Appendix A

A Discussion of Fractal Image
Compression!

Yuval Fisher®

Caveat Emptor.

Anon
Recently, fractal image compression — a scheme using fractal trans-
forms to encode general images — has received considerable attention.

This interest has been aroused chiefly by Michael Barnsley, who claims
to have commercialized such a scheme. In spite of the popularity of the
notion, scientific publications on the topic have been sparse; most articles
have not contained any description of results or algorithms. Even Bamnsley’s
book, which discusses the theme of fractal image compression at length, was
spartan when it came to the specifics of image compression.

The first published scheme was the doctoral dissertation of A. Jacquin,
a student of Barnsley’s who had previously published related papers with
Barnsley without revealing their core algorithms. Other work was conducted
by the author in collaboration with R. D. Boss and E. W. Jacobs® and also
in collaboration with Ben Bielefeld.* In this appendix we discuss several
schemes based on the aforementio’ cd work by which general images can
be encoded as fractal transforms.

'This work was partially supported by ONR contract NOOO14-91-C-0177. Other support was provided by the San Diego
Supercomputing Center and the Institute for Non-Linear Science at the University of California, San Dicgo.

2San Diego Supercomputing Facility, University of California. San Diego, La Jolla, CA 92093,

30f the Naval Ocean Systems Center, San Diego.

40f the State University of New York, Stony Brook.

904 A A Discussion of Fractal Image Compression

Figure A.T © A portion of Lenna’s hat decoded at 4 times its encoding size (left), and the original image enlarged
to 4 times the size (right), showing pixelization.

The image compression scheme can be said to be fractal in several Why is it “Fractal”
senses. First, an image is stored as a collection of transforms that are very ~ Image Compression?
similar to the MRCM metaphor. This has several implications. For example,
just as the Barnsley fern is a set which has detail at every scale, so does
the decoded image have detail created at every scale. Also, if one scales
the transformations in the Barnsley fern IFS (say by multiplying everything
by 2), the resulting attractor will be scaled (also by a factor of 2). In the
same way, the decoded image has no natural size, it can be decoded at
any size. The extra detail needed for decoding at larger sizes is generated
automatically by the encoding transforms. One may wonder (but hopefully
not for long) if this detail is ‘real’; that is, if we decode an image of a
person at larger and larger size, will we eventually see skin cells or perhaps
atoms? The answer is, of course, no. The detail is not at all related to the
actual detail present when the image was digitized; it is just the product of
the encoding transforms which only encode the large scale features well.
However, in some cases the detail is realistic at low magnifications, and
this can be a useful feature of the method. For example, figure A.1 shows
a detail from a fractal encoding of Lenna along with a magnification of the
original. The whole original image can be seen in figure A.4 (left); this
is the now famous image of Lenna which is commonly used in the image
compression literature. The magnification of the original shows pixelization,
the dots that make up the image are clearly discernible. This is because it is
magnified by a factor of 4. The decoded image does not show pixelization
since detail is created at all scales.

905

Why is it Fractal
Image
“Compression”?

Grey Scale Version of the
Sierpinski Gasket

Figure A.2

An image is stored on a computer as a collection of values which indicate
a grey level or color at cach point (or pixel) of the picture. It is typical
to use 8 bits per pixel for grey-scale images, giving 2% = 256 different
possible levels of grey at each pixel. This yields a gradation of greys
that is sufficient to make monochrome images stored this way look good.
However, the image’s pixel density must also be sufficiently high so that the
individual pixels are not apparent. Thus, even small images require a large
number of pixels and so they have a high memory requirement. However,
the human eye is not sensitive to certain types of information loss, and so it
is generally possible to store an approximation of an image as a collection
of transforms using considerably less information than is required to store
the original image.

For example, the grey-scale version of the Sierpinski gasket in figure
A2 can be generated from only 132 bits of information using the same
decoding algorithm that generated the other encoded images in this section.
Because this image is self-similar, it can be stored very compactly as a
collection of transformations. This is the spirit of the idea behind the fractal
image compression scheme presented in the next sections.

Standard image compression methods can be evaluated using their com-
pression ratio; the ratio of the memory required to store an image as a
collection of pixels and the memory required to store a representation of the
image in compressed form. The compression ratio for the fractal scheme is
hard to measure, since the image cun be decoded at any scale. If we decode
the grey-scale Sierpinski gasket at, say, two times its size, then we could
claim 4 times the compression ratio since 4 times as many pixels would
be required to store the decompressed image. For example, the decoded

906 A A Discussion of Fractal Image Compression

Graph Generated From the
Lenna Image.

Figure A3 L

image in figure A.1 is a portion of a 5.7:1 compression of the whole Lenna
image. It is decoded at 4 times it’s original size, so the full decoded image
contains 16 times as many pixels and hence its compression ratio is 91.2:1.
This may seem like cheating, but since the 4-times-larger image has detail
at every scale, it really isn’t.

A.1 Self-Similarity in Images

The images we will encode are different than the images discussed in other
parts of the book. Before, when we referred to an image, we meant a .set
that could be drawn in black and white on the plane, with black representing
the points of the set. In this appendix, an image refers to something that
looks like a black-and-white photograph.

In order to discuss the compression of images, we need a mathematical Images as Graph.s of
model of an image. Figure A3 shows the graph of a special function Functions
z = f(z,y). This graph is generated by using the image of Lenna (see
figure A.4) and plotting the grey level of the pixel at position (z,y) as a
height, with white being high and black being low. This is our model for‘an
image, except that while the graph in figure A.3 is generated by connecting
the heights on a 64 x 64 grid, we generalize this and assume that every
position (x,y) can have an independent height. That is, our model of an
image has infinite resolution.

i
!
¢
;
i

A.1 Self-Similarity in Images

907

Thus, when we wish o refer to an image, we refer to the function f (. y)
which gives the grey level at each point (x,y). When we are dealing with
an image of finite resolution, such as the images that are digitized and stored
on computers, we must either average f(x,y) over the pixels of the image
or insist that f{:z,¥) has a constant value over each pixel.

For simplicity, we assume we are dealing with square images of Normalizing Graphs of Images
size 1. We require (z,y) € I* = {(u,v) | 0 < w,v < 1}, and

flz,y) € I = [0,1]. Since we will want to use the contraction
mapping principle, we will want to work in a complete metric space
of images, and so we also will require that f is measurable. This is
a technicality, and not a serious one since the measurable functions
include the piecewise continuous functions, and one couid argue that
any natural image corresponds to such a function.

A Metric on Images

Natural Images are
not Exactly
Self-Similar

We also want to be able to measure differences between images. and so
we introduce a metric on the space of itnages. There are many metrics to
choose from, but the simplest 1o use is the sup metric

8(f.g)= sup |[{ry) -~ glay)] .

(e l?

This metric finds the position (i, y) where two images f and g differ the
most and sets this value as the distance between [and g¢.

There are other possible choices for image models and other possible
metrics to use. In fact just as before, the choice of metric determines
whether the transformations we use are contractive or not. These details are
important, but are beyond the scope of this appendix.,

A typical image of a face, for example figure A.4 (left) does not contain
the type of self-similarity that can be found in the Sierpinski gasket. The
image does not appear to contain affine transformations of itself. But, in
fact, this image does contain a different sort of self-similarity. Figure A4
(right) shows sample regions of Lenna which are similar at different scales:
a portion of her shoulder overlaps a region that is almost identical, and a
portion of the reflection of the hat in the mirror is similar (afler transforma-
tion) to a part of her hat. The distinction from the kind of self-similarity we
saw with ferns and gaskets is that rather than having the image be formed
of copies of its whole self (under appropriate affine transformation), here
the image will be formed of copies of (properly transformed) parts of itself.
These parts are not identical copies of themselves under affine transforma-
tion, and so we must allow some error in our representation of an image
as a set of transformations. This means that the image we encode as a set
of transformations will not be an identical copy of the original image but
rather an approximation of it.

Finally, in what kind of images can we expect to find this type of
local self-similarity? Experimental results suggest that most images that one

908 A A Discussion of Fractal Image Compression

Figure A4 : The original 256 x 256 pixel Lenna image (left) and some of its self-similar portions (right).

would expect to ‘see” can be compressed by takin‘é advantage of this t.ype
of self-similarity; for example, images of trees, faces, houses, mountains,
clouds, etc. However, the existence of this local self-similarity and the
ability of an algorithm to detect it are distinct issues, and it is the latter
which concerns us here.

A2 A Special MRCM

v s fa-(his scction we describe an extension of the multiple reduction copying Partitioned MRCMs

machine metaphor that can be used to encode and decode grey-scale images.
As before, the machine has several dials, or variable components:

Dial [: number of lens systems, o
Dial 2: setting .of reduction factor for each lens system individually,
Dial 3: configuration of lens systems for the assembly of copies.

These dials are a part of the MRCM definition from chapter 5; we add to
them the following two capabilities:

Dial 4: A contrast and brightness adjustment for each lens, o
Dial 5: A mask which selects, for each Jens, a part of the original to be
copied.

These extra features are sufficient to allow the encoding of grey scale images.
The last dial is the new important feature. It partitions an image into pieces
which are each transformed separately. For this reason, we call this !V!R(?M
a partitioned multiple reduction copying machine (PMRCM). By partitioning

H
i
i
i

A.2 A Special MRCM

909

A PMRCM for a
Bowtie

the image into pieces, we allow the encoding of many shapes that are
difficult to encode on an MRCM, or IFS.

Let us review what happens when we put an original image on the
copy surface of the machine. Each lens selects a portion of the original,
which we denote by ID; and copies that part (with a brightness and contrast
transformation) to a part of the produced copy which is denoted /?;. We call
the D; domains and the R, ranges. We denote this transformation by ;.
The partitioning is implicit in the notation, so that we can use almost the
same notation as before. Given an image [, one copying step in a machine
with N lenses can be written as W(f) = u, ([YUw(fHU- - Uwn (). As
before the machine runs in a feedback loop: its own output is fed buck as
its new input again and again.

Consider the 8 lens PMRCM indicated in figure A.5. The figure shows
two regions, one marked 1)y = Dy = 3w Dy and the other marked
Ds = D¢ = Dy = 4. These are the partitioned pieces of the original
which will be copied by the 8 lenses. The lenses map cach domain 1); (o
a corresponding range 12,. with a reduction factor of 1/2. For simplicity.
we assume that the contrast and brightness are not altered in this example.
Figure A.6 shows three iterations of the PMRCM with thiee different initial
images. The attractor for this system is the bow-tic figure shown in (c).

This example demonstrates the utility of a PMRCM. By partitioning the
original to be copied, it is very easy to encode the bow-tie image (though
the astute reader will notice that this image is also possible to encode using
an IFS).

An 8 lens PMRCM cncoding a

(! bowtie.
R
LR R, R,

R,

Figure AS

Three iterations of a PMRCM with
three different intial images.

Figurc A.6

910 A A Discussion of Fractal Image Compression

We cali the mathematical analogue of a PMRCM, a partitioned iterated
function system (PIFS). A PIFS has some features in common with the
networked MRCM and Barnsley’s recurrent iterated function systems, but
they are not at all identical.

We haven’t specified what kind of transformations we are allowing, and
in fact one could build a PMRCM or PIFS with any transformation one
wants. But in ordér to simplify the situation, and also in order to allow a
compact specification of the final PIFS (in order to yield high compression),
we restrict ourselves to transformations w; of the form

T a; b 0 @ €;
wi lyl=1e d O1 |yl +{fi] - A1
z 0 [z 04

It is convenient to write

S PIME

Since an image is modeled as a function f(z,y), we can apply w; to an
image f by wi(f) = wi(z,y, f(x,y)). Then v; determines how the par-
titioned domains of an original are mapped to the copy, while s; and o;
determine the contrast and brightness of the transformation. It is always
implicit, and important to remember, that each w; is restricted to Dax I.
That is, w; applies only to the part of the image that is above the domain
D;. This means that v;(D;) = R;.

Since we want W () to be an image, we must insist that UR; = I? and
that 12,01 /%; =) when i # j. That is, when we apply W to an image, we get
some single valued function above each point of the square I%. Running the
copying machine in a loop means iterating the Hutchinson operator W. We
begin with an initial image fy and then iterate f, = W), fr=W(fi) =
W (W (fy)), and so on. We denote the ni-th iterate by fn = W"(fo).

When will W have an atiractive fixed point? By the contractive mapping
principle, it is sufficient to have W be contractive. Since we have chosen
a metric that is only sensitive to what happens in the 2 direction, it is
not necessary to impose contractivity conditions in the z or y directions.
The transformation W will be contractive when each s; < 1. In fact, the
contractive mapping principle can be applied to W™ (for some m), so it is
sufficient for W™ to be contractive. This leads to the somewhat surprising
result that there is no specific condition on the s; either. In practice, it is
safest to take s; < 1 to ensure contractivity. But we know from experiments
that taking s; < 1.2 is safe, and that this results in slightly better encodings.

When W is not contractive and W™ is contractive, we call W even-
tually contractive. A brief explanation of how a transformation W can be
eventually contractive but not contractive is in order. The map W is com-
posed of a union of maps w; operating on disjoint parts of an image. The
iterated transform W™ is composed of a union of compositions of the form

Wiy Wiy -+ W

T ©

PMRCM = PIFS

Fixed Points for PIFS

Eventuaily
Contractive Maps

A.2 A Special MRCM

911

Since the product of the contractivities bounds the contractivity of the com-
positions, the compositions may be contractive if each contains sufficiently
_comraclive w;;. Thus W will be eventually contractive (in the sup metric)
¥f it contains sufficient ‘mixing’ so that the contractive w; eventually dom-
inate the expansive ones. In practice, given a PIFS this condition is simple
to check.

] Suppose that we take all the s; < 1. This means that when the PMRCM
is run, the contrast is always reduced. This seems to suggest that when the
machine is run in a feedback loop, the resulting attractor will be an insipid,
contrast-less grey. But this is wrong, since contrast is created between
ranges which have different brightness levels o;. So is the only contrast
in the attractor between the 17,7 No, if we take the v to be contractive,
then the places where there is contrast between the I?; in the image will
propagate to smaller and smaller scale, and this is how detail is created in
the attractor. This is one reason Lo require that the v; be contractive.

We now know how to decode an image that is encoded as a PIFS or
as a PMRCM. Start with any initial image and repeatedly run the copy
machine, or repeatedly apply W until we get 1o the fixed point f,. We will
use Hutchinson’s notation and denote this fixed point by f.. = |1}7]. The
decoding is easy, but it is the encoding which is interesting. To encode an
image we need to figure out 17, 1D, and w;. as well as N, the number of

maps w; we wish to use.

When we decode by iterating, we take an initial f;, and compute f,, =
W{fu_1). This can also be written as

fn,(l',y) = Sifn—l(“fl (1r,y)) + 0; ,

where i is determined by the condition (x, y) € R;. Suppose we are
dealing with an image of resolution M x A. We can write the image
as a column vector, and then this equation can be written as

fn = an—l +0,

wh_ere S is an M? x M? matrix with entries s, that encode the v; and
O is a column vector containing the brightness values o,. Then

fn =S5"fo+ Z?:g 59710 s

apq if each s; < ¢ < | then the first term is 0 in the limit. (The con-
dition s; < ¢ < 1 can be relaxed when W is eventually contractive).
When I — S is invertible,

foo = Z?’;()Sj() = (I‘ S)iloa

V\{here I is the identity matrix. Bielefeld pointed out that when each
pixel value f,(z,y) depends on only one (or a few) other pixel

values fr_y (vi“(a:, y)), this matrix is very sparse and can be readily
inverted.

Decoding by Matrix Inversion

912 A A Discussion of Fractal Image Compression

A.3 Encoding Images

Suppose we are given an image f that we wish to encode. This means
we want to find a collection of maps wy,w,...,wy with W = Uf‘ilwl
and f = |W|. Thatis, we want f to be the fixed point of the Hutchinson
operator W. As in the IFS case, the fixed point equation

F=W(H=w(HUuw(f)U---wx(f)

suggests how this may be achieved. We seek a partition of f into pieces
to which we apply the transforms w; and get back f. This is too much to
hope for in general, since images are not composed of pieces that can be
transformed non-trivially to fit exactly somewhere else in the image. What
we can hope to find is another image f’ = |W/| with 6(f, f) small. That
is, we seek a transformation W whose fixed point f’ = |[W| is close to, or
looks like, f. In that case,

Frf =W =W(f)=uw()Uw(f)U-wnf)

Thus it is sufficient to approximate the parts of the image with transformed
pieces. We do this by minimizing the following quantities

SR x Dywilf)) i=1,... N (A2)

Finding the pieces R; (and corresponding D;) is the heart of the problem.

The following example suggests how this can be done. Suppose
we are dealing with a 256 x 256 pixel image at 8 bits per pixel.
Let Ry, Ra,...,Ria be the 8 x 8 non-overlapping sub-squares of
[0,255] % [0,255], and let D be the collection of all 16 x 16 sub-squares.
The collection D contains 241 - 241 = 58,081 squares. For each R; search
through all of D to find a D; € D which minimizes equation A.2. This
domain is said to cover the range. There are 8 ways to map one square
onto another, so that this means comparing 8 - 58,081 = 464, 648 squares.
Also, a square in I} has 4 times as many pixels as an R;, so we must either
subsample (choose 1 from each 2 x 2 sub-square of D;) or average the
2 x 2 sub-squares corresponding to each pixel of R, when we minimize
eqn. (A.2).

Minimizing equation (A.2) means two things. First it means finding a
good choice for D; (that is the part of the image that most looks like the
image above R;). Second, it means finding a good contrast and brightness
setting s; and o; for w;. For each D € D we can compute s; and o; using
least squares regression, which also gives a resulting root mean square
(rms) difference. We then pick as D; the D € D which has the least rms
difference.

Two men flying in a balloon are sent off track by a strong gust of
wind. Not knowing where they are, they approach a hill on which a solitary
figure is perched. They lower the balloon and shout to the man on the hill,
“Where are we?”. The man pauses for a long time and shouts back, just as

A Simple Iustrative
Example

A Point about Metrics

A.3 Encoding Images 913

the balloon is leaving earshot, “You are in a balloon.” So one of the men in
the balloon turns to the other and says, “That man was a mathematician,”
Completely amazed. the second man asks. “How can you tell that?”, Replies
the first man, “We asked him a question, he thought about it for a fong time,
his answer was correct, and it was totally useless.” This is what we have
done with the metrics. When it came to a simple theoretical motivation,
we use the sup metric which is ver, convenient for this. But in practice,
we are happier using the rms metric which allows us to make least square
computations.

Given two squares containing 1. pixel intensities, «a..... , and Least Squares
by, ..., b,. We can seek s and o to minimize the quantity

R= Z ca; o — b))t

This will give us a contrast and brightness setting that makes the
affinely transformed «; values have the least squared distance from
the b; values. The minimum of R occurs when the partial derivatives
with respect to s and o are zero, which occurs when

_n (i (') = (0 w) (320, 00)

Ny a4 - (> ;)

and

= —1; (ib, - si:m) .

i=1 i=1

In that case,

l k3 R H3 n Iz
R= - {Z by + s (sZ(l:? — ZZ aib; + 2(}2 a;
A3)

i=1 i=| i=t i=1

+ o <on -2 bi>} .
i=1

Fn3laf — (3, a) =0 thens=0and o= 3" b/n.

A choice of D, along with a corresponding «; and o;, determines a map
w; of the form of eqn. (A.1). Once we have the collection w, .. ., w we
can decode the image by estimating {WV]. Figure A.7 shows four images: an
arbitrary initial image f; chosen to show texture, the first iteration W (o),
which shows some of the texture from fo, 1W2(fu), and W 0(f,).

The result is surprisingly good. given the naive nature of the encoding
algorithm. The original image required 65536 bytes of storage, whereas the

914 A A Discussion of Fractal Image Compression A4 Ways to Partition Images 915

transformations required only 3968 bytes,” giving a compression ratio of ,
16.5:1. With this encoding R = 10.4 and each pixel is on average only 6.2

grey levels away from the correct value. These images show how detail is

added at each iteration. The first iteration contains detail at size 8 x 8, the

next at size 4 x 4, and so on.

A4 Ways to Partition Images

The example of the last section is naive and simple, but it contains most of
the ideas of a fractal image encoding scheme. First partition the image by
some collection of ranges R;. Then for each R; seek from some collection
of image pieces a D; which has a low rms error. The sets R; and Dy,
determine s; and 0; as well as a;,b;,ci,d;,e; and f; in eqn. (A.1). We
then get a transformation W = Uw; which encodes an approximation of the
original image. !

A weakness of the example is the use of fixed size Ry, since there are Quadtree Partitioning
regions of the image that are difficult to cover well this way (for exampie,

Lenna’s eyes). Similarly, there are regions that could be covered well with
larger R;, thus reducing the total number of w; maps needed (and increasing
the compression of the image). A generalization of the fixed size R; is the
use of a quadtree partition of the image. In a quadtree partition, a square §
image is broken up into 4 equally sized sub-squares. Depending on some
algorithmic criterion, each of these is again recursively sub-divided. !

An algorithm for encoding 256 x 256 pixel images based on this idea
can proceed as follows. Choose for the collection D of permissible domains
all the sub-squares in the image of size 8, 12, 16,24, 32,48 and 64. Partition
the image recursively by a quadtree method until the squares are of size 32.
For each square in the quadtree partition, attempt to cover it by a domain
that is larger. If a predetermined tolerance rms value is met, then call the
square R; and the covering domain D;. If not, then subdivide the square
and repeat. This algorithm works well. It works even better if diagonally
oriented squares are used in the domain pool D also. Figure A.8 shows
an image of a collie compressed using this scheme. In section A.5 we
discuss some of the details of this scheme as well as the other two schemes
discussed below.

A weakness of the quadtree based partitioning is that it makes no attempt HV-Partitioning Figure A7 © An original image, the first, second, and tenth iterates of the encoding transformations.
to select the domain pool D in a content dependent way. The collection must
be chosen to be very large so that a good fit to a given range can be found. A
way to remedy this, while increasing the flexibility of the range partition, is
to use an HV-partition. In an HV-partition, a rectangular image is recursively
partitioned either horizontally or vertically to form two new rectangles. The
partitioning repeats recursively uniil some criterion is met, as before. This
scheme is more flexible, since the position of the partition is variable. We

can then try to make the partitions in such a way that they share some
self-similar structure. For example, we can try to arrange the partitions so
that edges in the image will tend to run diagonally through them. Then, it
is possible to use the larger partitions to cover the smaller partitions with
a reasonable expectation of a good cover. Figure A.10 demonstrates this

SEach transformation required 8 bits in the = and y direction to determine the position of D;, 7 bits for 0, 5 bits for s; idea. The ﬁgure shows an part of an imagc (@ in (b) the first partilion
and 3 11t o determine. a rtation and flip operation for mapping D 1o R, - generates two rectangles, 12| with the edge running diagonally through it,

916 A A Discussion of Fractal Image Compression A.5 Implementation Notes 917

A Collie
A collie (256 x 256) compressed

with the quadtree scheme at 28.95:1
with an rms error of 8.5,

Figure A8

San Francisco
San Francisco (256 x 256) com-

pressed with the HV scheme at 7.6:1
with an rns error-of 7.1,

Figure A9

and R, with no edge; and in (c) the next three partitions of 12 partitiqn it
into 4 rectangles, two rectangles which can be well covered by R (since
they have an edge running diagonally) and two which can be covered bx Ry
(since they contain no edge). Figure A.9 shows an image of San Francisco
encoded using this scheme.

Yet another way to partition an image is based on.triangles. In the
triangular partitioning scheme, a rectangular image is divided diagonally

The HV scheme attlempts to cre-
ate self-similar rectangles at differ-
ent scales.

Ist Partition 2nd 3rd and 4th Partitions
RNR, bl |/ l

(2954 triangles).

(b Figure A.10

EJA

:F ﬁ
T
i ik
l L] i
T .
T L.

Figure A1l : A quadtree partition (5008 squares). an HV partition (2910 rectangles), and a triangular partition

into two triangles. Bach of these is recursively subdivided into 4 triangles by
segmenting the triangle along lines that join three partitioning points along
the three sides of the triangle. This scheme has several potential advantages
over the HV-partitioning scheme. It is flexible, so that triangles in the
scheme can be chosen to share self-similar properties, as before. However,
the artifacts arising from imperfect covering do not run horizontally and
vertically, and this is less distracting. Also, the triangles can have any
orientation, so we break away from the rigid 90 degree rotations of the
quadtree and HV partitioning schemes. This scheme, however, remains to
be fully developed and explored.

Figure A.11 shows sample partitions arising from the three partitioning
schemes applied to the Lenna image.

A.5 Implementation Notes

Storing the Enceding
| Compactly

Triangular
Partitioning

To store the encoding compactly, we do not store all the coefficients in eqn.
(A.1). The contrast and brightness settings are stored using a fixed number
of bits. One could compute the optimal s; and o; and then discretize them
for storage. However, a significant improvement in fidelity can be obtained
if only discretized s; and 0; values are used when computing the error during
encoding (and eqn. (A.3) facilitates this). Using 5 bits to store s; and 7 bits

918 A A Discussion of Fractal Image Compression

to store o; has been found empirically optimal in general. The distribution
of s; and o0; shows some structure, so further compression can be attained
by using entropy encoding.

The remaining coefficients are computed when the image is decoded. In
their place we store R; and D;. In the case of a quadtree partition, R?; can be
encoded by the storage order of the transformations if we know the size of
R;. The domains D; must be stored as a position and size (and orientation
if diagonal domain are used). This is not sufficient, though, since there are
8 ways to map the four corners of D; to the corners of ;. So we also must
use 3 bits to determine this rotation and flip information.

In the case of the HV-partitioning and triangular partitioning, the parti-
tion is stored as a collection of offset values. As the rectangles (or triangles)
become smaller in the partition, fewer bits are required to store the offset
value. The partition can be completely reconstructed by the decoding rou-
tine. One bit must be used to determine if a partition is further subdivided or
will be used as an R; and a variable number of bits must be used to specify
the index of each D; in a list of all the partitions. For all three methods, and
without too much effort, it is possible to achieve a compression of roughly
31 bits per w; on average.

In the example of section A.3, the number of transformations is fixed.
In contrast, the partitioning algorithms described are adaptive in the sense
that they utilize a range size which varies depending on the local image
complexity. For a fixed image, more transformations lead to better fidelity
but worse compression. This trade-off between compression and fidelity
leads to two different approaches to encoding an image f — one targeting
fidelity and one targeting compression. These approaches are outlined in
the pseudo-code below. In the code, size(R;) refers to the size of the range;
in the case of rectangles, size([?;) is the length of the longest side.

Another concern is encoding time, which can be significantly reduced by
employing a classification scheme on the ranges and domains. Both ranges
and domains are classified using some criteria such as their edge-like nature,
or the orientation of bright spots, etc. Considerable time savings result from
only using domains in the same class as a given range when seeking a cover,
the rationale being that domains in the same class as a range should cover
it best. :

Optimizing Encoding
Time

Pseudo-Code a. Pseudo-code targeting a fidelity ..
e Choose a tolerance level e..
o Set R, = J? and mark it uncovered.
® While there are uncovered ranges R; do {

e Out of the possible domains D, find the domain D; and the
corresponding w; which best covers R; (i.e., which minimizes

expression (A.2)).

o I 5(f N (R x I wi(f)) < ec or size(R;) < T then
o Mark R, as covered, and write out the transformation w;;

e else

A5 Implementation Notes

919

e Partition I?; into smaller ranges which are marked as uncov-
ered, and remove [2; from the list of uncovered ranges.

1

b. Pseudo-code targeting a compression having /V transformations.
e Choose a target number of ranges /V,..
o Set a list to contain I?; = I, and mark it as uncovered.
e While there are uncovered ranges in the list do {
® For each uncovered range in the list, find and store the domain
D; € D and map w; which covers it best, and mark the range
as covered.
e Outof the list of ranges, find the range R with size (17;) >+
which has the largest ' "

&(f N (Rj X])_'uz_,(f))

(i.e., which is covered worst).
e If the number of ranges in the list is less than N, then |
e Partition [?; into smaller ranges which are added lo the list
and marked as uncovered.
e Remove R;,w; and [J; from the list.

“min

o Write out all the w; in the list.

Lot
e

