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The entire multifractal spectrum f(er) was calculated from 1024 mode-locked
intervals by Cvitanovi¢, Jensen, Kadanoff, and Procaccia [CJKP 85]. The maximum
of f() equals approximately 0.868 and corresponds to the Hausdorff dimension
D, of the multifractal underlying the mode-locking staircase.

Mediants, Farey Sequences, and the Farey Tree

In order to calculate the dimensions D, of the mode-locking fractal and its
multifractal spectrum f(a), some order has to be imposed on the rational numbers
P/Q representing different frequency ratios. One such ordering is used in the
standard proof that the rational numbers (as opposed to the irrational numbers)
form a countable set. Here we need a different ordering, one that better reflects
the physics of mode locking.

Suppose the parameter € in equation 20, the bare winding number, is such
that the dressed winding number falls somewhere between 3 and 3 without
actually locking into either one. What is the most likely locked-in frequency ratio
for a nonlinear coupling strength just below the value that would cause mode
locking at 3 or %. It seems reasonable that it should be a frequency ratio P/Q
in the interval (3, 3) with Q as small as possible. )

Indeed, this is precisely what happens in dynamic systems modeled by the
circle map. Adjust the nonlinear coupling strength K and the bare winding number
Q to a point just below the crossing of the two Arnold tongues for the locked
frequency ratios 5 and 3. The dressed winding number w for this point in the
QK plane must be rational because K > 1. In fact, the rational value P/Q that
w assumes is given by T < P/Q < 2 with Q as small as possible.

This raises an interesting mathematical question with a curious but simple
answer: What is the ratio following + and % with the smallest denominator? If
you ask a kindergartner to add 7 and 3, he or she may well add numerators and
denominators separately and write

and in so doing will have discovered the looked-for “locked-in” fraction with
the smallest denominator.’

5. This is somewhat reminiscent of S. N. Bose (1894—1974), the celebrated Indian physicist, who,
in deriving photon statistics, “forgot” to-take account of the photon's (nonexistent) distinguishability.
When Nature (not nature) turned his paper down, Bose wrote to Einstein, who saw the light and
recognized Bose’s “mistake” as the long-sought-after answer in the statistical physics of light.
Bose’s name has become enshrined ever since in the Bose-Einstein distribution, bosons (integer-spin
particles, such as the photon) and Bose condensation, which gives us superconductivity and other

macroscopic marvels of the microscopic quantum world.
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What can such a strange strategy for forming intermediate fractions possibly
mean? Physically, the frequency ratio 1/2 of two oscillators can be represented -
by a pulse (1) followed by a “nonpulse” (0) of the faster oscillator during every
period of the slower oscillator. Thus, the frequency ratio 1/2 is represented by
the sequence 101010... or simply 0. Similarly, the frequency ratio 2/3 is
represented by two 1s repeated with a period of three: TIO.

Now, to form an intermediate frequency ratio, we simply alfernate between
the frequency ratios 1/2 (ie, 10) and 2/3 (ie, 110), yielding T0110, which
represents the frequency ratio 3/5 (3 pulses during 5 clock times). So, in averaging
frequency ratios, taking mediants, as this operation is called, is not such a strange
thing after all.

In general, given two reduced fractions P/Q and P'/(Q’, the desired inter-
mediate fraction is given by
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and is called the mediant by number theorists. In a penetrating analysis of
Diophantine equations, John Horton Conway showed that numerators and de-
nominators can be interpreted as the components of a two-dimensional vector
and that the intermediate fraction with the lowest denominator is obtained by
componentwise vector addition [unpublished, personal communication, 1989).
Thus, for example, the mediant of + and % equals % (the revolutionary frequency
ratio that Jupiter and Pallas selected for their gravitationally coupled orbits around
the sun). (As it happens, there is not a single fraction between <5 and  with a
denominator smaller than 18.) For this to be true, the two parent fractions must
be sufficiently close. More precisely, they must be unimodular. The modularity of
two reduced fractions P/Q and P'/Q’, which measures their closeness for our
purposes, is defined as the absolute difference |QP’ — PQ’|, and unimodular
fractions are those for which |QP' - PQ’I equals 1. :

The mediant of two fractions has the same modularity with its two parents
as the parents have between them: modularity is another hereditary trait. In-
heritance is a pivotal property, in self-similarity, including the self-similarities
found in mode locking.

~ Mediants occur naturally in Farey sequences. A Farey sequence is defined as
the sequence of fractions between 0 and 1 of a given largest denominator (called
the order of the sequence). Thus, the Farey fractions of order 5 are (in increasing
magnitude):
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Notice that each fraction is the mediant of its two neighbors. The modularity
between all adjacent fractions equals 1, but they are not uniformly spaced.
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However, Riemann’s famous hypothesis, concerning the zeros of his zeta function,
guarantees that the spacings between adjacent fractions are relatively uniform
[Schr 90].

While Farey sequences have many useful applications and nice properties,
such as classifying the rational numbers according to the magnitudes of their
denominators (in fact, there are entire books listing nothing but Farey fractions),
they suffer from a great irregularity: the number of additional fractions in going
from Farey sequences of order n — 1 to those of order n equals the highly
fluctuating Euler’s function ¢(n), defined as the number of positive integers smaller
than and coprime with n. For example, ¢(5) =4, ¢(6) = 2, and ¢(7) = 6.
A much more regular order is infused into the rational numbers by Farey frees,
in which the number of fractions added with each generation is simply a power
of 2.

Starting with two fractions, we can construct a Farey tree by repeatedly
taking the mediants of all numerically adjacent fractions. For the interval [0, 1],
we start with 7 and § as the initial fractions, or “seeds”. The first five generations
of the Farey tree then look as follows:
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Each rational number between 0 and 1 occurs exactly once somewhere in the
- infinite Farey tree. The tree’s construction reflects precisely the interpolation of
locked frequency intervals in the circle map by means of mediants. The Farey
tree is therefore a kind of mathematical skeleton of the Arnold tongues.

The location of each fraction within the tree can be specified by a binary
address, in which 0 stands for moving to the left in going from level n to level
n+ 1 and 1 stands for moving to the right. Thus, starting at 3, the rational
number 7 has the binary address 011. The complement of ¢ with respect to 1
(i.e. 3) has the complementary binary address: 100. This binary code for the

rational numbers is useful in describing coupled oscillators.

renoaic uanu WHUSIPET IUMIL LT MLLKMIED I UpUMLE™ Liie wiie su B TR S N ~ o

Note that any two numerically adjacent fractions of the tree are unimodular.
For example, for 2 and 1, we get2 - 4—1-7=1

Some properties of the Farey tree are particularly easy to comprehend in
terms of continued fractions, which for numbers w in the interval [0, 1] look as
follows:

w =
1
a; + 7
uz+___,...

a;

but are more conveniently written as w = [a,, a,, 4, . . .}, where the a, are positive
integers. Irrational w have nonterminating continued fractions. For quadratic
irrational numbers the a, will (eventually) repeat periodically. For examgle,
A3=1[1121 2,1,2,...1=[11,2] is preperiodic and has a period of
length 2; 1/3/17 = [8] has period length 1 and 1/,/61 has period length 11. (It
is tantalizing that no simple rule is known that predicts period lengths in general.)

Interestingly, for any fraction on level n of the Farey tree, the sum over
all its a4, equals n: ‘

Ya=n n=234,...
k

We leave it to the reader to prove this equation (by a simple combinatorial
argument, for example).

There is also a direct way of calculating, from each fraction on level n — 1,
its two neighbors or direct descendants on level n. First write the original
fraction as a continued fraction in two different ways, which is always possible
by splitting off a 1 from the final ;. Thus, for example, F=[22]= 2,1, 1].
Then add 1 to the last term of each continued fraction; this yields [2, 3] = %
and [2, 1, 2] = %, which are indeed the two descendants of =3

Conversely, the close parent of any fraction (the one on the adjacent level)
is found by subtracting 1 from its last term (in the form where the last term
exceeds 1, because #, = 0 is an illegal entry in a continued fraction). The other
(distant) parent is found by simply omitting the last term. Thus, the two parents
of 3 = [2, 3] are the close parent [2, 2] = £ and the distant parent [2] = 3. (But
which parent is greater, in general—the close or the distant one? And how are
mediants calculated using only continued fractions?)

Interestingly, if we zigzag down the Farey tree from its upper right

1 1 2 3 5 .
(t =+ 7 = 35— § — 3, and so on), we land on fractions whose numerators and

denominators are given by the Fibonacci numbers F, defined b
FE,=F,_,+F,_; F=0, F, = 1 In fact, on the nth zig or zag, starting at 7,
we reach the fraction F,./F,;, which approaches the golden mean
Y= (\/5 — 1)/2=10.618....as n = o0 [Schr 90]. (Starting with T we land on
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the fractions F,/F, , ,, which converge on y* = 1 — y.) The binary address of y
in the Farey tree is 101010 . . . .

The continued fraction expansions of these ratios F,/F, , , have a particularly
simple form. For example, °

=[1, 1, 1}
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and in general

E
—=[1,1,...,1] (with 1 1s)
Fn+l

Obviously, continued fractions with small a, converge relatively slowly to their
final values, and continued fractions with only 1s are the slowest converging of
all. Since

=[1,11,...]=[1]

y = lim
n=roo Iy41

where the bar over the 1 indicates infinitely many Is, the golden mean 7 has
the most slowly converging continued fraction expansion of all irrational numbers.
The golden mean y is therefore sometimes called (by physicists and their ilk)
“the most irrational of all irrational numbers”— a property of y with momentous
consequences in a wide selection of problems in nonlinear physics, from the
double swing to the three-body problem.

Roughly speaking, if the frequency ratio of two coupled oscillators is a
rational number P/, then the coupling between the driving force and the “slaved”
oscillator is particularly effective because of a kind of a resonance: every (Q cycles
of the driver, the same physical situation prevails so that energy transfer effects
have a chance to build up in resonancelike manner. This resonance effect is strong,
of course, particularly if Q is a small integer. This is precisely what happened
with our moon: resonant energy transfer between the moon and the earth by
tidal forces slowed the moon'’s spinning motion until the spin period around its
own axis locked into the 28-day cycle of its revolution around the earth. As a
consequence the moon always shows us the same face, although it wiggles
(“librates™) a little.

Similarly, the frequency of Mercury’s spin has locked into its orbital fre-
quency at the rational number 3. As a consequence, one day on Mercury lasts
two Mercury years. (And one day—in the distant future, one hopes—something
strange like that may happen to Mother Earthi)

The rings of Saturn, or rather the gaps between them, are another conse-
quence of this resonance mechanism. The orbital periods of any material (flocks
of ice and rocks) in these gaps would be in a rational resonance with some
periodic force (such as the gravitational pull from one of Saturn’s “shepherding”
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moons). As a consequence, even relatively weak forces have a cumulative
significant effect over long time intervals, accelerating any material out of tt
gaps.

For rational frequency ratios with large denominators (Q, such a resonanc
effect would, of course, be relatively weak, and for irrational frequency ratio
resonance would be weaker still or absent. ‘

For strong enough coupling, however, even irrational frequency ratios migt
be affected. But there is always one irrational frequency ratio that would be lea
disturbed: the golden mean, because, in a rational approximation to within
certain accuracy, it requires the largest denominators Q. This property is als
reflected in the Farey tree: on each level n the two fractions with the larges
denominators are the ones that equal F,_,/F,,,and F,/F, ,, which for n — o
approach y* = 0.382...and y = 0.618.. . ., respectively. (Conversely, the frac
tions with the smallest Q on a given level of the Farey tree are from the harmoni
series 1/Q and 1 — 1/Q.)

Another way to demonstrate the unique position of the golden mean amon,
all the irrational numbers is based on the theory of rational approximation, a
important part of number theory. For a good rational approximation, one expand
an irrational number w into a continued fraction and terminates it after # term
to yield a rational number [a,, a,, .. ., a,] = P./q. This rational approximatio
to w is in fact the best for a given maximum denominator q.- For example, fc -
w=1/n=1(3,7,151,293,...] and n = 2, we get p,/q, = 7/22, and there i
no closer approximation to 1/ with a denominator smaller than 22,

Now, even with such an optimal approximation as afforded by continue
fractions, the differences for the golden mean y

’y_..._..

' p"
qn

exceed c/q, (where ¢ is a constant that is smaller than but arbitrarily close t
1//5) for all values of n above some ny. And this is true only for the golde;
mean  and the “noble numbers” (defined as irrational numbers whose continue
fractions end in all 1s). Thus, in this precise sense, the golden mean (and the
noble numbers) keep a greater distance from the rational numbers than does any
other irrational number. Small wonder that the golden mean plays such ar
important role in synchronization problems.

The golden mean is also visible in visual perception (see Figure 3). For :
computer-generated image of a “sunflower” using the golden angle A¢ =
360° y & 225.5° as the angular increment in the placement (r,, ¢,) of successive
seeds, where

(rm ¢n) = (C ¢ rn—-ll ¢n—1 + A¢)

we get a realistic image of the sun flower’s seed pattern, which uses the golder



Figure 3 The golden angle in visual perception. (Courtesy T. Gramss, after [RS 87])

angle in its construction (the left part of Figure 3) [RS 87]. But for angular
increments A¢ that differ by just 0.04 percent from the golden angle (222.4°),
the human eye perceives pronounced spirals (the right part of Figure 3)—a
psychovisual mode-locking phenomenon!

The Golden-Mean Route to Chaos

For the critical circle map
1
0,,=0,+Q — ﬂ sin (276,) (23)

the sequence of the locked-in frequency ratios P/ equal to the ratio of successive
Fibonacci numbers F,_ ,/F, =[1, 1, ..., 1}isin many respects the most interesting
route to aperiodic behavior and deterministic chaos of the variable 0,. In the
transition to chaotic motion, these frequency ratios and equivalent ones, such as
F,_,/F,=12,1,1,..., 1], are usually the last to remain unaffected as the degree
of nonlinear coupling is increased. Chaotic means, as always, that initially close
values of 6 will diverge exponentially so that all predictability is lost as the
system evolves in time, .

In the Farey-tree organization of the rational numbers, introduced in the
previous section, the ratios F,_,/F, or F,_,/F, lie on a zigzag path approaching
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the golden mean 7 or its square, 1 —y = y* respectively. Each fraction is the
mediant of its two predecessors. For example, the sequence F,_,/F,, beginning
with ¥ and 1, equals 5535 % ... . The corresponding continued fractior:s,
beginning with 7, keep adding 1s: [2], [2, 1), [2, 1, 1), [2, L 1, 1], [2, 1, 1, 1, 1),
and so on to [2, T] = y%

The parameter value Q, that gives a dressed winding number equal to the
frequency ratio F,_,/F, has to be determined numerically. A simple calculator
program that adjusts Q so that, for 6, =0, 0, = F,_, yields the following

approximate parameter values:

Q3) =05

Q) ~ 0.3516697

Q) ~ 0.4074762

Q¥ =~ 0.3882635
Q) ~ 0.3951174
QGY) ~ 0.3927092
QGH ~ 0.3935608

and so on, converging to Q_ & 0.3933377.

These parameter values give rise to superstable orbits because the iterates
8, include the value 6, = 0 for which the derivative of the critical circle map
vanishes. These Q values therefore correspond to the superstable values R, of
the quadratic map, and Q,, corresponds to R.,.

Is there a universal constant, corresponding to the Feigenbaum constant,
which describes the rate of convergence of the parameter values QQ, :==
Q(F,_,/F,) to Q,, as n goes to infinity? Numerical evidence suggests that there
is, and that the differences between successive values of €, scale with an asymp-
totic factor:

Qn— 17 Qn 6

—

Qn — Qn+ 1
with 6 = —2.8336..., which thus corresponds to the Feigenbaum constant
4.6692 . . . . (The minus sign signifies that successive differences alternate in sign.)

Other self-similar scaling behaviors can be observed in the iterates of the
variable 6,. For example, for Q = UF,-,/F,) the differences 0;_ —F,-; con-

verge to 0 in an asymptotically geometric progression:

—F

n
n-—3 o

F,._,

with o = —1.288575..., which corresponds to the scaling parameter
—2.5029 ... for the iterated variable of the quadratic map.




