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2 0
e. .
0 2
?. Describe the dynamics of the linear maps whose matrix representation
is given below. Identify precisely the stable and unstable sets.

2 1
a.
0 3
2

1
b.
3 4
1

3. Describe the dynamics of each of the following linear maps, indicating
which are non-hyperbolic.

(0 1
B
o)
(0 0 1
b. 0 1 0
-1 0 0)
1 0
. (0 _1)
1 1
d.( 3 7')
11
R

1 0 0
e. {0 2 2
0 -2 2

4. Consider the linear map

L)

L(x) =

@ N
W O
w
"
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Prove that L™x — O for all x € R%. Prove that, if x does not lie on the
y-axis, then the orbit of x tends to O tangentially to the z-axis.

5. A function F:R® — R is called an integral for a linear map L if F o
L(x) = F(x), i.e., F is constant along orbits of L. Show that

o)
0 1
wo-(" )

6. Construct (non-trivial) integrals for each of the following linear maps.

0 1

a. L(x) = (1 0) .
2 0

b. L(x) = (0 l) X.
3
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is an integral for

Symbolic dynamics, which played such a crucial role in our understand-
ing of the one-dimensional quadratic map, can also be used to study higher
dimensional phenomena. In this section, we will study a now-classical ex-
ample due to Smale, the horseshoe map. This was the first example of a
diffeomorphism which had infinitely many periodic points and yet was struc-
turally stable. We will see that this map has much in common with the
quadratic map which motivated so much of the material in Chapter One.

To define the map, we first consider a region D consisting of three com-
ponents: a central square S with side length 1 and two semicircles D) and
D, at either end. See Fig. 3.1. D is shaped like a “stadium.”

The horseshoe map F takes D inside itself according to the following
prescription. First, linearly contract S in the vertical direction by a factor
6§ < 1/2 and expand it in the horizontal direction by a factor 1/6 so that S
is long and thin. Then put § back inside D in a horseshoe-shaped figure as

in Fig. 3.2.
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Fig. 3.1. The “stadium” D.

F(D,)

F(D,)

Fig. 3.2. The Smale horseshoe map.

The semicircular regions Dy and D; are contracted and mapped inside
D; as depicted. We remark that F(D) C D and that F' is one-to-one
However, since F is not onto, F~! is not globally defined. The remainder - .'
this section is devoted to the study of the dynamics of F in D.

Note ﬁ‘rst that the preimage of § consists of two vertical rectangles Vj
and V; which we may assume are mapped linearly onto the two horizontal
components Hy and H; of F(S)N §. The width of V, and V; is 6, as is the
height of Ho and H,. See Fig. 3.3. ’

.By linearity of F' : Vo — Hg and F : V] — Hy, it follows that F preserves
horizontal and vertical lines in S. For later use, we note that if 4 is a
horizontal line segment in § whose image also lies in §, then the length of
F(h) is 1/6 times the length of h. Similarly, if both v and F(v) are vertical
line segments in S, then the length of F(v) is shrunk by a factor of 6.

We claim that the dynamics of F are very similar to those of the quadratic
map studied in §1.5. Note first that, since F is a contraction on D;, F has
a unique fixed point p in D; and Jim F"(q) = p for all ¢ € D;. This,follows
immediately from the Contraction Mapping Theorem. Si
all forward orbits in Dz behave likewis}f Sigmilarly, if ¢ Sergebft(lz‘zk)(q? é) g
for some k > 0, then we must have that F*(¢) € D; U D, so that F*q)—p
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Fig. 3.3.

as n — co. Consequently, to understand the forward orbits of F, 1t suffices
to consider the set of points whose forward orbits lie for all time in S. We

will do more: we will describe
A ={q € §|F*4q) € S for all k € Z}.

Now, if the forward orbit of ¢ lies in S, we must have, first of all, that
g € Vo or ¢ € Wy, for all other points in S are mapped out of § and into
D; U Dy. If F?(q) € S, then, similarly, we must have F(q) € hU Wy, e,
ge F (W)U F~Y(V;). Here F~1(Vp) means the inverse image of Vpin S
Clearly, there are substrips in both Vo and V; which map into Vp as depicted

in Fig. 3.4.

B )

Fig. 3.4. The forward image F%(8).

This is the inductive step: if V is any vertical rectangle connecting the
upper and lower boundaries of § with width w, then F~YV) is a pair
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of smaller vertical rectangles of width §w, one in each V;. Consequently
F‘I(F’l(Vi)) = F“Z(V}) consists of four vertical rectangles, each of widt}{
62, F""’(V,-) consists of eight vertical rectangles of width 63, etc. Hence the
same procedure we used in §1.5 shows that

Ay = {g|F*q) € Sfor k=10,1,2,...}

is the product of a Cantor set with a vertical interval. Arguing entirely
analogously, it is easy to check that

A_={q|F*(gq) e Sfork=1,23,..}

consists of a product of a Cantor set with an interval. In this case, the
intervals are horizontal. Finally,

A=A,NA_

is the intersection of these two sets.

To introduce symbolic dynamics into the system, we first choose any
vertical interval £in A.. Note that F*(¢), is a vertical line segment of length
§* in either Vy or V;. Hence we may attach an infinite sequence 39813y ...
of 0’s or 1’s to any point in £ according to the rule s; = a iff F/(£) C V,.
The number 3¢ tells us in which vertical strip the line £ is located, s; tells
where its image is located, etc. We can similarly attach a sequence of integers
to any horizontal line segment h. For convenience, we write this sequence
...8_38.28.1, where s_; = a iff

F73(h)C Vy forj=1,2,3,....

Note again that F~1(h), F~2(h),... are horizontal line segments of decreas-
ing lengths.

Consequently, if p is any point in AL N A_, we may associate a pair of
sequences of 0’s and 1’s to p. One sequence gives the itinerary of the forward
orbit of p; the other describes the backward orbit. Let us amalgamate both
of these sequences into one, doubly-infinite sequence of 0’s and 1’s. That is,
we define the itinerary S(p) by the rule

S(p)=(...s-25-1-509182...)

where s; = k if and only if Fi(p) € Vj.
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This then gives the symbolic dynamics on A. Let £ denote the set of
all doubly-infinite sequences of 0’s and 1’s:

Ty ={(s) = (...5-25-1-308192...)]s; = 0 or 1}.

Impose a metric on Ty by defining d{(s),(t)] = > tj—l—z-m“‘

exactly as
before. Define the shift map o by
(Y(. ..8_28_1"-80p3182-- ) = ( S 898 189 - 8132 )

That is, o simply shifts each sequence in ¥ one unit to the left (equivalently,
o shifts the decimal point one unit to the right). Unlike our previous shift
map, this map has an inverse. Clearly, shifting one unit to the right gives this
inverse. It is easy to check that o is a homeomorphism on 2 (see Exercise
2).

The shift map is now the model for the restriction of I to A. Indeed,
the map § gives a topological conjugacy between F on A and o on 3. We
leave the details of this proof to the reader (see Exercise 3).

All of the properties which held for the old one-sided shift hold for ¢ as
well. For example, there are precisely 2% periodic points of period N for o.
There is a dense orbit for ¢ as well (see Exercises 4, 5). Bul there are new
phenomena present as well.

Definition 3.1. Two points p; and p; are forward (respeciively backward)
asymptotic if F™(p1), F*(p2) € D for all n > 0 (resp. n <0 ) and

Jim [F™(pr) - F™(p2)l 0
(resp. n — —o0 ).

Intuitively, two points in D are forward asymptotic if their orbits ap-
proach each other as n — oco. Note that any point which leaves § under
forward iteration of F is forward asymptotic to the fixed point p € Dy. Also,
if p; and p; lie on the same vertical line in A, then p; and p; are forward
asymptotic. If p; and p; lie on the same horizontal line in A_, then they are
backward asymptotic.

As in the linear theory, the notion of forward and backward asymptotic
orbits allows us to define the stable and unstable sets of a point.

Definition 3.2. The stable set of p is given by
W*(p) = {zl|F™(2) ~ F*(p)l — 0asn — o0}.
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o /)

Fig. 3.5. The stable and unstable sets associated to p*.

The unstable set of p is given by

W*(p) = {z||F™"(p) - F"™z)] > 0as n — co}.

Equivalently, a point z lies in W?(p) if p and z are forward asymptotic.
For example, any point in S which leaves § under forward iteration of the
horseshoe map lies in the stable set of the fixed point in D;.

The stable and unstable sets of points in A are more complicated. For
example, consider the fixed point p* which lies in Vy and therefore has the
sequence {...00.000...) attached. Any point which lies on the vertical seg-
ment £, through p* lies in W*(p*). But there are many other points in this
stable set. Suppose the point ¢ eventually maps into £,. Then there is an
integer n such that [F™(g) — p*| < 1. Hence

|[F™tR(q) — p*| < 8%

and it follows that ¢ € W?(p*). Thus, the union of vertical intervals given
by F_k(E,) for k =1,2,3,... all lie in W?(p*). The reader may easily check
that there are 2% such intervals. See Fig. 3.5.

Since F(D) C D, the unstable manifold of p* assumes a somewhat dif-
ferent form. The horizontal line segment £, through p* in D clearly lies in
W*(p*). As above, all of the forward images of £, also lie in D. The reader
may easily check that F*(£,) is a “snake-like” curve in D which cuts across
S exactly 2F times in a horizontal segment. See Fig. 3.5.
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These stable and unstable sets are easy to describe on the shift level. Let

s = (...8" 8% - spsisy...) € .

Clearly, if t is a sequence whose entries agree with those of s* to the right of
some entry, then t € W*(s*). The converse of this is also true, as is shown
in Exercise 6.

A natural question that arises is our use of the term “Cantor set” to
describe the set A = A4 NA_ for the horseshoe map and the similar set A for
the quadratic map of Chapter One. Intuitively, it may appear that the A for
the horseshoe has “twice” as many points. However, both A’s are actually
homeomorphic! This is best seen on the shift level.

Let X} denote the set of one-sided sequences of 0’s and 1’s and X3 the
set of two-sided such sequences. Define a map

$:%1 - 8,

by ®(s08182-..) = (...859381 - 809284...). It is easy to check that @ is a
homeomorphism between £} and £, (see Exercise 11).

Remarks.

1. We have now seen stable and unstable sets in two guises: the stable
and unstable subspaces of linear maps and the above collection of horizontal
and vertical line segments. This will become a common pattern for higher
dimensional systems that are “hyperbolic” in a sense to be made precise
later. Each point in a hyperbolic set will come equipped with contracting
and expanding directions which will play the role of stable and unstable sets.

2. Unlike the quadratic map, the horseshoe example was defined geometri-
cally rather than algebraically. This is often the case with higher dimensional
maps: it is easier to present and work with examples defined geometrically.
It is important to realize that it is possible to write down an explicit alge-
braic expression which gives a map similar to the horseshoe. This map is the
Hénon map which we will discuss later in §2.9.

Exercises
o0

i — 4| .
1. Prove that d[(s),(t)] = >_ ls ST | is a metric on 3.

2. Prove that the shift o is a homeomorphism.

1=

3. Prove that §:A — £, gives a topological conjugacy between o and F.

4. Construct a dense orbit for o.
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5. Prove that periodic points are dense for o.

6. Let s* € T3. Prove that W’(s*) consists of precisely those sequences
whose entries agree with those of s* to the right of some entry of s*.

7. Let (0) = (...00.000...) € ¥;. A sequence s € ¥ is called homoclinic
to (0) if s € W*(0) N W*(0). Describe the entries of a sequence which is
homoclinic to (0). Prove that sequences which are homoclinic to (0) are
dense in ¥g.

8. Let (1) =(...11.111...) € Xa. A sequence s is a heteroclinic sequence
if s € W?(0) N W*(1). Describe the entries of such a heteroclinic sequence.
Prove that such sequences are dense in ¥3.

9. QGeneralize the definitions of homoclinic and heteroclinic points to arbi-
trary periodic points for o and reprove Exercises 7 and 8 in this case.

10. Prove that the set of homoclinic points to a given periodic point is
countable.

11. Let £} denote the set of one-sided sequences of 0's and 1’s. Define
P: E% —» g by

P(sg5152...) = (...353331 - 305284 ...).

Prove that @ is & homeomorphism.

12. Consider the map F on D defined geometrically as in Fig. 3.6. Assume
that F linearly contracts vertical lengths and linearly expands horizontal
lengths in S exactly as in the case of the Smale horseshoe. Let

A={pe€ D|F*(p)e Sforalln c Z}.

Use the techniques of §1.13 to show that F on A is topologically conjugate
to a two-sided subshift of finite type generated by a 3 x 3 matrix A. Identify
A. Discuss the dynamics of F off A.

13. Rework Exercise 12, this time with the map defined geometrically in
Fig. 3.7.

14. Let R: ¥y — X3 be defined by

R( .. 8_28_.1.808182.. ) = ( ..823180.8-18-2.. )

Prove that RoR = id and that coR = Roo~!. Conclude that ¢ = UoR where
U is a map which satisfies U oU = id. Maps which are their own inverse are
called involutions. They represent very simple types of dynamical systems.
Hence the shift may be decomposed into a composition of two such maps.
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15. Let s be a sequence which is fixed by R. Suppose that g"(s) is also
fixed by R. Prove that s is a periodic point of o of period 2n.

16. Rework the previous exercise, assuming that ¢™(s) is fixed by U, where
U is given as in Exercise 13. What is the period of s?
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§2.4 HYPERBOLIC TORAL AUTOMORPHISMS

In this section, we introduce a completely different class of dynamical
system, the Anosov systems or hyperbolic toral automorphisms. These maps
are important in that they are chaotic everywhere that they are defined.
Nevertheless, their dynamics can be described completely. One difference
between these maps and those discussed previously is that these maps are
naturally defined on a torus or “doughnut” rather than on Euclidean space.
Even though the maps are induced by linear maps on Euclidean space (which
have extremely simple dynamics), the maps on the tori have extremely rich
dynamical structure.

To describe the torus, let us begin with the plane. We will consider
as identical‘a.ll points whose coordinates differ by integers. That is to say
the point («,3) in the plane is to be regarded as the same as the points’
(a+1,8), (a+5,8+3), and, in general, (a+ M,3+ N), where M and N are
integers. We let [a, §] denote the set of all points equivalent to (a,3) under
this relation. To be somewhat more formal, the relation (z,y) ~ (2',y') if
and only if # — ' and y — 3 are integers gives an equivalence relation on
points in the plane. The torus is thus the set of all equivalence classes under
this relation.

Geometrically, this procedure can be visualized as follows. Consider the
unit square in the plane 0 < z,y < 1. Under the above identifications, only
points on the boundary of the square need be considered. Indeed, the toi)
boundary y = 1 should be considered the same as the bottom boundary
y = 0, and similarly the left and right boundaries ¢ = 0 and # = 1 should be
identified. When this occurs, the square becomes first a cylinder and then a
torus, as in Fig. 4.1.

Remarks

1. This procedure is not limited to two dimensions; one may define an n-
dimensional torus using the same equivalence relation on R™. This is shown
in Exercise 2.

2. The torus may also be regarded as the Cartesian product of two circles.

See Exercise 3.
Let T denote the torus, and let = be the natural projection of R? onto
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Fig. 4.1. Consiruction of a torus from a square.

T, ie.,
7"(1’73/) = [zay] = 7r(1: + M, y+ N).

Certain dynamical systems on a torus can be described most efficient! y n
the plane and then projected onto the torus. For example, suppose F: R?

R? has the property that
z z+ M
F - F
(y) (y +N )

belongs to the integer lattice for all points in the plane and all integers M

and N. It follows that
T z 4+ M
= F
TO F(y) mo ( N N)

so that F induces a well-defined map F on the torus. F is defined by the
diagram

r? & R?
K K
T £ T

As an example, if L is a linear map whose matrix representation is an
integer matrix, then L is clearly well-defined on T. L is called a toral auto-
morphism. For our purposes, we need a few more hypotheses on L.

Definition 4.1. Let L(x) = A - x where A is a 2 x 2 matrix satisfying
1. All entries of A are integers.




