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in Keen’s paper, the Julia set is also the closure of the set of repelling peri-
odic points. Thus there are repelling periodic points arbitrarily close to any
escaping point, and vice versa.

The exact structure of the Julia set of transcendental functions like the
exponential is known: when the Julia set is not the whole plane, it is a “Cantor
bouquet”. By this we mean that the Julia set is a Cantor set of curves, each
of which is homeomorphic to [0, co) and each of which extends to co in the
right half-plane. It is known that, in this case, the Lebesgue measure of the
Julia set is zero but its Hausdorff dimension is two! See [Mc]. Bifurcations
such as the one above occur in a variety of entire transcendental functions.
For example, in Color Plates 3 and 4 we display the Julia sets of .66icos z
and .68icosz. Again one sees that the Julia set explodes as the parameter
iA increases through .67..., and again it is a saddle-node bifurcation that
leads to this explosion. We remark that, unlike the exponential function, the
Julia set for any member of the family A cos z has infinite Lebesgue measure.
This accounts for the fact that the colored region in Color Plate 3 seems to
occupy a larger area than that of Color Plate 1, even though both Julia sets
are Cantor bouquets.
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AssTRACT. This paper introduces, via an example, some basic ideas in the
global analysis of dynamical systems. In particular, we indicate how it may
be proved that Smale’s horseshoe map is contained in the Poincaré map of
the simple pendulum subject to periodically varying torque. We indicate the
remarkable physical consequences which result.

0. Introduction. In this article we introduce some important ideas in the
global theory of dynamical systems by means of a simple example: the pen-
dulum subject to a small oscillating torque and weak dissipation. We use the
second order ordinary differential equation describing this system to intro-
duce such ideas as the Poincaré map, Smale’s horseshoe map and the chaos
that accompanies it, and the Melnikov perturbation method, with which one
goes hunting for horseshoes. It would be imprudent to attempt, and impos-
sible to succeed in, a comprehensive tutorial on dynamical systems within
either the confines of this article or the hour of speech and gesture granted
us by the organizers. For those with a year or two of interrupted leisure,
the books by Arnold [1973], Andronov et. al. {1966] or Hirsch-Smale [1974]
provide good introductory material, while those of Arnoid [1982], Palis-de
Melo [1982], Irwin [1980] and (succumbing to chauvinism) Guckenheimer-
Holmes [1983] contain more advanced material. Some aspects of the present
treatment are adapted from the latter book.

In the following sections we introduce our model problem and describe
the Poincaré map §1. We then discuss some general features of iterated (in-
vertible) maps on the plane §2, before introducing and describing Smale’s
horseshoe map §3. We return to our example and describe the Melnikov per-
turbation calculation in §4, and finally summarize the fruits of our labours in
§5. It is worth noting that Smale invented the horseshoe map while attempt-
ing to understand the papers of Cartwright-Littlewood [1945] and Levinson
[1949] on the periodically forced Van der Pol oscillator (cf. Smale [1963,
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26 PHILIP HOLMES

1967]: the story is told nicely in Smale [1980]). As in that case, specific ex-
amples have often led the way to general ideas in dynamical systems theory.
It is therefore entirely appropriate that we should start'with a (deceptively)
simple model problem.

1. The pendulum eguation. Consider the simple pendulum of Figure 1. A
point mass m is suspended by a rigid, massless rod of length / pivoted freely
at 0 to swing in a plane. Three forces act on the bob: gravitation (-mg,
vertically), friction or dissipation due to air resistance (—cv, tangentially),
and the external time varying torque 0 7(z) applied at the pivot. The minus
signs are conventional, reflecting that the forces oppose motion as indicated,
and friction is modelled by the simplest possible law: resistance is linearly
proportional to speed. The state of the system is uniquely specified by the
pair (6, %?), angular position and velocity. Resolving the forces in the tan-
gential direction, and appealing to Newton’s famous second law (force =

massxacceleration), we obtain the second order ordinary differential equa-
tion

ag . d [,d6
1. —cl= —~ = M—
(1.1) IT(t) —cl ' mgsinf m— (1 )

dr

FIGURE 1. The simple pendulum subject to torque and
friction.

A slight rearrangement of terms and a change of time scale yields the
system we shall study:
(1.2) G +sind =oS(z) - 6,
where (') = 4( ) (¢ is the new time), S(t) = 5 T(2) and y = ﬁ\/?.

When the parameters J, y are equal to zero we have the classical pendulum:
this equation can be solved in closed form using elliptic functions, since
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solutions simply run around on level sets of the hamiltonian energy function

. §2
(1.3) H(6,6)=—2——+(1——c059)

(= kinetic + potential energy). In §4 we shall exploit this to approximate
solutions of the perturbed problem for small ¢, y # C.

Before introducing the Poincaré map, we rewrite (1.2) as a system of first
order differential equations. We let # = v and treat time as a (trivially
evolving) third dependent variable:

G=uv,
(1.4) U= —sind +35S(t) — yv,
i=1.

At this point we make the additional assumption that S(¢) is periodic of
period T (e.g. S(t) = coswt, T = 2n/w): the phase-space or state-space
of (1.4) is then (8,v,t) € S' x R x §! W M, since the state of the system
depends only on the angle @ (not the total number of turns the pendulum
has executed) and the phase t mod T of the forcing function S(z) (as well as
the velocity v = 9). There is already some nontrivial topology in this simple
example!

We next define a cross section Z = {(0,s,t)it = 0} C M which solutions
pierce transversely, in view of the third component i = 1 of (1.4). The
Poincaré map P: X — I is defined by picking a point (6g,v9) € Z and in-
tegrating the equation (1.4) to find the point at which the solution based at
(89, vo) next intersects  after time T has elapsed. Thus we have

(1.5) P(6o, vo) = (6(T'; 60, v0), v(T; b, v0)),

where 8(t; 8, Vo), v(2; 80, v0) (¢ = t) is the solution to (1.4) based at (89, v0)-
In Figure 2 we sketch the construction for the unperturbed pendulum equa-
tion (6 = y = 0): note that the level curves of the Hamiltonian (1.3) become
sheets in the three-dimensional (suspended) phase space M. Also, the peri-
odic orbits (8,v) = (0,0) and (z,0) correspond to fixed points for the map P
(the latter are marked y on Figure 2(b)). In the unperturbed case the peri-
odic orbits are trivial, so 8 and v do not change with time. For d # 0, on a
T-periodic orbit 8 and v do vary as ¢ moves from 0 to T, but it should be
intuitively clear that P will still have a fixed point. Similarly, a kt-periodic
orbit or subharmonic corresponds to a k-periodic cycle for P.

We end this section by remarking that it is a nice exercise to show that the
existence-uniqueness theorem for ODEs implies that P is a diffeomorphism
and that, for systems with linear damping like (1.4), the Jacobian derivative
DP of P satisfies

(1.6) det(DP) = =77,
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FIGURE 2. Phase plane (a), flow in extended phase space
(b), and Poincaré map {¢) for the unperturbed pendu-
lum (identify x = —x and x = 7 so that (x,y) space is
the cylinder (or annulus)).

2. Some b.asic facts about maps. We now turn to a brief review of maps
concen}:ratmg on the two-dimensional case, although everything generalizes
to n dimensions. Devaney’s contribution to this volume contains a good

discp§sion of the one-dimensional case and his book (Devaney [1986] has
additional two-dimensional information.

Let P: R? — R? be a (smooth) ma i
p and p a fixed point (p = P(p)).
call the linear system g v - e

(2.1) x — DP(p)x

the linearization of P at p. DP(p) is a 2 x 2 matrix: denote its eigenvalues A,

'Az. By arguments similar to those in Devaney’s article, one easily sees that p’
Is stable if both eigenvalues of DP(p) lie within the unit circle (J4;] < 1: j =
1,2). If this is the case we call p a sink. When A1) <1< |Ay| pis anj(unst';lble)
saddle point and when |A;| > 1, j = 1,2, p is a source. IfAl#1,j=1,2, we
call p hyperbolic and the Hartman-Grobman theorem (cf. Devaney [319’86]

Quckt?nheimer-Holmes [1983]) guarantees that the dynamical behavior of thé
linearization (2.1) holds in a neighborhood U of D for the fully nonlinear map

For our unperturbed example the fixed poini(s) (6,v) = (£nr, 0) of the map
f’ = Py gre clearl.y saddle points. In fact the linearized map can be obtained by
integrating the linearized differential equation linearized at (6,v) = (£7,0):

(2.2) &=5,
G2 = —cos(£m)&) =¢,.
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Elementary analysis shows that the fundamental solution matrix to this sys-
tem may be written

(2.3) {coshz smht]

sinh¢ cosh¢
and hence that the time T map, which gives DF, is

coshT sinhT] (51 ) .

2 e =
(2.4) Dhy(&m,0)-¢ ]:sinhT cosh T| \ &

The matrix D P, has eigenvalues

L 2.5) J12=coshT+sinh T =el,e7,

and since e~7 < 1 < e, the point(s) (£, 0) are, as expected, saddle points.
Actually, since @ is measured modulo 2z, and both equilibria correspond to
the pendulum standing straight up (Figure 1), these points are identified in
M.

It is reasonable to believe, and possible to prove by a simple application
of the implicit function theorem, that, for small §, y = &(e), F, perturbs to
a nearby map P, = Py + @(¢), which has a fixed point P, = (n,0) + Z(¢)
with eigenvalues e7 + @ (), e~T +@(¢). We use this fact in our perturbation
calculations in §4.

The linear system (2.1} can be put into a convenient form by a suitable
similarity transformation. In particular, if the eigenvalues are |4, < 1 < |42,
DP may be diagonalized, so that the linear map uncoupled

(2.6) U — A, v AU

and the two axes v = 0, u = 0 are then the invariant stable and unstable
subspaces, ES, E* (Figure 3(a)). The stable manifold theorem (cf. Guckenhei-
mer-Holmes [1983], Devaney [1986]) asserts that, locally, the structure for the
nonlinear system

(2.7) x — P(x)

is qualitatively similar. More precisely, in a neighborhood U of p there exist
local stable and unstable manifolds W (p), W (p), tangent to E°, E* at
p, and as smooth as P. By taking backward and forward images of arcs
contained in these manifolds one constructs the global stable and unstable
manifolds.
28)  Wip)=J P (Wlo), W)= PN,

n>0 n=0
which contain all points x € R? which are forward (resp. backward) asymp-
totic to p under iteration of P.

While the local structure is nice, the global structure need not be, and
herein lies much of the reason for “chaotic motions,” as we shall see. We
call a point ¢ € W¥(p) N W3(p) a homoclinic point, following the terminol-
ogy of Poincaré [1899]. By definition, the orbit {P"(g)}52_,, of g is both
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FIGURE 5. (a) The two-dimensional horseshoe and (b)
its one-dimensional analogue.

the symbols 0, 1 by the rule #j(x) = i if F/(x) € H; (i = 0,1). Thus
$;(F(x)) = $;41(x) and the action of F on A corresponds to the action of
the shift ¢ on the space of symbol sequences X. Moreover, every symbol
sequence corresponds to an orbit realized by F, since the images V; lie fully
across their preimages H;. In fact that map ¢: A — X is a homeomorphism
and the diagram

A=A

ol

Tl ¥

commutes. We say that F|A is topologically conjugate to a (full) shift on two
symbols. For x € A’ one does the same but using only semi-infinite (pos-
itive going) sequences since f is noninvertible. More details can be found
in Devaney’s article. The main advantage of this method of symbolic dy-
namics is that one can study the orbits of F|, (or f [or) combinatorially,

by examining symbol sequences. For instance, the ‘constant’ periodic se-

quences ...000... def (0) and ...111... = (1)’ correspond to fixed points;

(019, (001Y', (011)", (0001)", etc. to orbits of periods 2, 3, 3, 4, etc. (here ( )
denotes periodic extension). In this way one proves the following.

ProrosiTION. The invariant set A of the horseshoe contains: (1) a countable
infinity of periodic orbits, including orbits of arbitrarily high period (=~ 2% /k
orbits of each period k): (2) an uncountable infinity of nonperiodic orbits,
including countably many homoclinic and heteroclinic orbits, and (3) a dense
orbit.

Since F|p,ugm, contracts uniformly by A horizontally and expands by y
vertically, the eigenvalues yu, , of DF* for any k-periodic orbit satisfy |u;| =
A% <1 < |uy| = y* and thus all such orbits are (unstable) saddles. In fact all
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orbits in A have associated with them exponentially strong unstable manifolds
and thus almost all pair of points A separate exponentially fast under F”.
This sensitive dependence on initial conditions leads to what we popularly call
“chaos”. More strikingly, since every bi-infinite sequence in Z corresponds
to an orbit of F|,, there are uncountably many orbits which behave in a
manner indistinguishable from the outcome of repeated tossing of a coin: a
quintessentially random process.

Perhaps most important is the fact that Aisa S)trucz‘urally~ stable set; small
perturbations F of ¥ possess a topologically equivalent set A ~ A. In fact to

- prove the existence of such sets one does not need linearity of F or f, as in

Smale’s example; it is sufficient to establish uniform bounds on contraction
and expansion. See Moser [1973] and Guckenheimer and Holmes [1983] for
more details.

The constructions we have sketched above and in Figure 4 lead one to the
fundamentai

SMALE-BIRKHOFF HOMOCLINIC THEOREM. Let P: R* — R? be a diffeomor-
phism possessing a transversal homoclinic point q to a hyperbolic saddle point
p. Then, for some N < oo, P has a hyperbolic invariant set A on which the
Nth iterate PV is topologically conjugate to a shift on two symbols.

Birkhoff [1927] had already proved the existence of countably many pe-
riodic points in any neighborhood of a homoclinic point, but Smale’s con-
struction provided a more complete picture and he extended it to R”. Infinite
dimensional versions of the theorem are also available.

4. Melnikov’s perturbation method. Although Smale constructed the horse-
shoe in connection with a periodically forced oscillator problem it was not
until the work of Melnikov [1963] that a general method existed for prov-
ing that horseshoes exist in specific Poincaré maps. Tantalizing hints of this
technique can be found in Poincaré’s [1890] paper on the three body problem
and Arnold [1964] applied the idea to Hamiltonian systems around the same
time as Melnikov. Thus, as Jerry Marsden has remarked, the method should
probably be called the Poincaré-Arnold-Melnikov method. What one actu-
ally does is prove that a suitably perturbed, almost Hamiltonian system has
a transversal homoclinic orbit and then apply the Smale-Birkhoff homoclinic
theorem.

We only outline the simplest version of the method here. See Holmes-
Marsden [1981, 1982a, b, 1983] and Wiggins [1988] for extensions to many
(even infinitely many) dimensions. Consider a planar ordinary differential
equation subject to a small time-periodic perturbation:

(4.1) X = f(x)+eg(x,1), glx,)=g(x,t+7T), xe&R%:
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FIGURE 3. (a) Invariant subspaces for linear map; (b)
Invariant manifolds for nonlinear map, showing a ho-
moclinic point, g.

forward and backward asymptotic to p- If the manifolds W (p), W*(p) inter-
sect transversely at g, then iteration of a small region V containing ¢ causes
{P”(V) and P~"(V) to “pile up” on W(p), W3(p) respectively as n — oo
{Figure 3(b)). (That this occurs in the controlled fashion of C!-convergence
of transversals to W¥*, W at q is the content of the Lambda Lemma; New-
house [1980], Guckenheimer-Holmes [1983].) In such a situation the Smale-
¥3irkhoff homoclinic theorem, described in the next section, shows that ¥ and
1ts images contain a very complicated invariant set for P,

We end by noting that, for the unpérturbed pendulum Poincaré map of
Figure 2(c), all points on the level sets

(2.9) H(G,v):%—2~+(1—cosﬁ)=0

are homoclinic to the point (-7,0) = (z,0). However, these points are all
nontransversal, since in this very special case the two manifolds are identical.
Perturbation of this degenerate structure to produce transversal homoclinic
points is treated in §4.

3. Smale’s horseshoe map. As Poincaré [1890] realized, the presence of ho-
moclinic points can vastly complicate dynamical behavior. However, the
very fact that their existence implies recurrent motions makes the situation
amenable to at least a partial analysis. Consider the effect of the map P
of Figure 3(b), containing a transverse homoclinic point q to a hyperbolic
saddle p, on a “rectangular” strip S containing p and ¢ in its boundary. As
n increases, P"(S) is contracted horizontally and expanded vertically until
the image PV (S) loops around and intersects S and P in a ‘horseshoe’ shape
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(Figure 4). To prove that the rates of contraction and expansion are uni-
formly bounded, one shrinks the width of $ until many iterates occur for
which P/(S) lies in a neighborhood U of p and the dynamics is therefore
dominated by the linear map DP(p) (cf. (2.6)).

FIGURE 4. P¥ has a horseshoe.

A simple model for this situation was provided by Smale [1963], who
introduced the map F: S ~— R? of the square [0, 1] x [0, 1] ¢ R? sketched in
Figure 5(a). The map is linear on the two horizontal strips H; whose images
are the vertical strips ¥}, i = 0, 1; the linearizations being
(3.1) DF(XHXEJ‘{x = [g S:I , DF(X)|xen, = [ OA _(_)/} ’
with 0 < 4 < 1 < y. Thus Fly, contracts horizontally and expands vertically
in a uniform manner. Smale studied the structure of the set of points A
which never leave S under iteration of F. By definition A =\, __ F"(S):
the intersection of all images and preimages of S. Now F~!(S)NS = H|UH,
and SNF(S) = ViUV, so F*(S) is the union of four rectangles of height y~!
and width 4 (Figure 5(a)). Similarly ﬂfm_z F7(8) is the union of 16 rectangles
of height y=2 and width 42, (\*__, F"(S) is the union of 22 rectangles and,
passing to the limit, A turns out to be a Canior set: an uncountable point set,
every member of which is a limit point.

To see this more easily, consider the set of points which never leave I =
[0, 1] € R under iteration of the one-dimensional map f of Figure 5(b). After
one iterate the ‘middle’ interval I, is lost, after two iterates its preimages Iy,
I, are lost, etc. Removing middle intervals of fixed proportional size («, say)
produces the classic ‘middle o’ Cantor set A’, the one-dimensional analogue
of A. We remark that the map f is qualitatively like the famous quadratic
map x — ax(l—x) or x — ¢—x? (cf. the article by Devaney in this volume).

The sets A and A’ can be coded in a way which describes their dynamics.
To each x € A we assign a bi-infinite sequence ¢(x) = {9j(x)}2 oo Of
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We suppose that f and g are sufficiently smooth and bounded on bounded
sets and that the unperturbed system is Hamiltonian, i.e. there exists a func-
tion H(x): R? — R such that '

Xy = fi(x,x) = %()ﬁ,xz),
-0H

6x1

We assume that this unperturbed vector field contains a hyperbolic saddle

point pg lying in a closed level set of H: thus there is a (degenerate, non-

transversal) loop of homoclinic points: Figure 6(a). The orbits on this loop

are denoted x = xo(¢ — ), where o denotes a shift in the initial condition

or base point. For precise technical hypothesis see Guckenheimer-Holmes
[1983, §4.5].

(4.2)

X2 = fi(xi, x3) = (1, %2).

Po x(0)
Ia x(t - to)

FIGURE 6. (a) The unperturbed loop; (b) The perturbed
Poincaré map.

As in §2, we consider the unperturbed and perturbed Poincaré maps A,
P, corresponding to (4.1) with & = 0 and ¢ # 0. Implicit function arguments
show that the hyperbolic fixed point pg of Po perturbs to a nearby hyperbolic
fixed point p, = py+(¢) for P, and its stable and unstable manifolds remain
close, as indicated in the sketch of Figure 6(b). In fact one proves that the
power series representations of solutions xJ* lying in the perturbed stable
and unstable manifolds of the small periodic orbit Ve = po + (&) of (4.1;
¢ # 0) are valid in the following semi-infinite time intervals:

(4 3) Xg(t: ZO) = xO(t - tO) + exf(t, ZO) + ﬁ(gz), te [t()a OO),

) x:(1,t0) = xo(t — to) + ext(t,10) + F(e2),  t& (~o0,ty).
This follows from the usual finite time Gronwall estimates and the fact that
these special solutions are “trapped™ in the local stable and unstable mani-
folds and thus have well controlled asymptotic behavior as |t} = oo. One

can therefore seek the leading order terms x7*(t, 1) as solutions of the first

variational equation obtained by substituting (4.3) into (4.1) and expanding
in powers of ¢:

(4.4) XM = Df(xo(t = to))x7™ + g(xo(t — t0), ).

(4.5) =
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Now, while equation (4.4) is linear, it is usually very hard to solve, since
D f(xo(t ~ tp)) is a time varying 2 x 2 matrix and is not even perio@ic. Here
the idea of Melnikov comes to our rescue. He realized that, to estimate the
distance d(ty) between the perturbed stable and unstable manifold§ gt a bage
point fo of the unperturbed solution, one need not solve (4.4) explicitly. His
method goes as follows.

From (4.3) and Figure 6(b), we have

d(to) = x;(to, o) — x;(Zo, 2o)

_e(x¥(to, o) — X{(t0, to)) - S+ (x0(0)) + o),

I/ (xo(ONI]

where f*(x9(0)) denotes the normal to the unperturbed solution vector
f(x0(0)). Since a- b+ = b x a for vectors in R?, we can rewrite (4.5) as

F0(0)) x (Xt (1o, 1)) = Xi(t0 fo) 12y

d(tg) =¢

7o)
def A%(to,20) = &(lo, 10) | .2y
(4.6) O AR

If the quantity A¥ — A® has simple zeros as f; varies it follo'ws from the
implicit function theorem that, for ¢ # 0 small enough, the dlstapce d (.to)
changes sign as to varies and consequently that the perturbed rpamfoldg in-
tersect transversely. To compute A¥ — A’ we introduce time varying functions

A% (1, 19) = f(xo(t — 20)) X X" (2, to)
and compute
A% = D f(xo0)%o x x{ + f(x0) X X}

= Df(x0)f(x0) x x{ + f(x0) x [Df(x0)Xx] + &(x0, 2)]

= trace D f(x0) f(xo)  x{ + f(x0) x (%0, )
(4.7) = f(xo(t — 1)) x &(xo(t — 1), ?)-
Here we substitute for x{ from (4.4) and use %o = f(xp), a matrix-cross
product identity, and finally appeal to the fact that
0fi 8f  0°H 3 9*H
8x;  Ox; 0x.0x; 0x20x

(4.8) trace Df = =0,

since / is Hamiltonian. Integrating (4.7) we have
t
K(t,t0) = A0, t0) = [ fals = 1)) x gGals = ), ) s
fo

and, taking the limit ¢ — +oo and using the fact that f(xo(#)) — f(po) = 0
as { — oo, so that A(¢, t5) — 0, we obtain

(4.9) —A%(to, 10) = / " (f x g)(xols — o), 1) ds.

0
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Note that we hav§ qsed the validity of (4.3) on [, co) in this computation
Together with a similar computation for A%, (4.9) yields ‘

oo} N

(4.10) A%z, 10) — A(to, t6) % M(z0) = / (f % &)(xo(s = to), ) .

—

We have completed our sketch of the proof of

MELNIKOV’S THEO!?EM. Under the hypotheses stated in (4.1), if M(tg) has
simple zeros, then for ¢ # 0 sufficiently small the manifolds W (pe), W4(p,)

intersect transversely. If M(ty) is bounded i
e 0) ed away from zero then Ws(p)n

WC lllustra[e hOW easy the thCOIeﬂl 15 to apply by returnin 1o our exam Ie
( 1 i I)‘ IIe!e g °

(4.11) f= (_:i}M)’ ggz(dS(t)()-yv)'

The unperturbed homoclinic solution may be written
v(t — ty) = +2sech(r — ty)

(We Wlﬂ not need the 0 com
pOnent), and to make explic 1 a we
pl 1t ca Cul tions

(4.12) 05(t) = &6 cos wt, v =&y,

so that the damping and applied torque are assumed to be small and of the
same order. We then have f x g = v cos wt — »v? and M (1) may be written

ox<
(4.13) M) = :&25/ sech{g) cosw(a + 1) do — 4y /Oo sech’(a) do

-~ 00

—oo

after a change of variables ¢ = s — . The second integral of (4.13) is
elementary and the first can be evaluated by the method of residues to give

(4.14) M(ty) = £207 sech %cg cos wip — 87.

Clearly, M (t;) has simple zeros iff

(4.15) Sn > 4~7cosh(”2‘”),

whlcb ?s therefore an explicit criterion for the existence of transverse ho-
moclinic orbits in the limit ¢ — 0. Observe that this makes good physical
sense. If dissipation y = ¢y is large compared to force amplitude § = &4
then one does not expect recurrent behavior, since the pendulum will simply
settle tow_ards the stable position (6, v) = (0, 0) as energy is absorbed and wif!
asymptotically approach a (small) periodic solution about that equilibrium.

NONLINEAR OSCILLATIONS AND THE SMALE HORSESHOE MAP 37

5. Conclusions. We now show that a remarkable physical conclusion foli-
lows from the analysis of the preceding sections. In Figure 7 we indicate
how a modest generalization of the horseshoe arises in the Poincaré map
of the perturbed pendulum. The “horizontal” strips Hg, H; are carried by
PN into “vertical” strips V&, V: as indicated. Since the saddle points near
(8,v): (£m,0) are identified, these images intersect Hg, Hy much as in the
canonical Smale example of Figure 5 (cf. Figure 4). As in §3, one ob-
tains a homeomorphism between the shift on the two symbols R, L and
some iterate PV of the Poincaré map restricted to a suitable (Cantor) set

- A¥N = (®__ P"N(Hg U H). Note that our construction guarantees that a

n=-—00

point lying in Hg will be mapped around near the stable and unstable mani-
folds with = v > 0 while a point lying in H; is mapped around with 8 < 0.
Thus, an ‘R’ in the symbol sequence corresponds to a passage of the pendu-
lum bob past § = 0 with § > 0 and an ‘L’ to a passage with 6 < 0. Since we
have a full shift (PY(H.) and P¥(Hg) both lie across Hy U Hg) we conclude
that any “random” sequence of the symbols L, R corresponds to an orbit of
the pendulum, rotating “chaotically” to the left and to the right.

images P"(Hg), 0<n<N
-~

FIGURE 7. Poincaré map for the perturbed pendulum.

This conclusion is perhaps not too surprising, if we consider the effect
of a small periodic perturbation on the unclamped, Hamiltonian pendulum
swinging near its seperatrix orbit H(f,v) = 2. Each time the pendulum
reaches the top of its swing, near the inverted, unstable state, the oscillating
torque supplies a small push either to the left or right depending on the phase
(time). Thus the precise time at which the bob arrives near this position is
crucial and this, in turn, is determined by the time at which it left the same
position after the preceding swing. Here is the physical interpretation of
sensitive dependence upon initial conditions.

At this point honesty compels us to point out that all is not rosy in the
study of chaotic dynamics. The analysis sketched in this paper establishes
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that a specific deterministic differential equation possesses chaotic orbits and
provides an estimate for the parameter range(s) in which they exist. This does
not necessarily imply that we have a strange or chaotic attractor, An attracior
for a flow or map is an indecomposable, closed, invariant set for the flow or
map, which attracts all orbits starting at points in some neighborhood. The
maximal such neighborhood is the domain of attraction, or basin. Jim Yorke’s
lecture deals with this idea. In the pendulum example it is easy to see that
all orbits of P remain trapped in a band & = {(6,v)]Jv] < T} in the phase
space; one simply observes that, if we choose " > Lo (S, = max, 1S,
then the second component of (1.4) admits the bounds

U <|—sind| +31S(8)| — ylv|
< =7+ 1 + 0Smax

forv > 0 and
v > }']’U‘ =1~ 68max

for v < 0. Thus the vector field points into the band % and hence it is
a forward invariant region for P (P(F) C &#). The attracting set &/ is
the intersection of all forward images of & and, since det DP = ¢—/T <1
(equation (1.6)), P contracts areas by a constant factor and

e o]
o =) P"&B)

n=0
has zero area. & certainly contains the homoclinic points and their attendant
horseshoes displayed above, and any attractors are certainly contained in %,
but &7 itself need not be indecomposable. To display parameter values for
which &7 as a whole and not just A C & has a dense orbit {or even a chain
recurrent dense orbit, cf. Guckenheimer and Holmes [1983]) appears very
difficult. In fact work of Newhouse [1980] on wild hyperbolic sets and the
presence of infinitely many stable periodic orbits at certain parameter values
for maps like P shows that there are a lot of values for which & cannot be
indecomposable. Thus a “typical” solution approaching &/ might eventually
settle down to stable periodic behavior, perhaps after a chaotic transient
played out near A. In spite of the suggestive nature of numerical simulations
(cf. Yorke’s lecture), this issue still awaits clarification. I prefer to say that
P has a strange attracting set.

We conclude this article by remarking that the ideas we have outlined seem
to be of general relevance in the study of nonlinear differential equations aris-
ing in engineering and the sciences. It is now almost a commonplace that
“chaotic solutions” are observed in numerical simulation of diverse model
systems. Centers for nonlinear science are producing color graphics of frac-
tals and strange attractors almost faster than one can look at them. However,
the tools introduced in this article, and especially the perturbative analytical
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method of Melnikov, show that analysis can be brought to bear on these Sys-
tems, and rigorous results obtained. Let us hope that their application brings
some order into chaos.
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