N
54‘
N N e E e N B E

~Neural Networks. Vol. S. pp. 129-138, 1992
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/92 $5.00 + .0
Copyright © 1992 Pergamon Press ple

On Learning the Derivatives of an Unknown Mapping
With Multilayer Feedforward Networks

A. RONALD GALLANT! AND HALBERT WHITE?

'North Carolina State University and *University of California, San Diego

(Received 29 November 1989; revised and accepted 20 Jure 1991)

Abstract—Recently, multiple input, single ourput, single hidden-layer feedforward neural networks have been
shown 1o be capable of approximating a nonlinear map and its partial derivatives. Specifically, neural nets have
been shown 1o be dense in various Sobolev spaces. Building upon this result, we show that a net can be trained
so that the map and its derivatives are learned. Specifically, we use a result of Gallant’s to show that least squares
and similar estimates are strongly consistent in Sobolev norm provided the number of hidden units and the size
of the training set increase together. We illustrate these results by an application to the inverse problem of chaotic
dynamics: recovery of a nonlinear map from a time series of iterates. These results extend automatically to nets
that embed the single hidden layer, feedforward network as a special case.
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1. INTRODUCTION

Recently, a number of authors have shown that sin-
gle hidden-layer activation functions are capable of
approximating arbitrary functions arbitrarily well,
provided sufficiently many hidden units are available
(see, for example, Carroll & Dickinson, 1989; Cy-
benko, 1989; Funahashi, 1989; Gallant & White, 1983;
Hecht-Nielsen, 1989; Hornik, Stinchcombe & White,
1989; Stinchcombe & White, 1989). White (1990) has
shown that the approximation potential suggested by
these results has practical value by proving that ar-
bitrarily accurate approximations to arbitrary func-
tions can be learned; White’s proof relies on methods
of nonparametric statistics, specifically Grenander’s
(1981) method of sieves. In this approach, the num-
ber of hidden units grows with the size of the training
set at just the right rate to ensure good approxima-
tion without overfitting.

In some applications, notably robotics (Jordan,
1989). demand analysis (Elbadawi, Gallant, & Souza,
1983), and chaotic dynamics (Schuster, 1988), ap-
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proximation of the mapping alone will not suffice.
Close approximation to both the mapping and the
derivatives of the mapping are required in these ap-
plications. Hornik, Stinchcombe, and White (1990)
(referred to hereafter as HSW) have demonstrated
that multiple input, single output, single hidden-layer
feedforward networks can approximate not only the
mapping, but also its derivatives, provided the hid-
den layer activation function is confined to a certain
(quite general) class and the inputs are drawn from
a suitably restricted domain. In this paper we extend
White’s (1990) analysis and provide learning rules
ensuring that these networks can learn both the map-
ping and its derivatives.

2. HEURISTICS

We consider situations in which training data are
generated according to

yi=g'x) +e,t=12,...,

where {y,} is an observable sequence of targets (sca-
lar for simplicity), g* is an unknown mapping whose
derivatives are of interest, {x,} is a sequence of ob-
servable inputs taking valuesin X C R’,r € N, where
X is the closure of an open bounded subset of R,
and {e;} is a sequence of unobserved independently
identically distributed (i.i.d.) errors (a noise process)
independent of {x,}. Some further conditions will be
imposed in stating our formal results, but these suf-
fice to set the stage and motivate our approach.
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In discussing the derivatives of a function g we
use the following standard notation. Let 4 = (4,
.. ..4) be a “multi-index,” i.e., a vector of non-
negative integers, and if g has a derivative at x of
order |4 = Zi., [A}, write

Dig(x) = (34/9xd) - . .. - (3" ax¥)glx),
where x = (x,, . . . , %,)'. We also write D%(x) to
denote g(x).

We assume that g* is an element of a Sobolev
space Wo,x, mENU{0},pENU {=} = N. Ele-
ments of this space are functions having continuous
derivatives of order m on the domain X that satisfy

1p
lpr = [2 | gr dx] <» l=p<=
ilism JX
{8llmx.x = max sup [D'g(x)} < =.
Pism 1€X

We refer t6 [lmy.x OF [llms.x s a ““Sobolev norm.”
See HSW for additional background on Sobolev spaces
relevant in the present context.

In applications, interest may attach not just to
certain specific derivatives Dg, but also to particular
functions of these derivatives, such as

a(g) = Dg(x), A=m,
the i-th derivative evaluated at a point x;

a{g) = sup [Dg(x)i

or
olg) = inf [Dg(x)l, A=m,
ZEX

the supermum or infinum of the -th derivative over
X; ot

a(g) = Lf(X)D‘g(x) dx, A=m,

the cross-moment of the bounded function f with
D‘g over X. Each of these functions ¢ is continuous
over W, . x With respect to |[lm«x- Accordingly, we
shall seek conditions ensuring that such functions can
be learned by our networks. We refer to a(g*) as
the feature of g* that is of interest.

To approximate g*, we use single hidden-layer
feedforward networks with output given by

g(xl®) = 3 By,

where £ = (1, x’)' (a prime ' denotes transposition),
x € Xis the r x 1 vector of network inputs, G is a
given hidden unit activation function, f; represents
hidden to output unit weights, y; represents input
to hidden unit weights (including a bias), j = 1. 2.
.. .. K. and K is the number of hidden units. We
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collect all the weights together as
8 = (B Brsvis oo ¥R) ERIE

[n demonstrating that such networks are capable
of learning arbitrary mappings, White (1990) consid-
ered least squares learning rules of the form

min nt 3, [, ~ gx(xION

€0k, =1
where Dy, is an appropriately restricted subset of
Rv+% We consider the same learning rule here.
Note that the number of hidden units, K,, is taken
explicitly to depend on n, the number of available
training examples. By permitting K, — = as n — =
we create the opportunity for learning the features
of interest of an arbitrary function.

Denote the solution to the least squares problem
above as 8, and define g, = gk, (*0.). We can view
&x, as the solution to the problem (equivalent to that
above) .

min s,(g) = n= X [y — gl
RENR r=t
where 8¢, = {gg (-19), § € Dy} )

With this structure, our goal is to find conditions
ensuring that (g ) — o(g”) as n — = almost surely,
as this says that the network learns the features of
interest as n — o with probability one.

3. MAIN RESULT

To achieve our goal, we can make use of the follow-
ing general result of Gallant (1987b).. It deli\_'ers ex-
actly the conclusion that we are after in a setting that
applies directly to our context.

THEOREM 3.1. Let (Q, ¥. P) be a complete prot?a-
bility space, and let  be a function space on whxc.h
is defined a norm |-|. Suppose that gK..: O — <% is
obtained by minimizing a sample objective function
5,(-) over 8 where $_ is a subset of 4. Let (") be
continuous over $ with respect to |. Suppose the
following Conditions hold: )

(a) Compactness: The closure of § _w:th respect
to |1l, denoted #, is compact in the relative topology
generated by {I}. _

(b) Denseness: Uz~ 9k is a dense subset of 4,
and 4¢ C Hge1- _ 4 ..

(c) Uniform convergence: There is a point g* in
s (regarded as the “true value™) and thgre is a func-
tion §(g, g*) that is continuous in g with respect to
IIll such that

lim sup |s.(g) — §(g,g") =0  almost surely (a.5.).
P

(d) Identification: Any point g° in § with

5(g' g7) = 58" 8%)
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must have
a(g%) = alg*).
Conclusion: If lim,,.. X, = = a.5., then

““;‘ a(gx,) = a(g*) a.s. B

For convenience, the proof is given in the Mathe-
matical Appendix. ‘

This is a general purpose theorem. The objects it
refers to are abstract, and do not need to coincide
with the objects defined in the preceding section. Of
course, it is by identifying the objects previously de-
fined with those referred to here that we can accom-
plish our goal.

Thus, it will suffice to provide additional structure
that will permit us to apply this result. We must sat-
isfy Conditions (a)—(d) for appropriate choices of ¢,
S, Il and 3.

To ensure the compactness required in (a), we
begin by assuming that g* belongs to W+ jripj + 10,2 fOT
some p with 1 =< p < o, where [r/p] denotes the
integer part of r/p, and m is the largest derivative
of g* that we are interested in. Further, suppose
there is available an a priori fiite bound B on
8 *lm~1r oy 1.5.x- We therefore can restrict our atten-
tion to

s={g€ vfmp/p[ol.p.xl”g”mq,/pp]a,x = B).

Then we take ||| in Theorem 3.1 to be ||, x. By
the Rellich-Kondrachov Theorem (Adams, 1975,
Theorem 6.2 Part II), the closure of § with respect
to the norm §[|. = x is compact in the relative topology
generated by ||}..- x. Condition (a) of Theorem 3.1
is now satisfied.

Note that the stronger is the norm |- in Theorem
3.1, the larger the class of functions continuous with
respect to it, and the more the network can be said
to have learned about g*. The norm |},,~x is very
strong, so our result will imply that the network learns
a great deal about g*.

Now consider Condition (b) of Theorem 3.1. HSW
(Coroilary 3.4) give mild conditions on the activation
function G ensuring that Uy $ is dense in W, ..z,
where

.Eix = {g:R'—> ng(x) = gl«'(«\'{(’), § € R0k},

The sufficient condition on the activation function G
is that it be “m-finite,” i.e., continuously differen-
tiable of order m, with [ [D'G(a)| da < = for some
0 ={ = m. The familiar logistic and hyperbolic tan-
gent squashers satisfy this condition. By taking

Sy = Y N8,

we therefore ensure that Condition (b) of Theorem
3.1 is satisfied.
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We remark that the intersection with ¢ in the def-
inition of §, above has implications regarding the
minimization of 5,(g) over g € . In principle, the
bound llg¢(*16)ms(ripj+1p.x = B, which is a parametric
restriction on J, must be enforced in the minimiza-
tion of s5,(g) over g € 8, equivalently, in the mini-
mization of s5,[g«(-|6)] over § € R**?X_In practice,
restricting (r + 2)X to reasonable values relative to
n has the effect of smoothing g4 enough that the
bound is not binding on the optimum or on any in-
termediate values of g, involved in its computation.

Next, we verify Condition (c) with

5g) = nt Z [ - gGl:

The function 5 required by Condition (c) is delivered
by an appropriate uniform law of large numbers
(ULLN). A convenient strong ULLN is given by
Gallant (1987a). To state this result, we say that the
empirical distribution g, of {x}., converges weakly
to a probability distribution u almost surely if s,(x) —
u(x) at every point x where u is continuous, almost
surely, where

U.(x) = n~'(# of x, = x coordinate by coordinate,

lsit=n)

and we write g, = u a.s. This is a mild condition on
{x,}. It holds for ergodic chaotic processes as well as
ergodic random processes, deterministic replication
schemes, and fill-in rulessuch as 0, 1, 4,4, 4, . .. .
Gallant’s (1987a, p. 159) ULLN can be stated as
follows:

THEOREM 3.2. Let {e} and {x} be independent se-
quences of random vectors taking values in & and X,
respectively, subsets of finite dimensional Euclidean
spaces, and suppose that: (i) {e} is an i.i.d. sequence
with common distribution P on &; and (ii) {x} is such
that u, > u a.s.

Let 4 be a compact metric space, and suppose that
fi& X X 4 - Ris a continuous function dominated
by an integrable function 4: § X X — R* (i.e., [f(e,
X, @)l = d(e, x) for all g in 9 and [, [y d(e,
x)P(de)u(dx) < =).

Then g — [, fx f(e, x, g)P(de)u(dx) is continuous

on$, andasn— =

73 fewxn g)

SUP
- f f fle, x. g)P(dey(dx)| — O as. B

Applying this result on the compact metric space
(4, p), with $ as above, p the metric induced by |||l - ¢
with P such that E{e) = [, eP(de) = 0, E(e}) = [
&*P(de) =g} <=;and with fe,x.g) = [y - g()] =




A
i
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fe + g*(x) — g(x)} gives

olg) = 17 S flewxn 8

-l

a3 fe + g7 - 8CF

converging to

.8 = [ [ e+ 8°0) - PPN

jr e P(de) + 2 J: el(de) J’." [g*(x) — g(v)uldx)

+ [ I - @huian

"

al + f_lg'(-r) ~ g(x)Fuldx).

provided that f is appropriately dominated. Because
la + b = 2laf? + 2|bf, we have fle.x, ) =2lef +
2lg*(x) ~ g(x)F, and we can take

die, x) = 2ef + 4 sup lgx)l-

Now |g(x)} = ligh=x S glnsx- By the Rellich-Kon-
drachov Theorem, the Sobolev norms are inter-
leaved in the sense that there exists a constant ¢ not

depending on g such that

lghn-x = clighmepimerpn S cl\ghmetep-rmx-

Therefore |g()| S cllgllneppi+1p.x; SO that for all x
in X and all g in ¢ |g(x)| = ¢B. Consequently, dle,

x) = 2lef + 4c*B%, and
J' J' de.x) = J J' Qlef + 4B P(deduld)

= 201 + 4B < =,

as required. Condition (c) therefore holds.

Now consider Condition (d) of Theorem 3.1. Let
us first treat the case when u(0) > 0 for open subsets
O of X. The implication of 5(g%, g*) = §(g", g" 1§]
Ix [8"(x) — g*®)Iu(dx) = 0. Since both g* and g
are continuous on X, as they are both elements of
4 C Wnx, and u(0) > 0 for every 0_(; X tl:e im-
plication of [x{g*(x) = g0)uldx) = 0_1§th':1tg ‘(x)' =
£°(x) for all x in X. Thus, 5(g% g") =5(g*, g°) im-
plies lig® = g*llm=x = 0 with the consequence that
o(g% = a(g*) whenever g is continuous with respect
10 Jlm.=, x> as assumed.

Next suppose that the training sample does not
cover the entire input space in the sense that u(0) >
0 for O C %, where % is the closure of some open
subset of X and u#(0) = Ofor O C X Nz Thesame
argument as above ensures that a(g%) = o(g*) when-
ever ¢ is continuous with respect 10 flm«:. For ex-
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ample, 6(g) = f: g(x) dx is continuous with respect
to |Mlmes, Dut o(g) = fx glx) dx is not. Conse-
quently, and as should be expected, the network will
not be able to learn where it isn't trained.
Collecting together the structure set out above,
we can state a set of formal conditions that permit
us to verify the conditions of Theorem 3.1, and thus
assert its conclusion. Qur first assumption describes
how the training data are generated.
ASSUMPTION A.1. The training observations are gen-
erated as

yo=gtx) te. =12,

where {e;} and {x,} are indcpendent sequences of ran-
dom vectors taking values in & € Rand XCR,re
N, respectively, with X the closure of an open bounded
set; and g* € 4, where

g={g€ zﬁm‘l"[v]'l.p.xl“g"mﬂun)ol.a..\’ = B},

for some m € NU{0}.p € N, and B < =,

Further, the errors |} are i.i.d. sequence with
common distribution P on &, [. eP(de) = 0, ¢; = J.
le?P(de) < =. The inputs {x} are a sequence S!:\Ch
that i, = u a.s., where g, is the empirical distribution
of {x}., and g is a probability distribution on (X.
B(X)) such that #(0) > 0 for every open subset of
X =

Next we formally specify the networks to be trained.
ASSUMPTION A2. ForK = 1,2,. ... let8; =5 N
%, where

K
By = {gi R~ Rigx) = 3, [G(E'3).
=t
BERZERY, = 1&}
where G is an m-finite activation function. B

The discussion above establishes the following re-
sult for least-squares learning of a function and its
derivatives.

THEOREM 3.3. Suppose Assumptions A.1 and A.2
hold, and let g be a solution to the problem

mins,(g) = a7 2 [y - &)
269K, =1

Let o(-) be continuous with respect to [ llms - EE
K,— = as n — ® a.5., then (g ) — o(g*) as n—
® a.s. In particular, {l§x, ~ 8*lm=x— Qasn— =
as. B

The last conclusion follows by taking o(g) = lig -
£*llmr.x This is easily seen to be continuous as re-
quired.

Thus, the method of least squares can be used
to train a single hidden-layer feedforward network
to learn an unknown mapping and its derivatives
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in this satisfyingly precise sense. The derivatives
are learned without having to make a special effort
to provide them as targets; this is quite convenient
in applications.

Note that the condition K, — = a.s. permits ran-
dom rules for determining network complexity, such
as cross-validation (Stone, 1974). In White (1990),
specific rates for the growth of K, with » are given.
These are unnecessary here because unlike White
(1990) the space %(© in White’s (1990) notation) is
compact.

Because we assumed that the training set covers
all of X, we obtain the strong result |l§x, — g*llmxx —
0 a.s. As illustrated in the discussion above, had we
assumed that the training set covered only a subset
3 of X, then we would have the weaker result||gx —
&%=z — 0 a.s. In this case, the only functions o
that can be estimated consistently are those invariant
to a redefinition of g on X — Z. The example in the
next section in which the training set is the realization
of a chaotic process is a practical illustration of this
situation. Because transients die out, the training set
eventually must lie entirely within a strange attractor
3, which is a subset of the phase space X over which
the nonlinear map g that describes the dynamics is
defined.

The specific conditions on the stochastic processes
imposed in Assumption A.l can be considerably
modified and relaxed. Their primary function is to
ensure the validity of the ULLN. ULLNs are avail-
able for quite general stochastic processes with com-
pact space % (e.g., Andrews, 1990).

4. INVERSE DETERMINATION OF THE
NONLINEAR MAP OF A
CHAOTIC PROCESS

An exciting recent application of neural networks is
to the inverse problem of chaotic dynamics: “‘given
a sequence of iterates construct a nonlinear map that
gives rise to them” (Casdagli, 1989). There are a
number of approximation methods available to es-
timate the map from a finite stretch of data. Neural
nets were found to be competitive with the best of
the approximation methods that Casdagli studied and
were found by Lapedes and Farber (1987) to perform
significantly better than several other methods in
common use. We illustrate the theory of the preced-
ing sections by extending the analysis of these au-
thors with an examination of the accuracy to which
neural nets can recover the derivatives of a nonlinear
map. We use the methods suggested by Casdagli,
where for the reader’s convenience, we have trans-
lated Casdagli’s notation to ours.

Casdagli’s setup is as follows. g: X— X C R'is
a smooth map with strange attractor 3 and ergodic
natural invariant measure u (Schuster, 1988). A time
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series x, for —L =t < » is generated by iterating
this map according to

X = gKpars e ooy Xiny)

= g(x.p, ..., %),

where x_;, . . ., X is a sequence of points from
that obey the iterative sequence above. Of this series,
the stretch of x, for —L < x, = N is available for
analysis and the stretch of x, for N <1 = 2N is used
as a hold-out sample to assess the quality of esti-
mates. In principle, one can solve the inverse prob-
lem by constructing a unique, smooth map g* that
agrees with g on 3 from the infinite sequence
{x.}5. ... In practice, one would like 1o find a good
approximant g to g* that can be constructed from
the finite sequence {x}/. .., where n = N.

The approximant §x can be put to a variety of
uses: detection of chaos, prediction of x,.; given
x,. determination of the invariant measure g, deter-
mination of the attractor 3, prediction of bifur-
cations, and determination of the largest Lyapunov -
exponent via Jacobian-based methods such as dis-
cussed in Shimada and Nagashima (1979) and
Eckmann et al. (1986). In the last mentioned ap-
plication, accurate estimation of first derivatives
is of critical importance.

Our investigation studies the ability of the single
hidden layer network

{Y L ACTP X..1)

L
=2 BGGyxs + oo+ BXy F )

ye i
with logistic squasher
G(u) = exp(u)/[1 + exp(u)]

to approximate the derivatives of a discretized vari-
ant of the Mackey—Glass eqn {Schuster, 1988, p. 120)

g (x5, X)) = x,., + (10.5)
N { (0.2)x,.

1+ (x.)®

- (UJ)X.-I]

This map is of special interest in economics ap-
plications because it alone, of many that we tried,
can generate a time series that is qualitatively like
financial market data (Gallant, Hsieh, & Tauchen,
1991), especially in its ability to generate stretches
of extremely volatile data of apparently random du-
ration. Notice that the approximant is handicapped,
as its dimension is higher than is necessary; it has
five arguments when a lesser number would have
sufficed. We view this as realistically mimicing actual
applications, as one is likely to overestimate the min-
imal dimension as a precaution against the worse
error of getting it too small. Casdagli’s methods for
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TABLE 1
Predictor Error and Error in Sobolev Norm of an Estimate of the Nonlinear Map of a
Chaotic Process by a Neural Net

Saturation
K n PredErr(g,() "g. - gK“u.s HQ' - gx”u.s Ratio
3 500 0.3482777075 3.6001114788  1.3252165780 17.9
5 1,000 0.0191675679 0.5522587668  0.1604392912 28.6
7 2000 0.0177867857 0.4145203548  0.1141557050 40.8
9 4,000 0.0134447868  0.2586038122  0.0719887443 63.5
11 8,000 0.0012308988  0.1263063691 0.0196351730 103.9
TABLE 2
Sensltivity of Neural Net Estimates
Saturation
K n PredErr(§x) llg™ = Gulls-z lg* - gudh2s Ratio
7 500 0.0184102390  0.3745884175  0.1325439320 10.2
7 2000 00177867857 0.4145203548 0.1141557050 40.8
11 500 0.0076063363 0.7141377059  0.1115357981 6.5
11 4,000 0.0015057013  0.0858882780 0.0210710677 51.9
11 8,000 0.0012308988 0.1263063691  0.0196351730 103.9
15 8,000 0.0020546210 0.1125778860  0.0336124596 76.2
9(x)
2.0
1.5
1.0
0.5 -~ o
0.0
~0.5
-3.0
~1.5
I T T T T T ¥ T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Note: Estimate is dashed line, x = (x-s, 0, 0, 0, 0)

FIGURE 1. Superimposed nonlinear map and neursal net estimate; K = 3, n = 500,
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(a/ex--)ggxg

2.5
2.0
1.9
1.0
a.8
o.0
-0.5
=1.0
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
-4.5%
-5.0

2.0 1.8 ~1.0 ~0.98 0.0 0.5 1.0 1.8 2.0
.

Note: Estimate Is dashed line, x = (x-s, 0, 0, 0, 0)

FIGURE 2. Superimposed derivative and neural net estimate; K = 3, n = 500.

determining dimension suggest that there is a rep- iterating on the ;, then holding the §; fixed and
resentation g* of g in at most three dimensions (x,..3, iterating on the f;, and so on a few times, before
Xio3e Xyo1)- going to the full Gauss—Newton iterates. Our._rule
Note that in terms of the theory of the preceding relating K to n was of the form K « log(n) because
section we have ¢, = 0. asymptotic theory in a related context (Gallant, 1989)
The values of the weights £; and $; that minimize suggests that this is likely to give stable estimates.

The numerical results are in Table 1.

We experimented with other values for n relative
to K and found that results were not very sensitive
to the choice of n relative to K except in the case
n = 500 with K = 11. The case K = 11 has 77
weights to be determined from 500 observations giv-
were determined using the Gauss—Newton nonlinear ing a saturation ratio of 6.5 observations per weight,
least squares algorithm (Gailant, 1987a, chap. 1). We which is rather an extreme case. The results of the
found it helpful to zigzag by first holding s ; fixed and sensitivity analysis are in Table 2.

580 = = 3 [5 = glts, - 5P

=1

9(x)
2.0
1.5
1.0
0.54
0.0+

~0.5

«2.90 -1.5 -1.0 -0.5 o.¢ 6.5 1.0 1.5 2.0

Note: Estimate is dashed line, x = (x, 0, 0, 0, 0)

FIGURE 3. Superimposed nonlinear map and neural net estimate; K = 7, n = 2,000
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0.5
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-5.0
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(2/0x-0)g(x)
3.0

2.5
2.0
1.54
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1.
0.
o.
.54

-0

-1.
-1,
.04

-2

-2.
0
-3.
-4,
-4,
-5

o4
54
o

0
54

Note: Estimate is dashed line, x = (x, 0, 0, 0, 0)

-1.5 ~1.0 -0.5 .0 0.5 1.0 1.5 2.0
x-5

Note: Estimaote is doshed line, x = (x-, 0, 0, 0, 0)

FIGURE 4. Superimposed derivative and neural net estimate; K = 7, n = 2,000. FIGURE 6. Superimposed derivative and neural net estimate; K = 11, n = 8,000.

: estimate the prediction error from the holdout
‘e using

. 1 2
im(gy) = N S Ix =~ ExlFiosy o X i)H Var
1uNe]

IN
Var=— > (x, — I

rly, the Sobolev norm over = (not over X)) of

g
1.5
3.0
0.5

0.0

-2.0

the approximation error can be estimated from the
hold-out sample using

Ig* = Zelps = [}3 L

|2ism N twN+1

Vip
X |D'g*(xigs %) — Dii(xics, . - ,x,_n)i":'

lig* — Zklim=: = max max
[ism N+isrs2N

X Dg* (x,5y Xeet) — Df(Xicss - < oy Xy

We took N as 10,000 in applying these formulas
because we wanted very accurate estimates of

-2.0 -1.5 -1.0 -0.5

Note: Esfimate Is doshed line, x = (x-s, 0, 0, 0, 0)

FIGURE 5. Superimposed nonlinear map and neural net estimate; ¥ = 11, n = 8,000

PredErt(4y), lg* — £xlimps> and ig* — Exllmas. In
ordinary applications, one would use a much smaller
hold-out sample to estimate PredErr(g4); lg* — &xllmas
andjjg* ~ gxlim=: would not ordinarily be estimated
since they cannot be determined without knowledge
of g*, and if g* were known the inverse problem has
no content. Also, note that

PredErr(§x) = lig* — &rlhas/V Var.

For our data, described below, V' Var = 0.80749892
so PredErr is about a 20% over-estimate of fig* —
xllozz-

In graphical representations, Figures 1 through 6,
of glx.s, x_;) and Flx_s, X-45 - . . » x_,) and their
partial derivatives, the effect of x_s totally domi-
nates. Thus, plots of g(x_s, 0), (8/3x_s)g(x-s, 0),
£(x.5.0.0,0,0) and (8/8x-5)8(x_5,0,0,0,0) against
x_s give one an accurate visual impression of the
adequacy of an approximation. This fact can be con-
firmed by comparing the error estimates in a row of
Table 1 with the scale of the vertical axes of the
figures that correspond to that row. The figures and
tables suggest that following Casdagli’s (1989) sug-
gestion of increasing the flexibility of an approxi-
mation until PredErr(g,) shows no improvement does
lead to estimates of the nonlinear map and its deriv-
atives that appear adequate for the applications men-
tioned above.

The computations reported in the figures and ta-
bies would appear to confirm the findings of Casdagli
(1989) and Lapedes and Farber (1987) as to the ap-
propriateness of neural net approximations in ad-
dressing the inverse problem of chaotic dynamics.

They also suggest that our theoretical results will be
of practical relevance in the determination of the
derivatives of a map in training samples of reasonable
magnitudes. :
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MATHEMATICAL APPENDIX

Proof of Theorem 3.1. For the sake of clarity, we make explicit
the dependence of gx, K, and s.(g) on w € 0 by writing §{w),
K(w) and s,(w. g). Let F = {w: K,(0) - =} N {w: supelsa(w,
&) — 3(g, g”)| — 0}. As each of the intersected events has prob-
ability one, P(F) =1,

Pick w & F. Because o is continuous with respect to || on the
compact set 8, ¢(#) is compact. Therefore, g runlw)) — olg*)
provided every subsequence {o(gx, (w))} of {o(Gx(w))} has
accumulation point o(g*). If this holds for every w in F, the theo-
rem is proven, because P(F) = 1.

To prove that every subseq; has lation point a{g*)
with given @ € F, let {n'} index any subsequence of {n} and pick
a further subsequence {n"} of {n’} such that 1 xperi0) — g% — 0
asn" — = for g” € 8. Such a subsequence exists because {&x (@)}
is a sequence on the compact set 8, and thus has an
accumulation point g°. By the triangle equality,

[, Bepuan(@)) — 5(g% g*)}
< |s,(w, Bxpml@)) = S xoeile), g}
+ Bl ruale), 87 ~ 5(g° g7)i-
Given ¢ > 0, there exists N(w, £) <  such that for all n* > Ni(w,
) sl @, Expia@)) = Fx ), g*) < /2 by the uniform con-
vergence condition (c). Also, there exists Ny{w, £) < = such that

for alt n” > Nyfw, 2), [5(gx,ulw), £%) - 5(g", g*)] < &/2 by con-
tinuity of 5. Consequently for all n* > max(N,(aw, €), Nxw, £))

Jsele, gxn(w)) - 32 g% <

and in particular

5(8° &%) < sl frulw)) + &

Next, because Uy 84 is dense in & by condition (b), there exists

a sequence {g% ) € By 4.} such that g%« — &%l — 0. Because
£x,4w{@) minimizes 5, (w, -) on Bk i)

S, g pn(®)) = 5o, [
Argument identical to that above with §Rt TEPlaCing gy (@)
and g* replacing g° gives

Is(w, ghnw) ~ 587, g% <&,
and in particular

5l ghoa(@)) < 5(g*, %) + ¢,

for all n sufficiently large.
Collecting together all the above inequalities, we have

S g <3(g*. g") + 2,
and because ¢ > 0 is arbitrary, it follows that
S(g° g*) = 5%, g%).
By the identification condition (d), we have that a(g") = a(g*).
Continuity of ¢ ensures that o(g,1.,(®)) ~ o(z%) = a(g®) as

n -+ ». Hence, {o(fx (@)} has accumulation point a(g*), and
the result follows because {n'} and w € F are arbitrary. B




