The Belousov-Zhabotinski Reaction

1 2H* + Br~ + BrO;™ = HOBr + HBrO,
2 H* + HBrQ, + Br~ == 2HOBr
3 HOBr + Br~ + H* = Br; + H,0
4 CH,(COOH), = (OH);C=CHCOOH
& Bry + (OH),C=CHCOOH = H* + Br~ + BrCH(COOH),
€ HBrO; + BrO,~ + H* = 280, + H,0
7 BrO; + Ce* + H* = Ce** + HBr,
8 Ce** + BrO, + H;0 = BrD,™ + 2H* + Ce®*
9 2HBrO, = HOBr + Bi0;~ + H*
10 Ce** + CHy(COOH), = CH{COOH), + Ce3* + H*
1 CH{COOH), + BrCH{COOH); + H,0 = Br~ + CHy(COOH); + HOC(COOH), + H*
12 Ce'* + BrCH(COQH); + HD = Br~ + HOC(COOH); + Ce?* + 2H™
13 2HOC(COOH); = HOCH(COOH), + O=CHCOOH + CO,
14 Ce** + HOCH(COOH), = HOG(COOH), + Ce®* + H*
15 Ce** + O=CHCOOH = O=CCOOH + Ce’* + H*
16 20=CCOCH + H;O = 0=CHCOOH + HCOOH + CO,
17 Br; + HCOOH — 2Br~ + CO, + 2H*
18 2CH(COOH]); + H,0 = CH,(COOH), + HOGH(COOH),
COMPUTER SIMULATION OF OSCILLATION in the Bel Zhabotinsky reaction in-

volves 18 elementary steps and 21 different chemical species. The reaction is named for two
Russian chemists: B, P. Belousov, who discovered it, and A. M. Zhabotinsky, who improved on
it The starting materials are three inorgamic substances, bromate ions (BrQO;-), bromide
ions (Br-) and cerous ions (Ce?+), and one organic substance, malonic acid (CHx{COOH)z).
A sulfuric acid medium supplies hydrogen ions (H - ), The products of the reaction are carbon
dioxide (CO3), formic acid (HCOOH) and bromomalonic acid (BrCH(COOH);). As the ceri-
um oscillates between the ceric (Ce4') and cervus (Cel+) states the solution is alternately yel-
low and clear. The reactions shown in color involve only inorganic species and are better under-
stood than the reactions shown in black, which involve species derived from malonic acid, This
mechanism was worked out at the University of Oregon by Richard M. Noyes together with
his postdoctoral associate Richard J. Field and Endre Kirds of Edtvis University in Budapest.
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The hodgepodge machine
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by A. K. Dewdney

C ellular automatons, computer
madels based on arrays of mul-
tivalued cells, have spread like
a wave through physics, mathemat-
ics and other sciences. Now a new
cellular automaton has literally been
making waves of its own. Called the
hodgepodge machine by its designers,
it imitates chemical reactions with a
precision rarcly seen in other models,

The reactions the hodgepodge ma-
chine simulates take place in exeit-
able chemical mediums: two or more
compounds that can dissociate and
recombine in the presence of a cat-
alyst. If the chemical states of the
reactants have different colors, wave-
like structures can be seen that prop-
agate along simple or intricate fron-
tiers in endless pursuit of an elusive
equilibrium.

Does the automaton itsell serve as
an adequate physical explanation for
the waves observed in actual reac-
tions? This question now occupies
the hodgepodge machine's creators,
Martin Gerhardt and Heike Schus-
ter of the University of Biclefeld in
West Germany, along with an increas-
ing number of colleagues at other
universities.

A cellular automaton can be thought
of as an infinite grid of square cells
that advance through time in step
with discrete ticks of an imaginary
clock. At any given tick each cell is in
one of a finite number of states. The
state of a cell at tick 1+ 1 depends in
a fairly simple way on the states of
the cells in its immediate neighbor-
hood at the previous tick, L The depen-
dence is expressed in a set of rules
that apply equally to all the cells in
the grid. By applying the rules each
time the clock ticks, an arbitrary ini-
tial configuration of states among the
cells can be made to change and thus
evolve with time. In some cases extra-
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ordinary patterns develop, prompting
observers to believe that given the
right initial configuration a cellular
automaton could produce something
capable of organizing itself, grow-
ing and reproducing—in short, some-
thing “living.”

The cellular automaton best known
to readers is probably the famous
game of Lile invented in the 1960's by
the mathematician John Horton Con-
way of the University of Cambridge, In
Life cach cell has only twa possible
states: alive and dead. The rules of Life
are very simple. If a cell is dead at time
1, it will come to life at time 41 if
exactly three of its neighbors are alive
at time ¢ If a cell is alive at time ¢, it will
die at time t+ 1 if fewer than two or
more than three of its neighbors are
alive at time t These two rules are
sufficient for the Life cellular automa-
ton to display an amazing variety of
behavior that depends entirely on the
configuration of dead and alive cells
with which one starts [see “Comput-
er Recreations,” SCIENTIFIC AMERICAN,
May, 1985, and February, 1987].

The hodgepodge machine is not one
cellular automaton but many. One
chooses a particular version by speci-
fying a number of parameters such as
the number of states. If there are n+ 1
states, each possible state of a cell can
be represented by a number between
0 and n. Gerhardt and Schuster extend
Conway's metaphor to describe the
states of the cells in their machine. A
cell in state O is said o be "healihy™
and a cell in state nis said 1o be “ill"”
All states in between exhibit a degree
of “infection” corresponding to their
state number;, the closer a cell's state
number gets to n, the more infected
the cell becomes. The hodgepodge
machine selectively applies one of
three rules to each cell, depending on
whether it is healthy, ill or infected.
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I the cell is healthy (that is 1o say, In
the O state), at the next tick of the
clock it will have a new state that
depends on the number of infect-
ed cells, A, and the number of ill cells,
B, currently in its neighborhood and
on two parameters labeled k1 and k2.
To be specific, the state of the cell at
time t+1 is given by the [ollowing
formula:

1A/KY] + [B/k2].

A pair of square brackets designates
a rounding-down process applied to
the fraction it contains. If, for exam-
ple, A/k1 happens to equal 2.725, the
square brackets reduce that number
to 2. If the formula happens to yield
a 0, the cell will of course remain
healthy—at least for the time being.
I the eell s infected, s condi-
tion generally worsens with time, lts
state at time (+ 1 is the sum of two
numbers: the degree of infection in
the cell's neighborhood at time  and
an unvarying quantity, g, that gov-
erns how quickly infection tends to
spread among the cells. The degree
ol infection is calculated by dividing 5,
the sum of the state numbers of the
cell and ol its neighbors, by A, the
number of infected neighbors, A cell
in an infected state at time { therefore

takes on at time t+ 1 a state given by -

the formula
|S/Al + g.

The infected cell cannot get “sicker”
than n, however. If it happens that the
number given by the formula exceeds
n, then nis taken to be the new state of
the cell.

Finally, if the cell is ill (in state n)
at time (, it miraculously becomes
healthy (takes on a state of Q) at 1+ 1.

In addition to those three rules a
definition of what constitutes a cell's
“neighborhood”  is  necessary. Two
types of neighborhood have histori-
cally been used in cellular automa-
tons: the von Neumann neighborhood
and the Moore neighborhood. The von
Neumann neighborhood of a particu-
lar cell consists of the four cells that
share the cell's edges. The Moore
neighborhoaod of a particular cell in-
cludes the cells in the von Neumann
neighborhood and also the four cells
that just touch the cell's corners—a
total of eight cells. Given the three
rules and the definition of a cell's
neighborhood, the Gerhardt-Schuster

cellular automaton is completely de- »

fined by specifying the values of four
parameters: n, the number of states

——

minus 1; k1 and k2, the “welghting”
parameters for healthy cells, and g,
the speed of infection.

A sample experiment done by Ger-
hardt and Schuster on a 20-by-20 grid
using von Neumann neighborhoods

- reveals the typical behavior of hodge-

podge machines. (Cells at the edge of
the grid abide by the same rules that
prevail elsewhere in the cellular au-
lomaton; they just have fewer cells in
their neighborhood.) The parameters
n, k1 and k2 were fixed respectively

| to the values of 100, 2 and 3. Four

types of behavior emerged at differ-
ent values of the parameter g. In a
fypical trial run Gerhardt and Schus-
ter gave the 400 cells in the 20-by-20
grid a random initial configuration of
States, specified a value of g and let
the hodgepodge machine loose for
10,000 computational cycles. Because
one-dimenslonal dalta are easier to
analyze than two-dimensional imag-
es, Gerhardt and Schuster recorded
only the number of infected cells at
each cycle in order to present their
results in graphs like those on the
next page.

Not much happened to this hodge-
podge machine at low g values. Apart
from a few Initlal luctuations, activity
among the cells tended to die out; the
cells became boringly and everlasting-
ly healthy. But as g was increased,
strange things began to happen. To
begin with, most of the cells became
Infected and remained so, although
there were irregular and random ap-
pearances of healthy cells. Gerhardt
and Schuster labeled this type of be-
havior Type 1.

The next type of behavior they ob-
served was labeled Type 2. It featured
a generally regular series of infection
‘plateaus” roughly 30 cycles long,
punctuated by the appearance of large
numbers of healthy cells. (Sometimes
nearly all 400 cells became healthy
only to experience a new wave of in-
fection.) As g was increased still fur-
ther, Type 3 behavior appeared. It was
heralded by the onset of a very regu-
lar alternation between saturation and
virtual disappearance of infected cells
every 20 cycles or so. Finally, Type 4
behavior emerged: within a few cycles
of start-up the number of infected
cells would fluctuate with some regu-
larity about a saturation value of ap-
proximately 75 percent.

The four types of behavior appeared
in order as g was progressively in-
creased, but with some overlap: runs
with transition values of g sometimes
resulted in one type of behavior and
sometimes in another type. In certain
cases Gerhardt and Schuster even wit-

nessed transitions between behaviors
in a single run.

The four behaviors represent the
appearance of specific types ol wave
patterns that are shown in the illustra-
tion below. In those color images the
grid sizes vary from 100-by-100 cells
to 500-by-500 cells. Waves associated
with Type 1 behavior traveled only a
short distance before dying out. Type
2 waves traveled outward in circular
bands that varied greatly in width.
Type 3 waves displayed the same cir-
cular shape but were more regular,
in keeping with the regular ups and
downs of infected cells displayed in
its graph. Finally, Type 4 waves fol-
lowed a spiral pattern that spread out
from the center of the grid. As always,
readers with computers are urged to
repeat the experiment in some form.
Waves of thought are sure 1o accom-
pany the waves on one's screen.

Some of the wave patterns gener-
ated by the hodgepodge machine
are similar to those displayed by a

variety ol chemical systems; certaln
ones in particular are dead ringers
for the chemical waves found in
the well-known Belousov-Zhabotinsky
reaction. Compare, for example, the
complex pattern of curlicues in the
computer-generated image with the
p_hotograph of the Belousov-Zhabo-
tinsky reaction in the illustration on
page 89.

To what do we owe this similarity?
Gerhardt and Schuster were not exact-
ly surprised by it; they had deliberate-
ly designed the hodgepodge machine
to mimic the features of a particular
kind' of “heterogeneous catalytic re-
action"” in which carbon menoxide and
oxygen combine to form carbon diox-
ide while adsorbed at the surface of
thousands of tiny palladium crystal-
lites dispersed throughout a porous
medium, Heat given off as the oxida-
tion reaction proceeds changes the
state of the catalyst. An abrupt phase
transition by the crystallite liberates
the carbon monoxide adsorbed at its

The hodgepodge machine produces distinctive wave patterns



surface; the catalyst then cools and
the reaction begins anew.

The hodgepodge machine proved
capable of mimicking not only this
reaction but also the Belousov-Zhabo-
tinsky reaction quite well. In the Be-
lousov-Zhabotinsky reaction malonic
acid is oxidized by potassium bromate
in the presence of a catalyst such
as cerium or iron. The grid cells of
the hodgepodge machine in essence
represent the catalyst particles, and
the infection metaphor expres the
gradual saturation of the particles'
surfaces.

But the analogy is not quite so sim-
ple; there are some subtleties here, For
one thing, in the hodgepodge machine
adjacent cells interact by exchang-
ing infection, so to speak. How do the
catalyst particles exchange reactiviry?
Gerhardt and Schuster reasoned that,
at least in the case of the carbon mon-
oxide oxidation, the participating cat-
alyst units influence their neighbors
by means of two basic mechanisms. A
given unit could be made more reac-
tive by the transfer of heat from a
more active neighboring unit or by the
diffusion of carbon monoxide from a
less active neighbor.

The Interaction between neighbor-
ing cells in the hodgepodge machine
makes it possible for them to synchro-
nize their activities. After a period
of initial random disorganization (the
hodgepodge phase), the patterns that
appear reflect this synchronization.
The same is presumably true of the
actual chemical reactions as well, Does
the hodgepodge machine thus  ex-
plain the appearance of waves of ex-

citation in the reactions it simulates?

There will be those who are ready to
exclaim “Of course™ and to point to
the pictures as evidence. But then,
there are people who see a cellular
automaton in everything. In April The
Atlantic carried an article about the
cosmic ramblings of Edward Fredkin.
A computer businessman and some-
time academic, Fredkin supposes our
universe to be composed of cells that
tick from state to state like a vast
cellular automatan. To be kind, the
evidence for such an arrangement is
not overwhelming. The hodgepodge
machine is doubtless significant, but
the attitude of its discoverers is more
s0. In spite of the fact that the hodge-
podge machine simulates the Belou-
sov-Zhabotinsky reaction remarkably
well, Gerhardt and Schuster do not
claim that chemistry is cellular. In-
stead they see their automaton as an
approximation tool, the discrete ver-
sion of a partial differential equation.

Originally inspired by the work of
chemists Nils Jaeger and Peter Plath
of the University of Bremen, Gerhardt
and Schuster along with their men-
tor at Bielefeld, Andreas W. M. Dress,
have enlisted the help of 1wo chem-
ists In studying the hodgepodge ma-
chine: 5. C. Miiller of the Max Planck
Institute for Nutritional Physiology
in Dortmund and John J. Tyson of
the Virginia Polytechnic Institute and
State University. The creators of the
machine want to show that an array of
chemical oscillators that interact lo-
cally according to certain simple rules
will inevitubly gencrate waves. Pre-
sumably there are only a small num-
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ber of possible wave patterns, ak-:|
though they become far more compli-"
cated in three dimensions, according
to Tyson. Because three-dimensional -
wavefronts are much harder to see in”
laboratory glassware, computer simu- &
lations may tell chemists what to look
for. In science the trick is to use mod
els well, not to be used by them.

Readers who would like to build
their own hodgepodge machine have
already received ample hints on how
1o proceed. One must declare an array &
ol appropriate size and incorporate |
it into a grand loop that updates the
array according to the three rules and
then displays it for the edification
of local hodgepodgers. Each element
of the array must contain the state
number for a particular cell. In com--.
puting the updated array, however, it
is necessary to store the results tem: i
porarily inanother array until the com-
putation is complete. Then a simple
double loop allows wholesale replace-
ment of the original array by the up-
dated one.

The updating is also carried out bya
double loop. Two index variables, say
and j, count off the cells of the grid
For each cell given by the coordinates
(0., the program (can we call it any-
thing but nonGeronce?) decides by
means of a pair of "if" statements
whether the cell is healthy or infected
If it is healthy, the first formula is
evaluated. If it is infected, the second
formula is evaluated. In either case the
states of the cells in its neighborhood
must be checked. If the cell is neither
healthy nor infeeted, it is obviously il
and will recover at the next cycle.

For reasons of space | am limited to
this brief recipe. Readers who would
like @ more complete algorithmic de-
scription of the hodgepodge machine
should write 10 me in care of this
magazine. Please include a check or
money order for $2 10 cover postage
(worldwide), copying and other costs.

he Apraphulian excursion of

April fooled few people. Those

who nonetheless entered into
the spirit of the account were chal
lenged by the reconstruction of the
Apraphulian analog multiplying ma-
chine: a device that multiplies two
numbers entirely by means of ropes
and pulleys. Some entered into the
spirit of the enterprise so fully that
they asserted they had firsthand
knowledge of the ancient Apraphulian
culture. The champion letter in this
vein was sent in by Clive J. Grant of
Chichester, NH. A long document de-
scribes Grant's correspondence witha

Wave phenomena in a Belousov-Zhabotinsky chemical reaction (left) and their hodgepodge counterpirts (right)

mysterions Dr. Ihur Grebdlog, re-
nowned scholar of Apraphulian lore:

“After reading your ‘Computer Rec-
reations' column on the state of Apra-
phulian mathematics, I contacted Dr.
Grebdlog to ask him if his work had
ever covered.. .an Apraphulian Analog
Multiplier. Indeed, he replied, he
had investigated that maltter, and he
sent along a copy of his work.”

The “work" was beautifully written
In Grebdlog's spidery hand, accom-
Panied by technical drawings of pul-
leys and cams connected by bridges.
Grebdlog notes that the drawings “ap-
Pear to have guided the Apraphulians
In constructing a device truly remark-
able for the unstinting technological
effort applied 10 its development but
more - remarkable for its total lack
of utiliry.”

The multiplier most often suggest-
ed by readers made use of a rod one
end of which is attached to a fixed
hinge. An input rope tied partway
along the rod pulls it forward so that
an output rope tied to the free end
Is also pulled in the same direction.
Since the rod is in essence a lever
with the fulcrum at its hinged end,
the output rope moves a greater dis-
tance than the input rope. The prob-
lem with this design arises from a loss
of proportionality: as the input rope is
pulled farther, the rod follows a circu-
lararc and the amplifying effect on the
output rope eventually fades. Varia-

tions on this theme sometimes cor-
rected for the rod's circular motion by
means of guides or fancy systems of
parallel jointed rods. All of this struck
me as too complicated. Perhaps |
should have explicitly forbidden the
use ol rods.

Robert Norton of Madison, Wis.,
used spiral pulleys to compute log-
arithms and antilogarithms. The in-
put ropes A and Bare unwound from
two drums (which are not against the
rules, since they are just wide pulleys).
Each drum is attached to a spiral drum
that winds up an output rope. The two
outputs are then added in the way
outlined at the end of the April col-
umn. The antilog of the sum is com-
puted by winding the addition rope
onto a spiral drum that is connect-
ed to a straight drum on which the
final output rope is wound. A simi-
lar machine was “discovered” by Rob-
ert A Eddius of New York City. The
Apraphulians, he contends, used the
shells of certain mollusks whose spi-
ral shape enabled them to compute
logarithms exactly! On the other hand,
David A. Fox of Lima, Ohio, writes us
that a similar culture inhabited a small
island off the Marshall group known
as Hardly Atoll. Here were found not
only the same log-antilog devices but
also a contraption rather like a yo-yo
that was capable of squaring numbers.
Readers might want to ponder wheth-
er Fox's assertion is possible.
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Caxton C. Foster of Fast Orleans,
Mass., is of the opinion that the Apra-
phulian civilization was destroyed by
logical gain: the problem encountered
by a computer in which the “1" output
of each gate is not quite 1. To prevent
such inaccuracies from Creeping into
the sacred compuiations, the high
priests stationed an Apraphulian at
cach gate w pull a linde harder on amy
output ropes Eacking the necessary
tautness. Thus absorbed, the people
were unable to procure food and even-
tually starved 1o death.

I'he final word belongs to modern-
day computer architect Michael Pagan
of Mount Laurel, N.J. Concerned about
the cultural gap between the amalog
branch and the digital branch of
Apraphulian society, Pagan developed
a marvelous analog-to-digital convert-
er. A single rope carrying the analog
signal enters the device and a num-
ber of ropes bearing the digital equiv-
alent of the input number leave it.
Such a machine may have been in-
troduced on Apraphul, but the priesis
would certainly have banned the pa-
gan device,
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