, F' may be described as f. .
¢ etricall . ollows. Let §* ¢ §1. i
gglﬂ( ).whlcg stglveil by 6 =.0’ and p arbitrary is mapped by F intoTzilne td}lfk
centeﬁlvinthy (20 - The image of this disk is a disk of radjus 1/10o ith
cents da 9e pmilt §(c?s(20*), sin(20%)) in B(26*). See Fig. 5.1. Th ‘z{th
ated at § = 0* + 7 is also mapped into the disk given by 0 - 20*e bllst
= , bu

its image is a small disk of radi i i i
B0 B0 radius 1/10 diametrically opposite the image of

F F(B(ey+ )

6=6
o F(B©,)
Fig. 5.1. Construction of the solenojd.

Globally, F may be inter
. preted as follows. In the @ coordi i
. : . rd

3mpl:’}’ tltl; dglzlb;mg map of the circle discussed in Example 3.4 l:faéel,lagtels

ne. In the B®-direction, F is a strong contracti ith i . .
th ima, disk

center depends on 6. The ima is disk is one e siee ot e
nt . ge of this disk is one-tenth the s

original disk. Thus the image of D i i inside D e

wreps twice around b S e 02 s another solid torus inside D which

. The facft tl}a?t F stretches in one direction and contracts in the others is
Y now, a amiliar phenomenon, reminiscent of both the horsesh d ’

hyperbolic toral automorphisms. o¢ and the

b lS(t;mfctly speak%ng, F is not a diffeomorphism, since it is not onto W
Olrr;. o th la:s a piece of a .larger space and the action of F on D as j.ust :

pf ll.:)l'lt of the d.yrfamlcs. Su'me F(D) C D, it follows that all forward orbjts

of points in D lie in D. Regions like D have a special name

Definition 5.1. A closed regi i
. 1. gion NV C R" i i i
is contained in the interior of N. ' & trepping region for 1 if £
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Fig. 5.2. The image of the solid torus under F'is a
solid torus which wraps twice around itself.

Since F(N) is closed and F(N) C N, it follows that the sets F*(N) are
all closed and nested for n > 0. Therefore '

A= () F*(N)

n>0

is a closed, nonempty set. A is the set of points whose full orbits, both
forward and backward, remain in N for all time. A will be our attractor.

Proposition 5.2. A is an inveriant set.
Proof. We have

FA) = F() F*(¥) = [ F*(N) C N.

n>0 n>1

But
[ o) cO
N F*(N) = [ F*(N)
n>0 n>1
since the intersections are nested. Hence F(A) = A and A is invariant.

Invariance under F! follows as well.
q.e.d.

Definition 5.3. A set A is called an attractor for F if thereisa neighborhood
N of A for which the closure of N is a trapping region and

A= () F"(N).
n>0
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Fig. 5.3. The intersection of the F™(D) yields a Cantor set

There are other definitio
ns of attractors in comm i
_ ion on use. O
thzangzz?r;(}i:;d}tacllthough it is perhaps the simplest. This deﬁnliltliirllssz)f,f;()
1t does not produce a single, indeco .
ha : mposabl
eTx;mple, the ‘§tad1\{m” D for the horseshoe ,map of §2?3 isa :r:ttr'acmr. 'For
o ; ta,l:,tr.actor. is easily seen to consist of two pieces, the ﬁxedppu'lgtr'eglon-
and | }:: u:ivatr;lant Cantor set together with all of its unstable sgt(;m Ol " tgl
and, the region Dy C D is also a trappi i time the
. . . ln i i
attractor is quite different; it is simply the ﬁzgd goli':f?r? ,Db ut this time the
To remedy this, we introduce the following terminology}.

Definition 5.4. A is a transitive attractor for F if Fis to

sitive on A. pologically tran-

Our goal is to show that th
. e attractor A = N "
map is a'transmve attractor and that, moreover 11;1112: ﬂ ) ’for o
o ) ynamics of F on A
Let us investigate the nature
Le of the set A. Since F i
direction and contracts it b 0 in the B e Din the 57
y @ factor of 1/10 in the B2-direction. i
. . N t
;}11&::,) Ilf;((ll)))) isa toruts;1 of ;a‘.;i(lus 1/10 which wraps around Dr et(\:nr;:: ’ X;;ﬁ?ws
, we see that D) is a torus of radius 1/100 i : ton
' . 0 in the B2-directi
;v}(lilcht:wraps a;ound. D four times and which is properly contagnfd 'dlr;‘cmon
nduc ively, F' (D) 1s a torus of radius 1/10™ which wraps d Sl
2" times and which is contained in F*=Y(D) pe around D exactly
In each B(#*), we therefore (
' h B(6"), see that F*(D) i i
disks, as in Fig. 5.3. We have seen this pro(ces)sli);ozes'ced  eestion of

F™(D) yields a Cantor set in each disk B(6) e: the nesting of the
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If we perform the above construction in a cylindrical piece of D of the

form

C ={(8,p)|6: <0 < 62},

we see that C N A is locally the Cartesian product of a Cantor set and an
arc in the S!-direction. The arcs are given by the nested intersection of the
9" tubes in F™(D) N C. Since each iteration of F contracts the radius of
these tubes by 1/10, it is intuitively clear that these arcs are continuous.
Nevertheless, we will prove this later by completely different methods. In
fact, it may be shown that these curves are smooth. The set A is called a
solenoid.

We now turn to the dynamics of F' on and near A. Let @ € A. Suppose
z = (6o, po) where 8o € S! and po € B?. Let F*(z) = (8n,pn). Consider the
disk B(8p). Since F' maps B(6,) inside B(268p), it follows that F™(B(6p)) C
B(8,). Moreover, each application of F' contracts B(6) by a factor of 1/10.
Therefore, if y € B(f), it follows that F™(y) € B(8,) and |F™(z) - Fr(y)} <
1/10™, where the absolute value is the usual one in R2. Consequently, B(f)
is part of the stable set W*(z) associated to z.

Similarly, the arc constructed above as the nested intersection of tubes
about  is part of the unstable set for = which we denote by W*(z). This
follows since F~! contracts distances along the arc by afactor of 1/2. We thus
see that all of the points in A come equipped with stable and unstable sets,
just as in the cases of the horseshoe and the hyperbolic toral automorphisms.

Proposition 5.5.
1. F has sensitive dependence on initial conditions on A.
2. Per(F) is dense in A.
3. F is topologically transitive on A.

Proof. For sensitive dependence on initial conditions, we simply note that
any point on the unstable arc associated to z € A separates from z by a
factor of 2 in the §-direction when F'is iterated. To prove density of periodic
points, let U be any neighborhood of z = (8¢, po). There exists § > 0 and
n € T such that the tube C in F™(D) defined by

C= {(G,Z)W) — b} < 8,1z - pol < Ezl)-;‘—}

is completely contained in U. We will produce a periodic point in C. To
accomplish this, recall that F™(D) wraps around D exactly 2" times. We
may choose m so that 2™8 > on+1l . 4x. Hence F™(C) is a tube lying in
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Fig. 5.4. The image F™(C) cuts through C.

F™(D) and wrapping around D at lea. <27 i

cu.ts coinpl_etely across C at least on(:t::t azs szhof:;wii IIi‘tifOIéoZv j ;Ihat )
exists 0 with 6" — 8] < § such that F™(B(8')NC) C B(8) NG, 1ttt
that F'™ has a fixed point in B(6*)N C. (#ING- 1t follows

Similar arguments also prove topologic itivi i

and U .andn.V are neighborhoods of wpandg y,a lvvzr?lil:;t:;‘;:Zi. pf‘oosuif ‘:,3{; <
above in F™(D) about z and y which are completely contained i eUu v
respectively. Sufficiently many iterations of these tubes produclena ansicz

that B(6*) N U is a disk which i . ;
there is a point in A inside B(g*l)sﬂm;.pped into V. It is easy to check that

o . ed.
As in our previous examples, we may use symbolic dynamics to r;lxodel

; . L
he dynamics of F' on A. This time we use a different construction frst

introduced by R.F. Williams. Let g: §1 1
. g9: 5" — S beth i =
Our model for A will be the inverse limit apac: " doubling map 9(4) = 20

Bo(S1L &g,

More precisely

E = {0=(006162...)16; € S* and g(6;,1) = 6,}.

Tth'ui')l c‘:‘;lnstis;s of all infinite sequences of points of §? subject to the re

striction that ;4 i i :
j+1 1s one of the two preimages of §; f j i

: or each j. U

Pr::vmus s;qtu}fnce 1slpa,ces, elements of ¥ are not seqitences wh:se erilrlil;es (:rl;

integers. Rather, the entries in this ints i i

B , case are points in the circle. For example,

(000...)

T T

Orz—=..)
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all belong to . Using the doubling map g, it is helpful to think of these
sequences as backward orbits:

()3_7‘-(9__7[3‘2&_

2 4
T™og 2m g g 2W oy
— e o e e o
3 3 3 3

We define a metric on £ much as we did on Xp. O = (606:10s...) and
¥ = (Po¥1¢2 . . .) are points in L, we define the distance between them to be

) |e27ri0]' . 627r€1/)j‘

de,¥) =Y =

i=0

where |a — 3| denotes the usual Euclidean distance in the plane. It is easy
4o check that d is a metric on %. Moreover, two points are “close” if each of
their first few entries are close together.

On ¥, we have a natural map, a version of the shift given by

0’(009102 . ) = (9(00)0()9102 .. )

As in previous sections, o is easily seen to be a homeomorphism. The inverse
of o is given by a map that resembles our previous shift (but which is a

homeomorphism)
0”1(009102 ) = (010203 .o )

As with our previous models, this map is also easy to understand dy-
namically. If 8 is a periodic point for g, with period n, then the repeating
sequence (B,g"‘l((i),g"'z(B), ...,9(6),8,...) is clearly periodic for o with
period n as well. As with our other examples, it is easy to check thatl o
has periodic points which are dense in and that o has a dense orbit. See
Exercises 3-4.

How are o and F related? Let m: D — 51 be the natural projection, i.e.,
m(8,p) = 6. For any point z € A, the map S:A — X given by

S(z) = (w(z), rF N (z), nF(=),-..)
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is well defined. This follows since we can i

invert F on A even th -1
'not deﬁI}ed.on all of D. Clearly, SoF = g0 S, since F is te}zxe dousl}.x Fs
in the S'-direction. oubling map

We leave it as an exercise for the reader to prove that:
Theorem 5.8. S gives a topological conjugacy between F on A and o on %

thatLte}: us “ste :)i‘is Conjuchy to fill in the gap above where we failed to prov

e unstable sets in A were curves. For simplici ¢

. . . plicity, let us i .

for the ﬁxffd point which corresponds to the sequenc,e 0= I()&c));e this only

checks easily that this is the point § = 0 and p = (2 0) € B? ...). One
9 .

Proposition 5.7. The unstabl ; .
of the form e set of O consists of precisely those sequences
T =
5353 r)

C

N8
(3]
[\

for any z € R.

Proof. By definition, we ha N, 2,2
Tk el y W ve 07 (z,5,%,...) = (§,%,%,...). It therefore
: 2 %,...) @ 0asn — oo. For the converse, we first
recall that if 8 € §', then g7(8) is one of & or ¢ + N
(608162,...) € W*(0). There exi  n o N ool T Hone
(606 , ; - There exists N such that if n > N, |6,| < 1. Hence
eN, NHH, N42,... all lie in the right hand semicircle in §!. It follows that
CN+1. = n/2, for the other p;eimage (0n/2) + = lies in the left semicircle.
or.ltmmng, we find Oy p = —# and Oy_; = 2"9N so that ©
desired form. Resumes the
e.d.
.Consequ.ently, the unstable set of 0 in ¥ is parametrized by R Und:rihe
conjugacy given by 5, the unstable set of the fixed point is the conti
curve which is the image of W*(0). contmton
The inverse limit construction works
. well for a class of attract
as e)fpand{ng'attractors. These attractors are characterized byacur?irff)xl'(rx:lo:v .
pansion within the attractor itself. As in the case of the solenoid su:};
a.ttractors can be suxta.bly modeled by an inverse limit of a lower d’imen
sxona.l expanding map like § — 26 on S§!. The main difference in the enerai
case is that the:‘ model space is more complicated than §!; usua.llygit is a
l.)ra'nched ma_mfo'ld.” This concept was introduced by R.F,. Williams. We
‘Atlll illustrate it via an example of an attractor due to Plykin. Rather.than
give a formula for this map, we will define it geometrically, exactl did
for the horseshoe. , yaswed
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Consider the region R in the plane depicted in Fig. 5.5. Ris a region with

three open half-disks removed. We equip R with a foliation whose leaves are

rvals as shown in Fig. 5.5. Recall that this means that there is a line

inte
and that the leaves are mutually

segment through each point of R (the leaf)

disjoint.
| %
B
L2
8
2,

Fig. 5.5. The region R for the Plykin attractor.

g. 5.6. We require that P preserve
(R) is contained in the
s ﬂnzopn(%{\} l‘“‘« th@

Define a map P: R — R as shown in Fi
and contract the leaves of the foliation. Note that P
interior of R so that R is a trapping region. The set A
Plykin attractor.

To understand the dynamics of P, we
the same leaf behave identically under iteration of P. Since the leaves are

contracted, any two such points tend to the attractor in the same asymptotic
manner. Thus, to understand the action of P globally, it suffices to under-
stand the action of P on the leaves. We thus collapse each leaf to a point as
in Fig. 5.7, and examine the induced map on this space. Observe that the
collapsed space I' has “branch” points along the singular leaves £ and £3.
It is called the branched “manifol
on T' by describing how each of the fo
From Fig. 5.7 we see that the induce
and maps the other intervals this way:

first note that any two points on

oa— 3

d” for P. We may describe the dynamics
y y

ur intervals «, 3,7, and § are mapped.

d map g on I' preserves the two vertices
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P(s,)

Plv) (

PB) Pl) Pr)
Fig. 5.6. The Plykin attractor.
B—B+6+y—6-p
y—a
§—6—y—§

:x}rlhere. the ?igtns inldicate crientations or directions in which the image crosse
e given interval. We may construct such "
distances in the branched manifold T ® mep o that g expands al
In the solenocid, a similar const i
In ruction would have coll 2
dlrec.tlons (the leaves of the foliation of D ) onto a circleo(:II: slelib::fl f d
3 . 3 c
;namfo%d) otflowluch the map g is simply § — 260. Since we understand t}ele
tynarx.ncs of 8 — 28 completely, we were able to use the inverse limit con-
s ruc.txon to analyze the solencid as well. The same process ks f
Plykin attractor. works for the
For example, we may prove that ¢:

_ ¢9:T' — T' has dense periodi i
f(})lllows. _Let I be any “subinterval” in I'. Since g is expandiI:lg it lf:)III:)(:\lrrslttsh::
there exists n such. that ¢"(I) covers one of the four intervals ’a B,7,6. Now
one rna;; (t:lﬁeck cla;sﬂy that there is an integer m such that g™ (¢ )’D’I"w.here ¢
is any of the «, 3,7, or é. Indeed, g(a) =
g%(a@) D a. Thus we conclude th;tgg(]ml"(g’ Zg(g )ar?d’ys,oair:df .‘JIE’Y) ztﬁ io ;hat
- . . 3 a . 3 0 Ows
is a periodic point in I. Using the inverse limit construction, one miy ttheer;
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e

N > ¥

B
Fig. 5.7. The branched manifold for the Plykin attractor.

equate the action of P on A with that of the shift on B =T rér...
We leave the details to the reader.

Remarks.

1. Much recent research has been devoted to the topic of “strange attrac-
tors.” These are loosely defined as attractors which are topologically distinct
from either a periodic orbit or a “limit cycle” (ie., an invariant, attracting
simple closed curve which arises often in ordinary differential equations). We
prefer the term “hyperbolic” attractor for attractors like the solenoid and the
Plykin example. Indeed, since we have succeeded in analyzing these maps
completely, there is nothing whatsoever “strange” about them.

2. There are, however, some attractors which have thus far defied analysis.
One of these is the Hénon attractor as described in Exercise 10. Numerical
evidence indicates that this simple quadratic map of the plane possesses a
transitive attractor, although this has never been proved rigorously. We urge
the reader with access to computer graphics to plot successive iterates of a
point under this map. The result is always qualitatively the same (disre-
garding the first few iterates) and always fascinating! We will return to this
map in §2.9, where we will approach it from a different point of view.

Exercises

1. Construct a Markov partition for the solenoid.




