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There are butterflies everywhere. But who is to say that their
flapping wings cancel each other out?
Lorenz, again:

The average person, seeing that we can predict the tides pretty
well a few months ahead would say, why can’t we do the same
thing with the atmosphere? It's just a different system, the
laws are about as complicated. But I realized that any physical
system that behaved nonperiodically would be unpredictable.

Weather — or not?

In this vein, Lorenz ends his 1963 paper with some speculations
about the possibility of weather-forecasting. His argument is simple
and original. Imagine recording a very accurate series of measure-
ments of the state of the atmosphere, comparable to those that you
wish to use for forecasting. Collect such data for a very long time.

The crucial point is then whether analogues must have
occurred since the state of the atmosphere was first observed.
By analogues we mean two or more states of the atmosphere
which resemble each other so closely that the differences may
be ascribed to errors in observation.

If two analogues have occurred, then you will make identical
predictions of the future weather, starting from either of them. That
is, your weather-predicting scheme must predict periodic variation of
the weather. But this is nonsense; the whole difficulty with weather-
prediction is that the weather is not periodic.

If analogues haven’t occurred, there’s still hope: the entire
weather system may be quasi-periodic, almost repeating the same
states over again, but with tiny variations, slowly growing. In such a
case, long-term weather prediction might be possible. In fact, all you
have to do is look back in the records for a close analogue of today’s
weather, and see what happened last time.

This line of argument fails, Lorenz notes, if ‘the variety of possible
atmospheric states is so immense that analogues need never occur.’
And he leaves one crucial question dangling: ‘How long is “very
long range”? He says that he doesn’t know the answer, but
‘Conceivably it could be a few days or a few centuries’. Twenty-four
years later, the centuries have been ruled out, and ‘a few days’ looks
spot on.
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Stretch and Fold

We've already seen an example of the butterfly effect, in Chapter 7.
Smale’s solenoid, or its simpler model, the mapping x — 10x on
a circle. There the same sensitivity to initial conditions occurs. Two
points & and n', agreeing to a billion decimal places, wander about
independently of each other after a billion iterations.

That may not sound so bad. But two points agreeing to six
decimal places evolve independently after only six iterations.

Where does this sensitivity come from?

It's a mixture of two conflicting tendencies in the dynamics.

The first is stretching. The mapping x — 10x expands distances
locally by a factor of ten. Nearby points are torn apart.

The second is folding. The circle is a bounded space, there isn’t
room to stretch everything. It gets folded round itself many times,
that’s the only way to fit it in after you've expanded distances by
ten. So, although points close together move apart, some points far
apart move close together.

The expansion causes points that start off close together to evolve
differently. At first, the difference grows regularly. But once the two
points have moved far enough apart, they ‘lose sight of each other’.
No longer must one mimic the behaviour of the other.

The mixture of stretching and folding is also responsible for the
irregular motion. Yes, some points must move closer together again.
But which? How can you tell? Large differences now are due to very
tiny differences many iterations back. You can’t see what’s coming
in advance.

That’s unpredictability.

You can see the stretch-and-fold process going on in Lorenz’s
system. Each half of the front of the surface winds round to the back
and is stretched to double its width, before being ‘re-injected’ into
the front part again.

It's now pretty clear that Lorenz’s strange infinitely-sheeted
double-lobed surface must be a strange attractor — the Lorenz
attractor. And his differential equations, while a somewhat hacked-
down version of the physics, are down-to earth equations in three
variables with some kind of physical pedigree, be it ever so littered
with mongrels. They aren't artificial designer differential equations,
labelled ‘CAREFULLY MADE BY TOPOLOGISTS’ with a green doughnut

logo on the label.

And in fact you can find real physical systems which are very well
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Figure 56 Order in chaos. If the size of an oscillation is plotted against that of the
previous oscillation, a precise curve results. (American Meterorological Society,
Journal of the Atmospheric Sciences, vol. 20 (Edward N. Lorenz))

Lorenz noticed this too. He called it the ‘butterfly effect’. He
discovered it by accident.

He’d had his McBee for several years, since about 1960. He used
to set up model weather-systems and let them run, sometimes for
days on end. The computer would type out the solution trajectory as
a long series of numbers — no fancy computer graphics then.
Colleagues would make bets on what Lorenz’s microclimate would
do next. In the winter of 1961, he was running a precursor of his
now famous system. He’d calculated a solution, and he wanted to
study how it behaved over a greater period of time. Rather than wait
several hours, he noted down the numbers it had reached when it
was in the middle of the run, fed them in as a new starting-point,
and set the machine going.

What should have happened was this. First, the machine would
repeat the second half of the original run, and then it would carry
on from there. The repetition served as a useful check; but missing
out the first half saved time.
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Figure 57 The butterfly effect: a numerical simulation of one variable in the Lorenz
system. The curves represent initial conditions differing by only 0.0001. At first they
appear to coincide, but soon chaotic dynamics leads to independent, widely divergent
trajectories.

The meteorologist went off and had a cup of coffee. When he
came back, he found that the new run had not repeated the second
half of the old one! It started out that way, but slowly the two runs
diverged, until eventually they bore no resemblance to each other.

In his book Chaos James Gleick, a science writer who interviewed
Lorenz, tells what happened next.

Suddenly he realized the truth. There had been no malfunction.
The problem lay in the numbers he had typed. In the
computer’s memory, six decimal places were stored: .506127.
On the print-out, to save space, just three appeared: .506.
Lorenz had entered the shorter, rounded-off numbers, assuming
that the difference — one part in a thousand — was inconsequen-
tial.

From the traditional way of thinking, so it should be. Lorenz
realized that his equations weren’t behaving the way a traditionally-
minded mathematician would expect. Lorenz coined his famous
phrase: ‘butterfly effect’ (Figure 57). The flapping of a single
butterfly’s wing today produces a tiny change in the state of the
atmosphere. Over a period of time, what the atmosphere actually
does diverges from what it would have done. So, in a month’s time,
a tornado that would have devastated the Indonesian coast doesn’t
happen. Or maybe one that wasn’t going to happen, does.
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Figure 55 The Lorenz attractor: trajectories cycle, apparently at random, round the
two lobes.

Lorenz had a computer. In the early 1960s this was unusual. Most
scientists distrusted computers and hardly anybody had one of their
own. The machine on which I'm typing this paragraph is a far better
computer than Lorenz had, and I'm using it for word processing.
It’s like using a Rolls Royce to deliver milk. Times change. Anyway,
Lorenz had a Royal McBee LGP-300 computer, a not very reliable
maze of vacuum tubes and wires. So he put his equations on his
Royal McBee and let it royally McBuzz away, at a speed of about one
iterations per second. (My word processor is about fifty to a
hundred times faster.)

Catch-22: to get out of the bind, the place, people, culture, and
time must be right. Poincaré was the person, France the place — but
the time and culture were wrong. Lorenz was the person, MIT the
place; the culture for chaos is the computer culture, and that was
well under way. When everyone has a computer, the fact of chaos is
impossible to miss. Realizing its importance is another matter,
though. For that, the time must be right too — other people have to
appreciate that something really interesting is going on. The time
wasn’t right. More accurately, Lorenz was ahead of his time.

His paper shows the first 3,000 iterations of the value of the
variable y (Figure 54). It wobbles periodically for the first 1,500 or so,
but you can see the size of the wobble growing steadily. Lorenz
knew from his linear stability analysis that this would happen: but
what happened next?

Madness.
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Violent oscillations, swinging first up, then down; but with hardly
any pattern to them.

He drew plots of how various combinations of X, Y, z varied. In
the (x,y)-plane he saw a two-lobed figure like a kidney (Figure 55).
Sometimes the point circled the left-hand lobe, sometimes the right.

The trajectories of his equations, he realized, lived on something
rather like a squashed pretzel. A surface that had two layers at the
back, but merged to a single layer at the front. The point that repres-
ented the state of the system would swing round one or other of these
surfaces, pass through their junction, and then swing round again.

Lorenz knew that trajectories of a differential equation can't
merge. 50 what looked like a single sheet at the front must really be
two sheets very close together.

But that meant that each sheet at the back was double too; so
there were four sheets at the back . . . So four at the front, so eight
at the back, so ... ‘We conclude,” said Lorenz, ‘that there is an
infinite complex of surfaces, each extremely close to one or the other
of two merging surfaces.’

It’s not surprising that the meteorologists were baffled. But
Lorenz was on to something big.

It's amazing what a bit of xz and xy can do for you.

The Butterfly Effect

It's not true to say that Lorenz found no pattern, that nothing was
predictable. On the contrary, he found a very definite pattern. He
took the peak values of the variable z, and drew a graph of how the
current peak relates to the previous peak. The result was a
beautifully precise curve, with a spike in the middle (Figure 56).

Lorenz’s curve is a kind of poor man’s Poincaré section. Instead of
plotting a variable at regular periods of time, he plots z every time it
hits a peak. The time intervals are then irregular, but not badly so,
because there’s a definite underlying rhythm to the Lorenz attractor.

Using the curve, you can predict the value of the next peak in z
provided you know the value of the current peak. In this sense, at
least some of the dynamics is predictable.

But it’s only a short-term prediction. If you try to string the short-
term predictions together to get a long-term prediction, tiny errors
start to build up, growing faster and faster, until the predictions
become total nonsense. Indeed, Lorenz’s curve has the same stretch-
and-fold characteristics that we’ve learned to associate with chaos,
and the stretch makes the errors blow up.
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dx

= = —10x + 10y
dat
EZ=28x——y—xz
dt

fif_=§z+xy

dt 3

Here x, y, z are his three key variables, ¢ is time, and d/dt is the rate
of change. The constants 10 and 8/3 correspond to values chosen by
Saltzman; the 28 represents the state of the system just after the
onset of unsteady convection, as we’ll see in a moment. These
numbers can be changed, depending on the values of physical
variables.

If you cross out the terms xz and xy on the right-hand sides, you
get a set of equations that any mathematician worth his salt will
solve with his eyes shut before breakfast. Boring, though.

But you can do something more useful along those lines. You can
find the steady states of the system, where all three expressions on
the right vanish, and x, y, z remain constant. There are three: one
representing no convection and two others, symmetrically related,
representing steady convection. You can also analyse the stability of
the system near these states by a method known as linear stability
analysis. You find that if the 28 is reduced below 24.74 then the state
of steady convection is stable. At the critical value 24.74, convection
starts up. Lorenz’s choice of 28 occurs just after the onset of
unsteady convection.

At this point linear theory abandons you. It works well near the
steady state; but when the steady state becomes unstable, that
necessarily means you have to consider what happens as the system
moves away from the steady state. So linear theory can tell you
where the instability occurs, but not what happens as a result. A
pair of binoculars can show you where the brow of the next hill is,
but not what lies beyond.

It's a start. Now you know where the interesting behaviour occurs. But
what is it?

The Advantages of Having a Computer

There’s no way out: you have to solve the equations. By hook, crook,
cunning trickery or brute force. By far the most reliable method is
brute force: compute the solution numerically.

NNV Y

Figure 54  Lorenz’s plots of 3,000 numerically computed steps in his equations for

convection: (left) oscillations grow and become chaotic, (right) two views of the
motion in phase space (American Meteorological Society, Journal of the

Atmospheric Sciences, vol. 20 (Edward N. Lorenz))
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and my hair stands on end. He knew! Twenty-four years ago, he knew!
And when I look more closely, I'm even more impressed. In a mere
twelve pages Lorenz anticipated several major ideas of nonlinear
dynamics, before it became fasionable, before anyone else had
realized that new and baffling phenomena such as chaos existed.

Lorenz, as I've said, thought he was a meteorologist, and
naturally he published his paper in Journal of the Atmospheric Sciences.
The meteorologists, who were either non-mathematical or versed
only in traditional mathematics, really didn’t know what to make of
it. It didn’t look especially important. In fact Lorenz’s equations
were such a mangled, lopped-off version of the real physics, that the
whole thing was probably nonsense.

There are several thousand scientific journals published per year,
running on average to well over a thousand pages. If you read a lot
you can just about keep up with the publications in your own field.
Yes, it’s just barely possible that the Spring issue of the Goatstrangler's
Gazette might contain an idea of enormous importance in dynamical
systems theory, but the same goes for a thousand other obscure
journals too. With the best will in the world, the best you can do is
look in the places you know about. The topologists, whose necks
would doubtless have prickled like mine had they come across
Lorenz’s seminal opus, were not in the habit of perusing the pages
of the Journal of the Atmospheric Sciences.

And so, for a decade, his paper languished in obscurity. Lorenz
knew he was on to something big, but he was ahead of his time.

Let’s take a look at what he did.

Courage of his Convections

Hot air rises.

This motion is known as convection, and it’s responsible for many
important aspects of the weather (Figure 53). Thunderclouds form as
a result of convection; that’s why you tend to get thunderstorms on
a hot humid day. Convection can be steady, with the warmer air
drifting gently upwards in a constant manner; or unsteady, with the
atmosphere moving about in a much more complicated way.
Unsteady convection is far more interesting, and more obviously
relevant to weather. Since the simplest behaviour after being steady
is to change periodically, the simplest kind of unsteady convection is
some sort of periodic swirling effect.

The study of convection has a distinguished history. In about 1900
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Figure 53  Convection cells, caused by hot air rising

Henri Bénard carried out a fundamental experiment, discovering
that when a thin layer of fluid is heated from below it can form
convection cells, looking rather like a honeycomb. Lord Rayleigh
derived the basic theory of the onset of convection. But there’s
always more to learn. In 1962 B. Saltzman wrote down the equations
for a simple type of convection. Imagine a vertical slice of
atmosphere, warm the air at the bottom, keep it cool at the top, and
watch it convect. What you expect to see is regularly spaced swirls,
the convection cells, going round and round in a periodic fashion. In
a manner typical of classical applied mathematics, Saltzman guessed
an approximate form of the solution, substituted it into his
equations, ignored some awkward but small terms, and took a look
at the result. Even his highly truncated equations were too hard to
solve by a formula, so he put them on a computer.

He noticed that the solution appeared to undergo irregular
fluctuations: unsteady convection. But it didn’t look at all periodic.

Lorenz was interested and decided to investigate further. N oticing
that only three of Saltzman’s variables played a role in this effect,
Lorenz threw the rest away. This was a highly cavalier but perfectly
conscious act. He obtained a system of equations that has now
become a classic:
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Construction of the Cantor set by repeated deletion of middle thirds.
The vertical dimension is exaggerated for clarity: ideally the line has no

width.

Figure 49
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Figure 50 The Cantor cheese: alternative construction of a topological equivalent to
the Cantor set, using pairs of circles

other points, as it turns out. The recipe involves expansion to base 3:
if you like that sort of thing, see if you can describe exactly which
points survive to make up the Cantor set.

The total length of the intervals removed is 1 — the original length
of the interval you started with. So in some sense the ‘length’ of the
Cantor set is zero! That's reasonable, the Cantor set consists mostly
of holes. It's more like a dust than an interval.

There are‘other constructions which end up with something that
is topologically equivalent to a Cantor set. One of the prettiest is to
start with a circular disc, and remove everything except for two
smaller discs (Figure 50). Like a button with two holes to put the
thread through, except you keep the holes and throw away the
button. Repeat this construction on each smaller disc, continue to
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just talking of the surface of the torus. Define a mapping of the torus
to itself as follows. Stretch it out to ten times its circumference and
roll it thin; then put it back inside itself so that it wraps ten times
round, without passing through any point more than once (Figure
48). (Mathematicians normally use the number 2 rather than 10 here,
but to see what goes on then you have to think in binary: I've
rewritten history a little to make life easier for us.)

Imagine repeating this transformation of the doughnut. On the
next application of the procedure it gets even thinner, and wraps
100 times round itself; then 1,000, 10,000, and so on.

Where does it go in the long run? You get something akin to an
infinitely thin line wrapping infinitely many times round the torus.
We'll examine this statement for hidden bugs in a moment; but it's
not too far off the beam. There’s an electrical gadget called a solenoid,
in which miles of copper wire is wrapped around a metal core to
make an electromagnet. Mathematicians borrowed this name for
Smale’s construct.

Two eminent dynamical systems theorists, colleagues of mine,
were discussing all this in an American bar not long after its
discovery, waving their hands graphically round and round, and
chattering animatedly. ‘Ah,” said the barman. “You must be talking
about solenoids!” This wasn’t the kind of conversational gambit that
they expected. Was the barman a mathematics graduate student
working his way through college? It turned out he’d been in the
navy, and what he was referring to was a real electrical solenoid.

At least the story shows that ‘solenoid’ is an appropriate name.

Anyway, we get this crazy mapping of a solid torus, in 3-space.
Now we plunge our hands into the topological hat and extract a
rabbit. Suspend Smale’s solenoid mapping, and you get a flow in 4-
space with his crazy mapping as a Poincaré section.

If you're not used to thinking in 4-space, you'll get the wrong
picture at this point. You'll imagine a point starting in the middle of
the dough, and wandering around through 3-space until it
eventually ends up back inside the dough again. That’s wrong. It
moves out of 3-space altogether, immediately, without passing
through the dough, wraps round in an entirely new dimension, and
then hits the dough again somewhere else. As an analogy, using
time as the fourth dimension, if you time-travel from now into the
future, you leave the present 3-space immediately.

If you iterate the mapping from the torus to itself a large number
of times, all initial points move closer and closer to the solenoid. So
the solenoid is an attractor for the dynamics on the Poincaré section.
The suspension of the solenoid - what you get when you whiz
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round in the extra dimension — is therefore an attractor for the full 4-
dimensional flow.

Furthermore, it’s structurally stable. To see why, imagine making
a very small change to the wrapping mapping. The result will still
look pretty much the same. You can’t change continuously from a
wrap-ten-times mapping to a wrap-nine or a wrap-eleven-times. To
change continuously from ten to eleven you have to pass through
ten and a half, but there’s no way to wrap a torus ten and a half
times without breaking it. That means the dynamics after making a
small change to the mapping looks topologically the same as it did
to begin with; and that’s what structural stability means.

Finally, the solenoid is not a single point, and it’s not a circle. So it
can’t be one of the traditional typical attractors. Two mathematicians,
Floris Takens and David Ruelle, coined a name for this new type of
attractor. A structurally stable attractor that is not one of the classical
types, point or circle, is said to be a strange attractor. The name is a
declaration of ignorance: whenever mathematicians call something
‘pathological’, ‘abnormal’, ‘strange’, or the like, what they mean is ‘I
don’t understand this damned thing’. But it’s also a flag, signalling a
message: I may not understand it, but it sure looks important to me.

Cantor Cheese

The solenoid is not quite as crazy as it looks. Although it isn’t a nice
classical point, or circle, it has a distinguished pedigree. This is
highly relevant to later developments, so I'll say a little more. The
appropriate object is known as the Cantor set (Figure 49), because it
was discovered by Henry Smith in 1875. (The founder of set theory,
Georg Cantor, used Smith’s invention in 1883. Let’s face it, ‘Smith
set’ isn’t very impressive, is it?) The Cantor set is an interval that has
been got at by mice. Infinitely many vanishingly small mice, each
taking tinier and tinier bites.

Less colourfully, to build a Cantor set you start with an interval of
length 1, and remove its middle third (but leaving the end points of
this middle third). This leaves two smaller intervals, one-third as
long: remove their middle thirds too. Repeat indefinitely. You get
more and more shorter and shorter intervals: pass to the limit where
the construction has been repeated infinitely many times. This is the
Cantor set.

You might think that nothing at all is left. But, for example, the
points 1/3 and 2/3 escape removal, and so do 1/9, 2/9, 7/9, and 8/9.
All the end-points of removed segments remain. So do quite a lot of
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Figure 47  Suspension: a mathematical trick to turn a mapping (left) into a flow in
a space one dimension higher (right)

the motion of a prune in a bowl of porridge being stirred by Little
Baby Bear, and ask ‘is there a periodic solution?’, then instead of
trying to solve the equations and examining the result for
periodicity, you end up looking for Poincaré sections instead.
‘Someone’s been iterating my Poincaré mapping,” said Mummy
Bear. You can imagine that the techniques involved are rather
different.

Solenoids in Suspension

What has this to do with making the tenfold circle-wrapping
mapping into respectable dynamics? Smale realized that you can
work a Poincaré section backwards. Given a piece of surface - say a
topological disc — and a mapping from the surface to itself, you can
concoct a dynamical system for which it is a Poincaré section and the
‘first return” map is the one you started with.

To do this, you introduce a new ‘direction” which is like a circle
that cuts the disc at right angles. An initial point on the disc flows
off it, round this circle, but in such a way that when it next hits the
disc it does so as prescribed by the original mapping from the disc to
itself. This trick is called suspension (Figure 47). It's the sort of thing
that’s natural to a topologist asking general questions about flows in
n-space, but wouldn’t occur if you were a chemist trying to
understand the dynamics of a nitroglycerine explosion. However,
you can write down an explicit differential equation if you want one.
In science, you normally start with a physical problem and extract a
differential equation. But Smale moved into the Designer Differential
Equation business. The subject has never been the same since.

The upshot of all this is that anything you can see in a mapping of
n-dimensional space can also be seen in a flow in (n+1)-dimensional
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space. Conversely, the way to understand flows in (n+1)-dimensional
space is to look at mappings of n-dimensional space. In particular,
flows in 3-space, not very well understood, reduce to mappings in 2-
space, which we hope may be easier. Similarly flows in 4-space,
which you have to work very hard even to think about, reduce to
mappings in 3-space, where you can at least hope to draw pictures.

So instead of looking for a flow in 4-space, Smale looked for an
unorthodox mapping in a 3-dimensional space which would have
similar properties to our circle mapping when iterated. Here's what
he found.

As Poincaré section, take the interior of a solid torus. A doughnut,
American-style, with a hole. Dough included, this time we're not

Figure 48 The tenfold wrapping applied to a solid torus to avoid self-intersections.
Because the torus is three-dimensional, there is voom for one winding to pass
underneath the others without hitting them.



