26.457 Notes on Hamiltonians and Conservative Systems

Following on from the Newtonian description of dynamics in terms of force = mass x acceleration and the
relationship between energy and work, Lagrange and Hamilton successively refined the description of dynamics into a
coordinate-free description which holds equally for Cartesian, polar and other generalized coordinate sysiems.

The classical Hamiltonian and Lagrangian dynamical equations, are both expressed as differential equations defining
generalized coordinates as a function of increasing time. Generally we think of the g; as position coordinates and the

p; as momenta, so in effect p; = m g;.

The Lagrangian £ =T -V where T = kinetic & V = potential energy. It is expressed as a second order differential
equation in terms of the position coordinates.

a£ i)—f—‘—— i=1,.,N (2.1]
dt 3ql " aq;

This coincides with the idea that changes in the kinetic energy are exactly compensated for by changes in the
potential energy. Note that spccxfymg the initial conditions in a dynamxcal problem requires determmmU both the
positions and velocities i.e. q; and g;.

e.g. Simple harmonic motion X=-x m=k=1 T=L(xF v=- | F.dx = | xdx =L (x)
5 ~(xy
l_x _1 .d_(—a—-f’—}_a? _d_(x) -x})=x+x=0
2 )2 di\dqg/ odu dt )

Hamilton refined this description by converting the second-order equations in g into first-order differcntial equations
in positions q; and momenta p; (form =1, p; = g; )- This is always possible for any order of differential equation

since we are just naming successive derivatives using new names. This is very useful for the topological approach
to conservative and non-conservative dynamics since it enables us o describe any dynamical system as a first-order
one by a change of variables. A first-order system can then be directly modelled as a vector field in the space of
dynamical variables - phase space.

The Hamiltonian Y = T + V. gives the total cons.. ved energy of the system. The Hamiltonian formulation has
proven universally useful spanning areas from classical dynamics to the Schrodinger equation of the wave function

in quantum mechanics :

Because we are now dealing with T + V , we can take twice the kinetic energy and subtract L

H= D pid-2

oH _ . oH

The Hamiltonian cystem now satisfies first-order equations %‘ =4qi ‘a‘q—‘ =-pPi 2.2
1 1

c.g. Simple harmonic motion ¥=-x m=k=1asabove. Y = —;- (x)? + })-(x)2

Lety=x thenwehavey=x, x= (’() =y =-x, just the form of equations 2.2.

e.g. Henon-Heiles system. (xF + 1 y)z + ;—(x)2 + -;—(y)2 +  x%y- ;—(y):l
K. E of ”-oscmators P.E. of 2-oscillators Encrgy linkage
S0 sﬁ = 8_1_{ =x =q trivially confirming the change of variables, similarly for y.
P1  ox
More importantly - X =-pj _—.L})_{=al{.= X +2xy,and -y=-Dp =9:K_=ﬁ= v+ <2 . yz
0q;  dx d dy

or X=-x-2xy, y=-y-x2+y2



The program performs simple numcrical integration by picking a small value d and cvaluating
Xnel == Xn - 2XpYn, Yool =-Yp - x% + er\
then Xn+l =Xn+dx.n+{, ¥Yn+l =yn+dy-n+1
and finally xpeqp = Xg + dXp+l, Y+l = Yn + d¥n+l.

The four variables x, y, x and y determine the dynamics and hence the energy. The program examines the dynamics
in the (y,)})-planc and cither looks at orbits of the second osciliator or the phase portrait gained by plotting a dot in
this plane at each successive stroboscopic instant the x-oscillator is at x = 0. This is very similar to taking a
Poincare map of the dynamical system. To get the starting condition of the remaining variable x, we use the
Hamiltonian expression for the total energy, :

x=1/2e-y%-y2+2y3 noting that the x2 and 2xy terms are zero since x = 0.
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Figure 23 The complexitics of three-body motion: here a dust particle orbits twe
fixed planets of equal mass.

Figure 26 Foolprints of chaos in the samls of time. . . Homoclinic tangles in the
three-body problem. Poincaré was horrified.

A classical deterministic system following the principies of the Laplacian universe can be described by specifying its
equations of evolution and the initial conditions. Often the equations of evolution take the form of differential
equations. The classical Hamiltonian and Lagrangian dynamical equations, for example, are both expressed as

differential equations defining generalized coordinates as a function of increasing time, where £ =T - V and in the
case of a potential, H{ =T + v, giving the total (T kinetic & V potential ) energy :

[ K2 W TP (2.1]
dt aqi
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a) b}

Fig. 125: a) In dissipative systems trajectories are attraced to fixed point, and volume shrinks,
b) In conservative systems the points rotate around an elliptic fixed point, volume is conserved.

‘ We now p.resent some motivation for the study of conservative systems and then
give an overview over the rest of this chapter.

Ff)r sorpe time, attention has shifted from the calculation of individual orbits to

consideration of the qualitative properties of families of orbits, as shown in Fig. 126.

Today, we are mainly interested in the long-time behavior of conservative systems.,
There are several reasons for this:

a) We should, for example, be able to answer the question whether the solar systems
and the galaxy are stable under mutual perturbations of their constituents, or
whether they will eventually collapse or disperse to infinity. The long-time limit in-
volved here is of the order of the age of the universe. But “long” times are much
shorter in the storage rings used for high energy physics or in fusion experiments,
where the particles make many revolutions in fractions of a second. In such systems
irregular or chaotic motion is to be avoided at all costs, and this is only possible if
the long-time behavior of these (conservative) systems is known.

P

a
b b b
I I it I

Fig. 126: Problems of increasing globality in classical mechanics. 1. Step by step integration of
the equations of motion. II. a) Local stability; b) local instability. 1II. Topological nature of
complete trajectories: a) periodic motion on a torus; b) motion on a torus with irrational fre-
quency ratios. IV. Types of flow in phase space: a) non mixing; b) mixing. (After Balescu, 1975.)

7 Regular and Irregular Motion in Conservative Systems

b) another point concerns the foundations of statistical mechanics, where no attempt
is made to follow the detailed motion of all constituents of a complicated
manybody problem. Instead, the ergodic hypothesis is made, i.e. one assumes that
in the course of time the system explores the entire region of phase space allowed
(the energy surface) and eventually covers this region uniformly. Time averages can
then be replaced by simpler phase-space averages. But is the ergodic hypothesis cor-
rect? To answer this question, the long-time behavior of Hamiltonian systems with
N degrees of freedom in the limit N = o (and N/volume = constant) must be
known.

In the first part of this section, we consider the classical mechanis of simple
Hamiltonian systems with a few degress of freedom and show that in most cases their
motion in phase space is extremely complicated and neither regular nor simply
ergodic. In other words, it will be shown that the regular motion treated in most tex-
tbooks on classical mechanics is an exception and rather uncommon.

In the second part, we discuss some simple model systems which behave ergodically
although they have only a few degrees of freedom. Finally, a classification scheme for
chaotic behavior in conservative systems is described.

®w

7.1 Coexistence of Regular and
Irregular Motion

In the following, we investigate the stability of the trajectories of a nonintegrable
Hamiltonian system in the long-time limit. For this purpose, we start from an in-
tegrable Hamiltonian and consider the effect of a small nonintegrable perturbation.

Integrable Systems

A Hamiltonian H{ (f, §) is called integrable if one can find a canonical transforma-
tion S (¢, J) to new variables 8, J:

-

85(g, J . . 8s@J
5= (q)HJ(): (qﬂ)

7.3
dqg ! aJ 7.3)

R

such that in the new coordinates the Hamiltonian depends only on the new momenta
J, i.e, S(G, J)is asolution of the Hamilton-Jacobi equation (see, e. g., Arnold, 1978):

88, J .
Hb{ci, —(6‘]& W = Hy(J) (7.4)

-
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and the equations of motion in the action-angle variables J and §

o 8
o8

. OH, .

92—“7: 0
57 w (J)

can easily be integrated to

j = const.

Dy
Il

St + 4.

(7.5)

1.1

One of the simplest examples for an integrable system is a harmonic oscillator that has

the Hamiltonian
1 N
Hy = ’2—(172 + wig?).

The Hamilton-Jacobi equation (7.4) then becomes
[ < a5 \2 + w2 H
2 |\ag w~q ] = H,(J)

and J is determined by

| oS
Jo= §)_dq=M
2n 0q w
~ Hy(J) = Jo»

where the integral has been taken over one cycle of q.
The equations of motion in the action-angle variables are

J = 8H, = 0 »J = const
06
dH,
= a7 =w—=>0=0wt+ .

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13a)

(7.13b)
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The motion in the variables p and g is obtained from

9S

9 o P
9=~57=§5dq1/ﬁ-10—w2q2 :arccos(q /2—J> (7.14)

g = ‘/% cos (7.15)

8S _ _
p = g = —V/2Jw sind. (7.16)

and

The corresponding trajectory in phase space is an ellipse that becomes a circle with
polar coordinates ]/ J and 6 after proper rescaling. Comparing eqns. (7.7) and
(7.13) one sees that the equations of motion (in action-angle variables) of any in-
tegrable system with » degrees of freedom are practically the same as those of a set of
n uncoupled harmonic oscillators. The only difference is that in a general integrable
system the frequencies w; are still functions of the actions J; whereas they are in-
dependent of J; for harmonic oscillators. The existence of » integrals of the motion
(J, ... J,) confines the trajectory in the 2 n-dimensional phase space (¢, ... q,, p, ...
p,) of an integrable system to an n-dimensional manifold which has — in analogy to
a circle for a harmonic oscillator with » = 1 and a torus for two harmonic oscillators
with n = 2 — the topology of an n-torus.

In the following, we will confine ourselves to n = 2, but most results can be ex-
tended to more degrees of freedom. Fig. 127 shows the motion of an integrable system
with two degrees of freedom (i. e. with a 4-dimensional phase space) on a torus. Closed
orbits occur only if

w m
nAl0, = 2n - m,ic 2 =~ = rational sy o= 1,2,3.... (7.17)
w, n

Fig. 127: Torus in phase space.
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For irrational frequency ratios, the orbit never repeats itself but approaches every point
on the two-dimensional manifold infinitesimally close in the course of time. In other
words, the motion is ergodic on the torus. (Note that the dimension 2 of the torus is
different from the dimension 3 of the manifold defined by H(j, §) = E = const.)

Perturbation Theory and Vanishing Denominators

Let us now add to H, a perturbation & H, and see how it effects the previously regular
motion; that is, we consider the Hamiltonian

H(J, 6) = Hy(J) + ¢H,(J, f) (7.18)

(where we expressed H, in the action-angle variables J = ,,h),0 = 0, 8,) of
the unperturbed system), and we try to solve the Hamilton-Jacobi equation

8S N
H'—-é? : e} = Hy(J'). (1.19)

Writing the generating function S as
S0 =6-T + ¢S, §) (7.20)
and expanding H to order ¢, we obtain

. 8H, S (", 8
Hyy + e 20 05, 0)
8J Y

+ eH (], 0) + O(?) = Hy(J)  (7.21)

S, is determined by requiring that the left-hand side in (7.21) is independent of §, i.e,

. 085, 0) -
G = —H, (', 0) (7.22)

where @& = aH(,/a]' are the frequencies of the unperturbed system. Eq. (7.21) can be
solved by expanding S; and H, (both being periodic in the components of §) into
Fourier series:

S,(U50) = ¥ Sz (J)eik 0 (7.23a)
K+0

H (J, 0) = z Hy((J')eik 0 (7.23b)
&

with K = 27 (ny, ny); ny, n, integers.

7 Regular and Irregular Motion in Conservative Systems

Using both expressions in (7.22) and comparing equal Fourier components finally
yields

H )

ST, 0 =6-T +iey ek 0, (7.24)

v K-/ 9
Equation (7.24) shows that S diverges for

. W, i .
wyh + wyn, =0, ie~—— = ——= = rational . (7.25)
W, ny

This is the famous problem of vanishing denominators. It shows that the system can-
not be integrated by perturbation theory for rational frequency ratios because of
strong resonances, and it seems that it can at most be integrated for irrational values
of w,/w, if the perturbation series in & converges.

In the following we consider two problems:

— What happens if an integrable system with w,/w, close to an irrational value is
perturbed by ¢ A, ?

— What happens under a perturbation ¢ H, to the tori of a system for which w,/w,
has a rational value?

Stable Tori and KAM Theorem

The first question is answered by a celebrated theorem of Kolmogorov (1954), Arnold
(1963), and Moser (1967), the so-called KAM theorem which we quote here forn = 2,
without proof. (The theorem holds for an arbitrary number n of degrees of freedom
and proofs can be found in the quoted references.) The theorem states that if, among
other technical conditions, the Jacobian of the frequencies is nonzero, i.e.

dw;
dJ;

J

+ 0 (7.26)

then those tori, whose frequency ratio w,/w, is sufficiently irrational such that

w, m

Wy S

k(&)

S2'5

(k(e = 0) = 0) (7.27)

holds (m and s are mutually prime integers), are stable under the perturbation ¢ H| in
the imit ¢ < 1.

It is important to note that the set of frequency ratios, for which (7.27) holds and
for which the motion is therefore regular, even after the perturbation, has a nonzero

7.1 Coexistence of Regular and Irregular Motion
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measure. This follows because the total length L of all intervals in 0 < w/w, < 1,
say, for which (7.27) does not hold can be estimated as

= k(e) -
L< L —5-s=k@) L s7'5 = const.- k(e) = 0 for £ > 0. (7.28)

s=1

Here & (£)/s%3 is the length of an interval around the rational /s where (7.27) does
not apply, and s is the number of m values with m/s < | (see Fig. 128).

ot 2
11 12 Ly
0 54 3 5 3 1

[E,11%)
wiro
Sw
[ 12

Fig. 128: Intervals of lengths k (£)/5> contributing to L.

Eq. (7.28) means that the set of frequency ratios, for which (under a perturbation
by ¢ H,) the original motion on the torus is only slightly disturbed into the motion of
a deformed torus, has (he finite measure | - const. - & (). But, on the /), axis,
this set has holes around every rational 1/,

For larpe enough & the perturvbation s destroys all tori. The last KAM torns
which will be destroyed is (he one for which (e frequency sntio is the “worst irrtional
number” w/w, = (15 — | )/2 (see Seet. 6.2). 'The destruction of this KAM torus
shows some similarity to the Ruelle-Takens route to chaos in dissipative systems. It has
indeed been found by Shenker and Kadanoff (1982) and McKay (1983) who studied the
conservative version (b = 1) of the map (6.12) of the annulus onto itself that the decay
of the last KAM trajectory shows scaling behavior and universal features.

Unstable Tori and Poincaré-Birkhoff Theorem

Let us now discuss the situation when w,/w, is rational. We will show that in this case
the original torus decomposes into smaller and smaller tori. Some of these newly
created tori are again stable according to the KAM theorem. But, between the stable
tori, the motion is completely irregular.

It is convenient to visualize what happens (to H, under a perturbation £ H,) in a
Poincaré map that is, in general, defined by the intersection points of the orbit with a
hyperplane in phase space. For the case in hand, we consider the intersections with the
q,, p, plane S shown in Fig. 129, which define an area-preserving two-dimensional
map

2n
Tepr =00 i (/ - — > (7.29)
Wy
{l),
Oy = 0; + 20 ——
W,

7 Regular and Irregular Motion in Conservative Systems

1

since the point in phase space hits S after a period 27/w, during which & changes by
2nw,/w,.

pd

-

©

Fig. 129: Poincaré map of orbits on the

g torusin the plane (¢, Py).
1

The frequency ratio w,/w, depends only on the radius r because

OH,(J,, J) )
L ,,_Ai)uf./,'__.~ = f(J,, )
w, a9 g
Lok
o L (7.30)
wy.

HoSy ) 1y = Jy(d)

1 r?
h= g heda =g |
(7.30) can therefore be written as
r'=r
0 =6+ 2na(r) } = T<r6> : (7.31)

This is Moser’s twist map (Moser, 1973).
We note that for a rational frequency ratio r/s = a (r,) every point on the circle ry,
6, is a fixed point of T since

!
Ts o\ _ 0 r (7.32)
Oy 0, + 2m r s =0, +2nr.
11 we now perturb £, by e 1, the twist map becomes

Py el e S, () | w1, <I'I> (7.33)
0., = 0, + 2ma(r) + eg(r;, 0) 0;

1
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where fand g depend on H,. As a consequence of Liouville’s theorem (which also
holds for the Hamiltonian Hy + eH)), the map T, is area-preserving,

What can we say now about the fixed points of T,? Consider two circles C, and
C_ between which lies the circle C on which ¢ = r/s. OnC,,a > r/sand on C_,

a < r/s. T* therefore maps C, anti-clockwise, C clockwise, and C not at all (see
Fig. 130).

Fig. 130: Action of 7% and TionC, and C_.

Under the perturbed map T} these relative twists are preserved il ¢ is small
cnough. Thus, on any radius from 0 theremust be one point whose angular coordinate
1s unchanged by 7. These radially mapped points make up a enrye R, close (o ¢

Fig. 131: The curve of radially mapped points R, and its
image T (R,).

Fig. 131 shows the curve R, formed by these points, and its image 77 (R,) which

cuts R, in an even number of points because the area enclosed by R, and 7 (R,) must
be the same.

. The points common to R, and T (R,) are the fixed points of 7%, and we can see
in Fig. 132that an alternating sequence of elliptic and hyperbolic fixed points emerges.

- 4
A kkw
)

N
3
[

.’%llipt. hyp—e;h
L.
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ig. 132: Alternating hyperbolic and
. elliptic fixed points of TS,

This means that the original torus with rational frequency ratio is not completely
destroyed under a perturbation, but there remains an even number of fixed points.
This is the ,,Poincaré-Birkhoff theorem” (Birkhoff, 1935).

Let us first consider the elliptic fixed points which are surrounded by rotating
points (see Figs. 125, 132). The corresponding orbits are the Poincaré sections of
smaller tori for which all our arguments can be repeated; that is, some of these smaller

Fig. 133: Tori with rational frequency ralio decay into smaller and smaller tori, and the pattern
of newly ereated elliptic and hyperbolic fixed points shows sell-similarity.

tori are again stable according to (he KAM theorem and other tori decompose into
smaller ones according (o the Poincaré-Birkhol theorem. This gives rise (o the self-
similar structure in Fig. 133,

Homoclinic Points and Chaos

Which role do the hyperbolic fixed points play? Fig. 134 shows that, near a hyperbolic
fixed point H, the motion becomes unstable, and orbits are driven away from it, in con-
trast to the stable rotational motion around an elliptic fixed point.

Fig. 134: Hyperbolic lixed point H with stable ( W)
and unstable (W) lines,

‘The stable (W) and unstable ( W) lines which lead (o or emanate from 17 behave
highly irregularly since:

71 Coexistence of Regular and Irregular Motion
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a) They cannot intersect themselves (otherwise the motion on a trajectory in phase
space would not be unique for a given set of initial conditions),

b) but W, can intersect W, at a so-called homoclinic point (see Fig. 135).

Fig. 135: Homoclinic points H, are the
intersections of W), and W,

Because the map T is continuous, and a homoclinic point is no fixed point,
repeated application of T;f produces new homoclinic points. Furthermore, 7F must
be applied an infinite number of times to approach the hyperbolic fixed point H along
W, (Appendix G.) Between each homoclinic point /1, and H there is, therefore, an in-
finite number of other homoclinic points; that is, the curves W, and W, form an cx-
tremely complex network.

Summarizing: If we disturb the regular orbits of an integrable system on a torus in
phase space by adding a nonir_ltegrable perturbation, then, depending on the different
initial conditions (different J, & in (6.7)) imply different w,/w, since & = @& (J),
regular or completely irregular motion results. Although the measure of initial condi-
tions, which lead to regular motion, is nonzero due to the KAM theorem, for every ra-
tional frequency ratio (which are densely distributed along the real axis) one obtains
smaller and smaller stable tori and irregular orbits due to the hyperbolic fixed points.
‘Thus, an arbitrarily small change in the initial conditions leads to a completely dif-
ferent long-time behavior; and for the motion in phase space, one obtains the com-
plicated pattern in Fig. 136. It shows that in conservative systems regular and irregular
motion are densely interweaved.

KAM Torus

Elliptic FP

Hyperbolic F P

Fig. 136: Regular and irregular motion in the phase space of a nonintegrable system.

7 Regular and Irregular Motion in Conservative Systems

Finally, we also mention that for area-preserving maps one finds “period doub-
ling”, i. e. a successive creation of new pairs of elliptic fixed points (Greene et al., 1981).
We shall discuss this scenario in Appendix G and show that the corresponding Feigen-
baum constants are larger than in the dissipative case.

Arnold Diffusion

So far in this section we have only dealt with systems having two degress of freedom
for which the two-dimensional tori stratify the three-dimensional energy surface Sj.
The irregular orbits which traverse regions where rational tori have been destroyed are
therefore trapped between irrational tori, They can only explore a region of the energy
surface which, while three-dimensional, is nevertheless restricted and, in particular,
disconnected from other irregular regions, as shown in Fig. 137.

For more degrees of freedom, however, the tori do not stratify S (e.g. for three
degrees of freedom the tori are three-dimensional, and the energy surface is five-
dimensional). The gaps then form one single connected region. This offers the
possibility of so-called “Arnold diffusion* of irregular trajectories (Arnold, 1964).
The existence of invariant tori for perturbed motion is, therefore, not a guarantee of
stability of motion for systems with more than two degrees of freedom because ir-
regular wandering orbits that are not trapped exist arbitrarily close to the tori.

% IRREGULAR
" OQRBITS
Fig. 137: Trapping ol ir-
regular orbits between stable
KAM tori for a system with
two degrees of freedom.

Fig. 138: Arnold difTusion for Hamiltonian systems with more than two degrees of’ freedom
(schematically).

7.1 Coexistence of Regular and Irregular Motion
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Examples of Classical Chaos

Finally, we present some experimental evidence for the coexistence of regular and ir-
regular motion. Fig. 139 shows the Poincaré map in S for the nonintegrable Hénon-
Heiles system,

1
H:7P12 + gt + pi+qf +

-, q;
a4, — 3 (7.34)

which consists of an integrable pair of harmonic oscillators coupled by nonintegrable
cubic terms (Hénon, Heiles, 1964). The left-hand column shows the surfaces of section
generated by eighth-order perturbation theory for various energies (after Gustavson,
1966). The right-hand side are the computed intersections of the trajectory with S, For
£ = 1/24 and E 1/12, the mapping plane is covered with the intersections of
(somewhat deformed) tori which signal regular motion and which are identical with
those given by perturbation theory. Above £ = (/9, however, most, but not all, tori
are destroyed, and all the dots which appear to be random are generated by one trajec-

Fig. 139: Poincaré maps for the Hénon-Heiles system (after Berry, 1978).

7 Regular and Irregulur Motion in Conservative Systems

. Asteroid

Fig. 140: Perturbation of an asteroid’s motion by Jupiter.

tory as it crosses S. The figure for £ = 1/8 clearly shows the coexistence of regular and
irregular motion,

As a further example, we consider the motion of an asteroid around the sun, per-
turbed by the motion of Jupiter, as shown in Fig. 140,

This three-body problem is nonintegrable, and according to cqns. (7.24-25) we ex-
pect that the asteroid motion becomes unstable if the ratio of the unperturbed fre-
quency of the asteroid motion w and the angular frequency of Jupiter w, becomes ra-
tional. Fig. 141 illustrates that, in fact, gaps occur in the asteroid distribution for ra-
tional w/w;. On the other hand, the existence of stable asteroid orbits (/' & 0) can be
considered as a confirmation of the KAM theorem.

f

1 2 3 4 W/,

Fig. 141: Fraction f of asteroids in the belt between Mars and Jupiter as a function of w/w;
(after Berry, 1978).

A second sort of solar-system gaps occurs in the rings of Saturn. In this system
Saturn is the attractor; the perturber is any of the inner satellites, and the rest masses
are the ring particles. One major resonance occurs within the “Cassini division”
shown on Plate VII at the beginning of the book.

7.0 Coexistence of Regular and Irregular Motion
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7.2 Strongly Irregular Motion and Ergodicity

In the previous section, we linked the origin of irregular motion in Hamiltonian
systems to hyperbolic fixed points in the associated area-preserving maps. If we,
therefore, want to construct models for strongly irregular motion, it is natural to search
for maps for which all fixed points are hyperbolic.

Cat Map
One example of such a system is Arnold’s cat map on a torus which is defined by

= 7" 3
= <V> (7.35)

XnH = Xy J"\yn mOd 1

Inyi = Xy + z.yn mod 1

a)

b

Fig. 14%: Action of the map 7 on a cat on a torus. The torus a) is transposed into the unit square
of b). T'is the map T without restriction to the torus. (After Arnold and Avez, 1968.)

7 Regular and Irregular Motion in Conservative Systems

This map is area-preserving because the Jacobian of T is unity, and it has the eigen-
values

L=+ )5)2>1 and A, =4, "' < | (7.36)

so that all fixed points of T" (n = 1, 2, 3...) are hyperbolic. Any point on the torus
for which x, and y, are rational fractions is a fixed point of 7" for some n (e. g. (0, 0)
is a fixed point of 7; and (2/5, 1/5) and (3/5, 4/5) are fixed points of T2, etc.), and
these are the only fixed points because 7 has integral coefficients.

The action of the cat map is illustrated in Fig. 142. After just one iteration the cat
is wound around the torus in complicated filaments; its dissociation arises from the
hyperbolic nature of T which causes initially close points to map far apart.

Fig. 143: Motion of W, and H{ under the cat map.

non - mixing mixing
o~ ©
O -

a)

Before

b)

Fig. 144: a) Behavior of a volume element for nonmixing and for mixing transformations.

b) Mixing of a drop of ink in a glass of water. (After Arnold and Avez, 1968.)
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