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ABSTRACT

We consider the long standing problem of constructing d2 equiangular lines in Cd, i.e.,
finding a set of d2 unit vectors (φj) in Cd with

|〈φj , φk〉| =
1√

d + 1
, j 6= k.

Such ‘equally spaced configurations’ have appeared in various guises, e.g., as complex
spherical 2–designs, equiangular tight frames, isometric embeddings `2(d) → `4(d

2), and
most recently as SICPOVMs in quantum measurement theory. Analytic solutions are
known only for d = 2, 3, 4, 8. Recently, numerical solutions which are the orbit of a discrete
Heisenberg group H have been constructed for d ≤ 45. We call these Heisenberg frames.

In this paper we study the normaliser of H, which we view as a group of symmetries of
the equations that determine a Heisenberg frame. This allows us to simplify the equations
for a Heisenberg frame. From these simplified equations we are able construct analytic
solutions for d = 5, 7, and make conjectures about the form of a solution when d is odd.
Most notably, it appears that solutions for d odd are eigenvectors of some element in the
normaliser which has (scalar) order 3.

Key Words: complex spherical 2–design, equiangular lines, equiangular tight frame,
Grassmannian frame, Heisenberg frame, isometric embeddings, discrete Heisenberg group
modulo d, SICPOVM (symmetric informationally–complete positive operator–valued mea-
sure)
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1. Introduction

We consider the following problem: find a set of d2 unit vectors (φj) in Cd with

|〈φj , φk〉| =
1√

d + 1
, j 6= k. (1.1)

Problems of this type have a long history, dating back to the early study of polyhedra in
real Euclidean space, some of which we discuss at the end of this section. Analytic solutions
are known only for d = 2, 3, 4, 8. Most recently it has appeared in quantum measurement
theory (cf [R04], [RBSC04]), where numerical calculations for d ≤ 45 suggest that it has
a solution given by the orbit of a discrete Heisenberg group H of unitary transformations
on Cd (Conjecture 1 of [RBSC04]). We call solutions of this type Heisenberg frames.

If v is a unit vector in Cd, then the condition (hv)h∈H is a Heisenberg frame, i.e.,
|〈gv, hv〉| = |〈v, g−1hv〉 = 1√

d+1
= 1, g 6= h, is equivalent to

|〈v, hv〉| =
1√

d + 1
, h ∈ H, h 6= 1. (1.2)

The key to our results is the following simple observation. If v gives a Heisenberg frame,
and U is unitary and in the normaliser of H, i.e., U−1hU = U∗hU ∈ H, ∀h ∈ H, then Uv
also gives rise to a Heisenberg frame, since

|〈Uv, hUv〉| = |〈v, U∗hUv〉| = |〈v, U−1hUv〉| =
1√

d + 1
, h ∈ H, h 6= 1.

Thus we are naturally led to the normaliser of H in the unitary matrices, which we think
of as a group of symmetries of the equations determining a Heisenberg frame.

The remaining sections are as follows. In Section 2, we define the (discrete) Heisenberg
group (modulo d), and develop its basic properties. In Section 3, we give three types of
elements in the normaliser of H, but not in H itself: the Fourier matrix F , a diagonal
matrix Q, and certain permutation matrices Pa, a ∈ ZZ+

d . This observation that the
normaliser of H is larger than H is the key to the results given here. The elements of
(scalar) order three in the group generated by H and F , Q, Pa, a ∈ ZZ∗

d are particularly
important, and we determine what they are in Section 4. In Section 5, we observe there
is another transformation mapping solutions to solutions, that of pointwise conjugation.
This is not a linear map. The equations (1.2) for v ∈ Cd to generate a Heisenberg frame
are d2 equations in d complex variables. In Section 6, we give sets of equivalent, and more
easily solved equations. In particular, for d odd we have 1 + 1

8 (d2 − 1) = 1
8d2 + 7

8 real
equations in the d coordinates of v and their complex conjugates. In Section 7, we solve the
equivalent sets of equations for d = 2, 3, 5, 7. Our solution for d = 3 has a neat geometric
presentation which is not apparent in earlier solutions. Our analytic solutions for d = 5, 7
are new.

1.1. Historical remarks

Let X be a set of n unit vectors in Cd and t ∈ {0, 1, 2, . . .}. Then a simple argument
of [We74] based on the Cauchy–Schwarz inequality shows that

∑

x,y∈X

|〈x, y〉|2t ≥ n2

(

d+t−1
t

) . (1.3)
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Incidently, for n unit vectors in IRd it can be proved that

∑

x,y∈X

|〈x, y〉|2t ≥ n2

d(d+2)···(d+2t−2)
1·3·5···(2t−1)

, (1.4)

which is sharper for t ≥ 2, d > 1.
Equality in (1.3) is equivalent to many other conditions (cf [K99], [LyS04], [KR05]).

These include X being a complex spherical t–design (cubature formula with equal weights
for certain polynomials on the complex sphere with the Haar measure), X being a SIC
POVM (symmetric informationally complete positive operator valued measure), the exis-
tence of an isometric embedding `2(d) → `2t(n) for t > 0, and the Waring–type formula

1

n

∑

x∈X

|〈y, x〉|2t =
〈y, y〉t
(

d+t−1
d−1

) , ∀y ∈ Cd.

It can be shown that if (any one of) these equivalent conditions hold for t = k, then they
also hold for t ≤ k. Note the condition for t = 0 holds trivially. If X is a set of n = d2

unit vectors in Cd satisfying (1.1), then there is equality in (1.3) for t = 2 since

∑

x,y∈X

|〈x, y〉|4 =
n2 − n

(
√

d + 1)4
+ n =

2d3

d + 1
=

n2

(

d+1
2

) .

In particular, the Waring–type formula for t = 1 holds, i.e.,

‖y‖2 =
d

n

∑

x∈X

|〈y, x〉|2, ∀y ∈ Cd ⇐⇒ y =
d

n

∑

x∈X

〈y, x〉x, ∀y ∈ Cd,

which is the definition of X being an (equal–norm/isometric) tight frame (cf [W03]).
We arrived at this problem as that of finding a tight frame X of n unit vectors which

are equiangular, i.e., with |〈x, y〉| = C, x 6= y. These must give equality in (1.3) for t = 1,
and satisfy (1.3) for t = 2, i.e.,

(n2 − n)C2 + n =
n2

d
, (n2 − n)C4 + n ≥ n2

(

d+1
2

) ,

Substituting the formula for C2 given by the first equation into the second and simplifying
gives (d− 1)(n− d2) ≤ 0. Hence such an equiangular tight frame exists only if n ≤ d2 (for
d > 1). Thus a solution to the problem, should it exist, is an equiangluar tight frame for
Cd with the maximal number of vectors.

Problems of the type considered here have a long history dating back to the study of
polyhedra in real Euclidean space. The analogous problem of finding n equiangular lines
in IRd has received most attention. Here (1.4) leads to the bound n ≤ 1

2d(d + 1). However
this is not attained unless d = 2, 3 or d = r2 − 2 with r 6= 1 an odd integer (cf [LS73]),
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and the theory does not seem as neat as in the complex case, e.g., the analogue of the
equivalant conditions above (cf [S01]).

2. The discrete Heisenberg group

Throughout fix the integer d ≥ 1, and let ω be the primitive d–th root of unity

ω := e2πi/d.

Let S ∈ Cd×d be the shift (rotation down) matrix, and Ω ∈ Cd×d the diagonal matrix
which are given by

S :=















0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
· · ·
· · ·
0 0 0 1 0















, Ω :=















1 0 0 · · 0
0 ω 0 · · 0
0 0 ω2 0
· · ·
· · ·
0 0 0 ωd−1















. (2.1)

These have order d, i.e., Sd = Ωd = I, and satisfy the commutativity relation

ΩkSj = ωjkSjΩk. (2.2)

In particular, the group generated by S and Ω contains the scalar matrices ωrI.

Definition 2.3. The group H = 〈S,Ω〉 generated by the matrices S and Ω is called the
discrete Heisenberg group modulo d, or for short the Heisenberg group.

In view of (2.2), the Heisenberg group is given explicitly by

H = {ωrTjk : 0 ≤ r, j, k ≤ d − 1}, Tjk := SjΩk.

Since ω, S,Ω have order d, it is convenient to allow the indices of ωrTjk to be integers
modulo d. Since S and Ω are unitary, H is a group of unitary matrices. Further, H is
closed under taking adjoints as (2.2) gives the adjoint rule

(Tjk)∗ = (SjΩk)∗ = Ω−kS−j = ω(−j)(−k)S−jΩ−k = ωjkT−j,−k. (2.4)

It is easy to verify that H satisfies the multiplication rule Tr0j0ko
Tr1j1k1

= Trjk, where





1 k r
0 1 j
0 0 1



 =





1 k0 r0

0 1 j0
0 0 1



×





1 k1 r1

0 1 j1
0 0 1



 . (2.5)

The group H has order d3, and so the orbit of a v 6= 0 consists of d3 vectors (hv)h∈H .
But for j, k fixed, the d vectors ωrTjkv, 0 ≤ r ≤ d − 1 are scalar multiples of each other,
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which we identify together. It is in this sense that the orbit of H is interpreted as a set of
d2 (hopefully equiangular) vectors, say {Tjkv : 0 ≤ j, k ≤ d − 1}.

Incidently, the group H is irreducible, i.e., the orbit of every v 6= 0, v ∈ Cd spans Cd,
from which it follows (cf [VW04]) that every nonzero orbit of H is a tight frame for Cd.

3. The normaliser of the Heisenberg group

Here we investigate the normaliser of H in the unitary matrices U(d), i.e., the group

N(H) := {U ∈ U(d) : U−1hU = U∗hU ∈ H,∀h ∈ H}.

The normaliser N(H) contains H. We will show it also contains matrices F , Q, Pa, a ∈ ZZ∗
d,

which are defined below, and hence the group they generate together with S, Ω.
From now on, it is convenient to index the entries of all matrices in Cd×d by elements

of ZZd, i.e., {0, . . . , d − 1} rather than {1, . . . , d}. For example, the entries of the S and Ω
are given by

(S)jk =

{

1, j = k + 1;
0, otherwise

(Ω)jk =

{

ωj , j = k;
0, otherwise.

Let F ∈ U(d) be the Fourier matrix which is given by

(F )jk :=
1√
d
ωjk.

Since S is circulant, it is diagonalised by F , which leads to the conjugacy relation

S = F ∗ΩF. (3.1)

Let Q ∈ U(d) be the quadratic diagonal matrix which is given by

(Q)jk :=

{

ωj2

, k = j;
0 otherwise.

Let ZZ∗
d be the (multiplicative) group of elements a ∈ ZZd with a multipicative inverse, i.e.,

an a ∈ ZZd with aa = 1 (modulo d). For a ∈ ZZ∗
d, let Pa ∈ U(d) be the multiplicative

permutation matrix

(Pa)jk :=
{

1 if k = aj;
0 otherwise.

Note that a 7→ Pa is a group isomorphism, and in particular

PaPb = Pab, P−1
a = Pa = P ∗

a , a, b ∈ ZZ∗
d.

Let A be the matrix obtained from A by taking the complex conjugate of each entry.
Then

S = S, Ω = Ω∗, F = F ∗, Q = Q∗, Pa = Pa, (3.2)
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and from (3.1) we obtain

S = S = F ∗ Ω F = FΩ∗F ∗ =⇒ Ω∗ = F ∗SF. (3.3)

Lemma 3.4. The unitary matrices F , Q, Pa, a ∈ ZZ∗
d belong to N(H), since

F ∗(SjΩk)F = ω−jkSkΩ−j ∈ H, (3.5)

Q∗(SjΩk)Q = ω−j2

SjΩk−2j ∈ H, (3.6)

P ∗
a (SjΩk)Pa = SajΩak ∈ H. (3.7)

Proof: From (3.1) and (3.3), we have F ∗ΩkF = Sk and F ∗SjF = (Ω∗)j = Ω−j ,
so that

F ∗(SjΩk)F = (F ∗SjF )(F ∗ΩkF ) = Ω−jSk = ω−jkSkΩ−j .

Since (Sj)αβ = δα,β+j , we calculate

(Q∗SjQ)αβ = (Q∗)αα(Sj)αβ(Q)ββ = ω−α2

δα,β+jω
β2

= ω−(β+j)2δα,β+jω
β2

= ω−j2

δα,β+jω
−2jβ = ω−j2

(Sj)αβ(Ω−2j)ββ = (ω−j2

SjΩ−2j)αβ ,

so that Q∗SjQ = ω−j2

SjΩ−2j , and since diagonal matrices commute Q∗ΩkQ = Ωk. Hence

Q∗(SjΩk)Q = (Q∗SjQ)(Q∗ΩkQ) = ω−j2

SjΩk−2j .

Using (Pa)jk = δaj,k, we calculate

(P ∗
a SjPa)αβ = (PaSjPa)αβ =

∑

r

∑

s

(Pa)αr(S
j)rs(Pa)sβ =

∑

r

∑

s

δaα,rδr,s+jδas,β

=
∑

s

δaα,s+jδas,β =
∑

s

δaα,aβ+j = δα,β+aj = (Saj)αβ ,

so that P ∗
a SjPa = Saj . Similarly, one shows that P ∗

a ΩkPa = Ωak, and hence

P ∗
a (SjΩk)Pa = (P ∗

a SjPa)(P ∗
a ΩkPa) = SajΩak.
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Let E be the subgroup of N(H) generated by H together with F , Q and Pa, a ∈ ZZ+
d , i.e.,

E := 〈Ω, S, F,Q, Pa : a ∈ ZZ+
d 〉.

We conjecture (but cannot prove) that E = N(H) when d > 2. Lemma 3.4 gives a
commutativity relation between elements the of H and K := 〈F,Q, Pa : a ∈ ZZ+

d 〉, i.e.,

(SjΩk)F = Fω−jkSkΩ−j , (SjΩk)Q = Qω−j2

SjΩk−2j , (SjΩk)Pa = PaSajΩak,

so that elements of E can be expressed in form hk, h ∈ H, k ∈ K. However, for d even
this product in not direct since H ∩ K contains the matrices

Ω
d
2 = [(−1)jδjk] = Q

d
2 , S

d
2 =

(

0 I
I 0

)

= F ∗Q
d
2 F, (3.8)

and also ω
d
2 I = −I = (FQ

d
2 )4 when d/2 is odd. Hence sometimes we restrict ourselves

to the simpler case of d an odd prime. The generators of K satisfy the commutativity
relations

PaF = FPa, PaQb = Qba2

Pa, (3.9)

but no such relation between F and Q exists.

It is convenient to generalise the commutativity relation (3.6).

Lemma 3.10. We have the commutativity relation

SjΩkQr = ωrj2−jkQrΩk−2rjSj . (3.11)

Proof: By the commutativity relation (2.2), the result is equivalent to

SjΩkQr = ωrj2−jkQrω(k−2rj)jSjΩk−2rj = ω−rj2

QrSjΩk−2rj ,

which we prove by induction on r. For r = 0 this holds trivially for all j, k. For r > 0, the
induction hypothesis and (3.6) gives

SjΩkQr = (SjΩkQr−1)Q = ω−(r−1)j2

Qr−1SjΩk−2(r−1)jQ

= ω−(r−1)j2

Qr(Q∗SjΩk−2(r−1)jQ) = ω−(r−1)j2

Qr(ω−j2

SjΩk−2(r−1)j−2j)

= ω−rj2

QrSjΩk−2rj .
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Proposition 3.12. The subgroup of E generated by Ω, S, Q and Pb, b ∈ ZZ∗
d consists of

all the matrices of the form

ωρLαβγδ := ωρΩδQαSγPβ , ρ, α, γ, δ ∈ ZZd, β ∈ ZZ∗
d. (3.13)

These satisfy the multiplication rule

LαβγδLabcd = ω−γβd+aβ2γ2

Ωδ+βd−2aβ2γQα+aβ2

Sγ+cβPβb. (3.14)

Proof: It suffices to prove (3.14). This follows from the commutativity relations

PβΩd = ΩβdPβ , PβQa = Qaβ2

Pβ , PβSc = ScβPβ ,

SγΩβd = ω−γβdΩβdSγ , SγQaβ2

= ωaβ2γ2

Qaβ2

Ω−2aβ2γSγ ,

which are special cases of (3.6), (3.9) and (3.11), by the calculations

ΩδQαSγPβΩdQa = ω−γβd+aβ2γ2

Ωδ+βd−2aβ2γQα+aβ2

SγPβ , (3.15)

and
LαβγδLabcd = (ΩδQαSγPβ)(ΩdQaScPb) = (ΩδQαSγPβΩdQa)(ScPb)

= ω−γβd+aβ2γ2

Ωδ+βd−2aβ2γQα+aβ2

SγPβScPb.

which gives the result since PβScPb = ScβPβPb = ScβPβb.

For d even, (3.8) implies that

Ωδ+ d
2 Qα+ d

2 = ΩδQα,

and so some care must be taken counting the matrices (3.13).

Lemma 3.16. For a, b, c ∈ ZZd the functions

f(a, b, c) : ZZd → C : j 7→ ωaj2+bj+c = (ωcΩbQa)jj

are different, unless d is even in which case the following pairs of functions are equal

f(a, b, c) = f(a +
d

2
, b +

d

2
, c).

In particular, the number of (diagonal) matrices of the form

ωρΩδQα, ρ, δ, α ∈ ZZd

is d3 for d odd, and d3/2 for d even.

Proof: An easy calculation gives the result for d = 1, 2. Suppose that d ≥ 3, and
f(a1, b1, c1) = f(a2, b2, c2), i.e., a1j

2 + b1j + c1 ≡ a2j
2 + b2j + c2 mod d, ∀j ∈ ZZd. Taking

j = 0, 1,−1 gives c1 ≡ c2, a1 + b1 + c1 ≡ a2 + b2 + c2, a1 − b1 + c1 ≡ a2 − b2 + c2, which
we solve to get

c1 ≡ c2, 2(a1 − a2) ≡ 0, 2(b1 − b2) ≡ 0.

If d is odd, then 2 ∈ ZZ∗
d (since 2d+1

2 ≡ 1), and we have a2 = a1, b2 = b1, c2 = c1.

If d is even, then 2x ≡ 0 has two solutions x = 0, d
2 , and so solving the equations for

j = 0, 1,−1 gives either a2 = a1, b2 = a1 or a2 = a1 + d
2 , b2 = b1 + d

2 . Either of these

choices satifies the equations for all j, since d
2 j2 + d

2 j ≡ d
2 j(j +1) ≡ 0, and so we are done.
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Since 〈S〉 ∩ 〈Pβ : β ∈ ZZ∗
d〉 = {1}, the group of permutation matrices generated by

S and {Pβ}β∈ZZ∗

d
has order |〈S〉| |〈Pβ〉| = dφ(d), where φ(d) is the Euler function. Hence

Lemma 3.16 gives

|〈Ω, S,Q, Pb : b ∈ ZZ∗
d〉| = #{ωρLαβγδ} =

{

d4φ(d), d odd;
1
2d4φ(d), d even.

We now consider a set of matrices in N(H) that involve F .

Theorem 3.17. For ρ, α, β, γ, δ, ε ∈ ZZd and β ∈ ZZ∗
d, the matrices

ωρMαβγδε := ωρΩδQαPβFQγΩε =
1√
d
[ωαj2+βjk+γk2+δj+εk+ρ]jk (3.18)

are all in the normalizer N(H). These satisfy the multiplication rules:
(a) If γ + a = 0, then

MαβγδεMabc∂e = ωcb
2
(ε+∂)2−eb(ε+∂)Qα+c(βb)2Ωδ−eβb+2cβb

2
(ε+∂)S−β(ε+∂)P−βb, (3.19)

(b) If d is an odd prime, and ν := γ + a 6= 0, r := −2
2
ν(ε + ∂)2, then

MαβγδεMabc∂e = (γ+a|d)
1 − id

1 − i
ωrΩδ−2νβ(ε+∂)Qα−2

2
νβ2

P−2νβbFQc−2
2
νb2Ωe−2νb(ε+∂).

(3.20)

Proof: We have already observed Mαβγδε ∈ E ⊂ N(H). First multipy out to get

(Mαβγδε)jk =
∑

r

∑

s

∑

t

∑

u

∑

v

(Ωδ)jr(Q
α)rs(Pβ)st(F )tu(Qγ)uv(Ωε)vk

=
∑

r,s,t,u,v

ωδjδjrω
αr2

δrsδβs,t
ωtu

√
d

ωγu2

δuvωεvδvk =
1√
d
ωδj+αj2+βjk+γk2+εk.

Hence the product of Mαβγδε and Mabc∂e is given by

(MαβγδεMabc∂e)jk =
∑

r

(Mαβγδε)jr(Mabc∂e)rk

=
∑

s

1√
d
ωαj2+βjs+γs2+δj+εs 1√

d
ωas2+bsk+ck2+∂s+ek

=
1

d
ωαj2+δj+ck2+ek

∑

s

ω(γ+a)s2+(βj+ε+bk+∂)s.

(3.21)

Case (a): If γ + a = 0, then the last sum in (3.21) is zero, unless βj + ε + bk + ∂ = 0. This
gives (3.19), since

(S−β(ε+∂)P−βb)jk =
∑

r

(S−β(ε+∂))jr(P−βb)rk =
∑

r

δj,r−β(ε+∂)δ−βbr,k = 0

8



⇐⇒ j = r − β(ε + ∂), −βbr = k, ⇐⇒ βj + ε + bk + ∂ = 0.

Case (b): Now suppose γ + a 6= 0. We have to deal with the quadratic Gauss sum in
(3.21). Provided that 2(γ + a) divides βj + ε + bk + ∂, e.g., d is an odd prime, we can
complete the square

(γ + a)s2 + (βj + ε + bk + ∂)s = (γ + a){(s + η)2 − η2}, η :=
βj + ε + bk + ∂

2(γ + a)
,

and the Gauss sum becomes

∑

s

ω(γ+a)s2+(βj+ε+bk+∂)s =
∑

s

ω(γ+a){(s+η)2−η2} = ω−(γ+a)η2

G(γ + a, d),

where

G(γ + a, d) :=
∑

r

ω(γ+a)r2

=
∑

s

ω(γ+a)(s+η)2 .

Suppose that d is an odd prime, then the above sum can be evaluated (see [A76:§9.10])

G(γ + a, d) = (γ + a|d)G(1, d), G(1, d) =
1 − id

1 − i

√
d,

where (γ + a|d) is the Legendre symbol, giving

(MαβγδεMabc∂e)jk = (γ + a|d)
1 − id

1 − i

1√
d
ωαj2+δj+ck2+ekω−(γ+a)η2

. (3.22)

For d an odd prime, every nonzero element of ZZd is invertible: in particular 2 and γ+a 6= 0.
Hence we obtain (3.20) by simplifying (3.22) using

−(γ + a)η2 = −(γ + a)2
2
(β2j2 + b2k2 + (ε + ∂)2 + 2β(ε + ∂)j + 2b(ε + ∂)k + 2βbjk).

Observe that (3.19) gives an element of the form (3.13), and (3.20) gives one of the
form (3.18) multiplied by the scalars (γ + a|d) = ±1 and

1 − id

1 − i
=
{

1, d ≡ 1 mod 4 ;
i d ≡ 3 mod 4.

(3.23)

The product of matrices of the form (3.13) and (3.18) is of the form (3.18), since by (3.15)

LαβγδMabcde = (ΩδQαSγPβ)(ΩdQaPbFQcΩe)

= ω−γβd+aβ2γ2

Ωδ+βd−2aβ2γQα+aβ2

PβbFQcΩe.
(3.24)
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Hence (since F = M01000), for d = p an odd prime, E consists of the p4(p− 1) matrices of
the form (3.13) and the p5(p−1) matrices of the form (3.18), together with their multiples
by ±1 and powers of the scalars (3.23). Thus it has order

|E| =

{

2p4(p − 1)(p + 1), p ≡ 1 mod 4;
4p4(p − 1)(p + 1), p ≡ 3 mod 4.

(3.25)

Example. For d = p an odd prime, (3.20) gives the ‘commutativity’ between F and Q

F ∗QF =
1 − ip

1 − i
Q−2

2

P−2FQ−2
2

,

while if d not an odd prime and γ + a 6= 0, the product (3.20) may not be of the form
(3.13) or (3.18), e.g., for d = 4, we have

F ∗QF =
1

2







i + 1 0 1 − i 0
0 i + 1 0 1 − i

1 − i 0 i + 1 0
0 1 − i 0 i + 1






=: A, A2 =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






.

4. Elements of scalar order three

Based on extensive numerical calculations, it appears that:

Conjecture 4.1. For d > 3 odd, the vectors v ∈ Cd which give rise to a Heisenberg
frame are eigenvectors of a matrix in E which has scalar order 3, where the corresponding
eigenvalue has multiplicity greater than one.

Definition. A matrix A ∈ Cd×d has scalar order 3 if A 6= I and A3 = µI, for µ ∈ C.

Note that matrices of order 3 have scalar order 3, and that if a matrix of scalar order
3 has finite order (e.g., it is in E) then some power of it has order 3. If d is an odd prime,
then (3.25) and Cauchy’s theorem implies that E has elements of (scalar) order 3.

Since vectors v generating Heisenberg frames appear to be eigenvectors of elements
of scalar order 3, it is natural to identify these (see below). Our vision is to then seek
(analytic) solutions by representing v in terms of the eigenvectors of an appropriate element
of A ∈ E order 3. There are two factors to balance here: we want A to have small
eigenspaces and also to have a simple form.

Lemma 4.2. The matrix ωρLαβγδ, β 6= 1 has scalar order 3 if and only if β3 ≡ 1 mod d.

Proof: By applying (3.14) twice, we obtain

(ωρLαβγδ)
3 = ωtΩ(δ−2αβ2γ)(1+β+β2)Qα(1+β2+β4)Sγ(1+β+β

2
)Pβ3 ,

where t = 3ρ− γβδ + αβ2γ2 − γβ(δ + βδ − 2αβ2γ) + β2γ2(α + αβ2). This can be a scalar
multiple only if β3 = 1. But if β3 = 1, then (ωρLαβγδ)

3 is scalar multiple of the identity,
since

1 + β + β2 =
β3 − 1

β − 1
= 0, 1 + β2 + β4 = 1 + β + β

2
=

β6 − 1

β2 − 1
= 0.
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Lemma 4.3. Let d = p an odd prime, then ωρMαβγδε has of scalar order 3 if and only if

β ≡ 2(α + γ) 6≡ 0 mod d.

Proof: If γ + α = 0, then (3.19) and (3.24) imply that (ωρMαβγδε)
3 is a matrix

of the form (3.18), and so cannot be a scalar multiple of the identity.
Now suppose that d = p an odd prime, and γ + α 6= 0. Then (3.20) gives

(Mαβγδε)
2 = µMabcde, µ ∈ C, a = α − 2

2
(γ + α)β2, b = −2(γ + α)β2.

So by Theorem 3.17, (ωρMαβγδε)
3 can be scalar matrix only if γ+a = 0 and −βb = 1. Now

−βb = 1 is equivalent to β = 2(α+γ), and with this choice γ+a = γ+α−2
2
(γ + α)β2 = 0,

and
a = −γ, b = −β, c = γ − 2β, d = −ε, e = −δ.

By (3.19), it follows that if β = 2(α + γ) then (ωρMαβγδε)
3 is a scalar matrix since

α + c(βb)2 = 0, δ − eβb + 2cβb
2
(ε + d) = 0, −β(ε + d) = 0.

Examples. If there is a solution to β3 = 1 mod d (which implies that d is odd), then the
permutation matrix Pβ has order 3, e.g., P2 for d = 7, P4 for d = 9, and P3 for d = 13.

For d = p an odd prime, it follows that Q
d+1

2 F and FQ
d+1

2 have scalar order 3, since
β = 2(α + γ) = 2 d+1

2 = 1. In particular, for d = 5, the matrix Q3F has scalar order 3.

5. Conjugate solutions

We have observed than if a unit vector v ∈ Cd generates a Heisenberg frame, i.e.,

|v∗SjΩkv|2 =
1

d + 1
, (j, k) 6= (0.0),

then so does Uv for any U in the normaliser of H. There is another simple operation that
maps v to another solution, namely (entrywise) conjugation, since (3.2) gives

v∗SjΩkv = v∗S
j
Ω

k
v = v∗SjΩ−kv =⇒ |v∗SjΩkv| = |v∗SjΩ−kv|.

Note that v 7→ v is not linear (it is norm preserving).
Now consider the set V of all unit vectors v ∈ Cd that generate a Heisenberg frame,

which we often refer to as ‘solutions’. We say that solutions v and w are equivalent if

v = αUw, |α| = 1, U ∈ E,
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i.e., they are in the same G–orbit of V under the (multiplication) action of the group

G := {αU : |α| = 1, U ∈ E}.
It follows from (3.2) that E is closed under (entrywise) conjugation, as is therefore G, and
so conjugation maps a G–orbit of V either to itself, or to another G–orbit. In the latter
case, we say that a solutions v and w are conjugate to each other if v and v are in
different orbits and w belongs to the orbit of v.

6. Equivalent equations for Heisenberg frames

If v ∈ Cd is a unit vector, then the d2 unit vectors {SjΩkv : j, k ∈ ZZd} form a tight
frame for Cd, which we call a Heisenberg frame if (1.1) holds.

By (1.2), it follows that v ∈ Cd is a Heisenberg frame if and only if

|v∗SjΩkv|2 =
1

d + 1
, (j, k) 6= (0, 0), ‖v‖2 = 1.

These d2 quartic equations in v1, . . . , vd, v1, . . . , vd with coefficients from QQ[ω] have proven
difficult to solve (for d > 3). We now find equivalent and more tractable sets of equations.

Our equivalent sets of equations come from the observation that v∗SjΩkv are the
eigenvalues of certain circulant matrices. Recall (see [D79:Th. 3.2.2]) that each circulant
matrix

C = circ(z) := [z, Sz, . . . , Sd−1z] ∈ Cd×d, z ∈ Cd

is diagonalised by the Fourier transform matrix F , with eigenvalues given by

λk =
∑

r

zrω
kr, k = 0, . . . , d − 1.

For j 6= 0, we calculate

v∗SjΩkv = (S−jv)∗Ωkv =
∑

r

vr+jω
krvr =

∑

r

(vrvr+j)ω
kr, k = 0, . . . , d − 1,

which are the eigenvalues of the circulant matrix circ(Uj), where (Uj)r := vrvr+j .
Since these values |v∗SjΩkv| must be constant for v to generate a Heisenberg frame,

it is natural to consider when the eigenvalues of a circulant matrix have constant modulus.

Lemma 6.1. A nonzero circulant matrix Cz := circ(z), z ∈ Cd has eigenvalues of constant
modulus if and only if

C∗
z Cz = ‖z‖2I,

i.e., 1
‖z‖Cz is unitary and Cz has eigenvalues of modulus ‖z‖.
Proof: Since Cz is circulant, it is diagonalised by F , i.e., Cz = F ∗ΛF with Λ

diagonal, and hence C∗
z Cz = F ∗Λ∗ΛF . But Λ∗Λ is diagonal and its diagonal entries

are the modulus squared of the eigenvalues of Cz. Hence Cz has eigenvalues of constant
modulus α if and only if Λ∗Λ is the scalar matrix α2I, in which case C∗

z Cz = α2F ∗F = α2I.
By evaluating the (1, 1)–entries of C∗

z Cz = α2I, we get ‖z‖2 = α2.
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Theorem 6.2. Suppose that v ∈ Cd, and let

Uj :=













v0v0+j

v1v1+j

v2v2+j

...
vd−1vd−1+j













, 0 ≤ j ≤ d − 1, md :=
1

2

{

d − 1, d odd;
d, d even.

Then v is a unit vector and generates a Heisenberg frame if and only if

(a) ‖U0‖2 =
2

d + 1
,

(b) ‖Uj‖2 =
1

d + 1
, 1 ≤ j ≤ md,

(c) 〈Uj , S
kUj〉 = 0, 1 ≤ j, k ≤ md.

Proof: First we observe that (b) and (c) hold equivalently with md replaced by
d − 1, since

U−j = Sj(Uj), 〈Uj , S
−kUj〉 = 〈Uj , SkUj〉.

Hence the conditions (b) and (c) are equivalent to

circ(Uj)
∗ circ(Uj) =

1

d + 1
I, j 6= 0.

Since the eigenvalues of Uj , j 6= 0 are λk = v∗SjΩkv, by Lemma 6.1 this is equivalent to

|v∗SjΩkv| =
1√

d + 1
, j = 1, . . . , d − 1, k = 0, . . . , d − 1.

Now suppose that (b) holds, then

‖v‖4 = ‖U0‖2 +
d−1
∑

j=1

‖Uj‖2 d − 1

d + 1
⇐⇒ ‖v‖4 − 1 = ‖U0‖2 − 2

d + 1
,

and (a) is equivalent to ‖v‖ = 1 (given that (b) holds). Hence if v is unit vector which
generates a Heisenberg frame (a),(b) and (c) hold.

Thus it remains only to show that if (a),(b) and (c) hold (so ‖v‖ = 1), then

|v∗Ωkv| =
1√

d + 1
, k = 1, . . . , d − 1. (6.3)

Now for any β ∈ IR,

v∗Ωkv =
∑

r

|vr|2ωkr =
∑

r

(|vr|2 + β)ωkr, k = 1, . . . , d − 1,
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so that v∗Ωkv, k 6= 0 are eigenvalues of the circulant matrix Cz = circ(z), zr := |vr|2 + β.
By Lemma 6.1, this has all its eigenvalues of modulus 1/

√
d + 1 if and only if

‖z‖2 =
∑

r

(|vr|2 + β)2 =
∑

r

|vr|4 + 2β
∑

r

|vr|2 + dβ2 = ‖U0‖2 + 2β‖v‖2 + dβ2 =
1

d + 1
,

and C∗
z Cz = ‖z‖2I. Since ‖U0‖2 = 1/(d + 1) and ‖v‖ = 1, the quadratic above becomes

dβ2 + 2β + 1/(d + 1) = 0 ⇐⇒ β =

√
d + 1 ± 1

d
√

d + 1
.

If we take either of these two choices of β, then C∗
z C = ‖z‖2I holds, since

〈z, Sjz〉 =
∑

r

(|vr|2 + β)(|vr−j |2 + β) =
∑

r

|vr|2|vr−j |2 + 2β
∑

r

|vr|2 + dβ2

= ‖U−j‖2 + 2β‖v‖2 + dβ2 = dβ2 + 2β + 1/(d + 1) = 0, j 6= 0,

and hence (6.3) holds.

Lemma 6.4. The condition (c) of Theorem 6.2 can be reduced to

〈Uj , S
kUj〉 = 0, 1 ≤ j ≤ k ≤ md. (6.5)

Proof: Making the substitution r = s − j + k, we obtain

〈Uj , S
kUj〉 =

∑

r

(Uj)r(SkUj)r =
∑

r

vrvr+jvr−kvr−k+j =
∑

r

vrvr−k+jvr+jvr−k

=
∑

s

vs−j+kvsvs+kvs−j =
∑

s

vsvs−j+kvs−jvs+k = 〈Uk, SjUk〉.

Suppose that (6.5) holds. Then the equation 〈Uj , S
kUj〉 = 0 also holds for j > k, since

〈Uj , S
kUj〉 = 〈Uk, SjUk〉 = 0.

Thus we have an equivalent set of md + 1 + 1
2md(md + 1) = 1

2 (md + 1)(md + 2) ≤ 1
4d2

quartic equations in v1, . . . , vd, v1, . . . , vd with coefficients from QQ.

Theorem 6.6. Suppose that d is odd and v ∈ Cd. Let

Vj :=













v0−jv0+j

v1−jv1+j

v2−jv2+j

...
vd−1−jvd−1+j













, 0 ≤ j ≤ d − 1, md :=
1

2
(d − 1).
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Then v is a unit vector and generates a Heisenberg frame if and only if

(a) ‖V0‖2 =
2

d + 1
,

(b) ‖Vj‖2 =
1

d + 1
, 1 ≤ j ≤ md,

(c) 〈Vj , Vk〉 = 0, 0 ≤ j 6= k ≤ md.

Proof: First note that V−j = Vj . Recall (Uj)r = vrvr+j , and observe

(S−jVj)r = (Vj)r+j = vr+j−jvr+j+j = vrvr+2j ,

so that
‖Vj‖ = ‖S−jVj‖ = ‖U2j‖.

In particular, ‖V0‖ = ‖U0‖, and so condition (a) is equivalent to that of Theorem 6.2.
Further, the conditions (b) are also equivalent, since if 1 ≤ j ≤ md

2 , then 2j is even, with

‖U2j‖ = ‖Vj‖, 2 ≤ 2j ≤ md,

and if md

2 < j ≤ md then d − 2j is odd, with

‖Ud−2j‖ = ‖U−2j‖ = ‖V−j‖ = ‖Vj‖, 1 ≤ d − 2j ≤ md.

Finally,

〈Vj , Vk〉 =
∑

r

(Vj)r(Vk)r =
∑

r

vr−jvr+jvr−kvr+k =
∑

r

vr+jvr+j+(k−j)vr−kvr−k+(k−j)

=
∑

r

(Uk−j)r+j(Uk−j)r−k = 〈S−jUk−j , S
kUk−j〉 = 〈Uk−j , S

j+kUk−j〉,

and it follows, by Lemma 6.4, that the orthogonality conditions are equivalent.

This gives 1 + md + 1
2md(md − 1) = 1 + 1

8 (d2 − 1) equations.

7. Analytic solutions

We now solve the equivalent equations to find analytic solutions for the primes d = 2, 3, 5, 7.

7.1. The case d = 2

For d = 2, ω = −1, and

U0 =

(

|v0|2
|v1|2

)

, U1 =

(

v0v1

v1v0

)

, md = 1,
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so that the equations of Theorem 6.2 are

‖U0‖2 = |v0|4+|v1|4 =
2

3
, ‖U1‖2 = 2|v0|2|v1|2 =

1

3
, 〈U1, SU1〉 = v2

0v1
2+v0

2v2
1 = 0.

Recalling that the first can be replaced by |v0|2 + |v1|2 = 1, we substitute in the polar form
vj = rje

θj , and solve to get

6r4
0 − 6r2

0 + 1 = 0, r2
0 + r2

1 = 1 ⇐⇒ r2
0 =

3 ±
√

3

6
, r2

1 =
3 ∓

√
3

6
,

cos
(

2(θ1−θ0)) = 0 ⇐⇒ 2(θ1−θ0) =
π

2
+πn ⇐⇒ eiθ1 = eiθ0e

π
4

iin, n = 0, 1, 2, 3.

This gives one solution, up to equivalence. Since [RBSC04] were unaware that F maps
solutions to solutions, they count two inequivalent solutions v and w, for which we observe

w = e
π
6

iFΩSv, v =
1√
6

(

√

3 +
√

3

e
π
4

i
√

3 −
√

3

)

, w =
1√
6

(

−
√

3 −
√

3

e
π
4

i
√

3 +
√

3

)

.

It is interesting to observe that there are nonscalar matrices C which map solutions
to solutions, but which are not in the normaliser of H, e.g.,

C :=

(

1
i

)

, C∗ΩC = Ω, C∗SC =

(

0 i
−i 0

)

= iΩS.

This matrix is in the normaliser of the group 〈i〉H.

7.2. The case of d = 3

Let d = 3. This case has some interesting geometric features: it appears to be the
only one where there are infinitly many inequivalent solutions (cf [RBSC04]). Since

V0 =





v2
0

v2
1

v2
2



 , V1 =





v−1v1

v0v2

v1v0



 =





v2v1

v0v2

v1v0



 , md = 1,

with rj := |vj |, the equations of Theorem 6.6 become

(a) ‖V0‖2 = r4
0 + r4

1 + r4
2 =

1

2
,

(b) ‖V1‖2 = r2
2r

2
1 + r2

0r
2
2 + r2

1r
2
0 =

1

4
,

(c) 〈V0, V1〉 = v2v1v
2
0 + v0v2v

2
1 + v1v0v

2
2 = 0.

From (a) and (b), we obtain

r4
0 + r4

1 + r4
2 = 1/2 = 2(1/4) = 2(r2

0r
2
1 + r2

1r
2
2 + r2

2r
2
0),
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which can be rearranged to give

r4
0 + (r4

1 + 2r2
1r

2
2 + r4

2) − 2r2
0(r

2
1 + r2

2) = 4r2
1r

2
2.

Completing the square on the left yields

(r2
0 − (r2

1 + r2
2))

2 = 4r2
1r

2
2.

We now consider several cases. Firstly, if r2
0 ≥ r2

1 + r2
2, then taking square roots,

r2
0 − (r2

1 + r2
2) = 2r1r2 =⇒ r2

0 = r2
1 + 2r1r2 + r2

2 = (r1 + r2)
2 =⇒ r0 = r1 + r2.

Secondly, if r2
0 < r2

1 + r2
2, then

r2
0 − (r2

1 + r2
2) = −2r1r2 =⇒ r2

0 = r2
1 − 2r1r2 + r2

2 = (r1 − r2)
2,

so that r0 = r1 − r2 when r1 ≥ r2, and r0 = r2 − r1 when r2 ≥ r1. Thus we have three
cases

r0 = r1 + r2, r1 = r0 + r2, r2 = r0 + r1.

From (a) and (b) it follows that r2
0 + r2

1 + r2
2 = 1. Hence since rj ≥ 0, these three

cases describe the three sides of a spherical triangle in the first octant on the unit sphere.
The vertices of this triangle are given by the intersections of the three great circles, i.e.,

r0 = r1 + r2 and r1 = r0 + r2 =⇒ r0 = r1 = 1√
2
, r2 = 0,

r0 = r1 + r2 and r2 = r0 + r1 =⇒ r0 = r2 = 1√
2
, r1 = 0,

r1 = r0 + r2 and r2 = r0 + r1 =⇒ r1 = r2 = 1√
2
, r0 = 0.

We now proceed to equation (c)

v2v1v
2
0 + v0v2v

2
1 + v1v0v

2
2 = 0.

We consider several cases:

First Vertex (r0, r1, r2) = ( 1√
2
, 1√

2
, 0). Since r2 = |v2| = 0, equation (c) is trivially

satisfied, and as there are no other conditions, we have solutions

v =
1√
2





eiθ

eiφ

0



 , θ, φ ∈ IR.

Similarly, the other vertices give permutations of these solutions.

Second Vertex (r0, r1, r2) = ( 1√
2
, 0, 1√

2
). Gives solutions

v =
1√
2





eiθ

0
eiφ



 , θ, φ ∈ IR.
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Third Vertex (r0, r1, r2) = (0, 1√
2
, 1√

2
). Gives solutions

v =
1√
2





0
eiθ

eiφ



 , θ, φ ∈ IR.

First Triangle Edge r0 = r1 + r2, r1, r2 > 0. For convenience, let zj := v2
j /vj , so that

|zj | = |vj | = rj . Then dividing (c) by v0v1v2 yields the equivalent equation

z0 + z1 + z2 = 0.

Since z0 = −z1 − z2 and |z0| = r0 = r1 + r2 = | − z1| + | − z2|, the complex numbers
z0,−z1,−z2 must have the same argument, i.e.,

z0 = r0e
iφ, z1 = −r1e

iφ, z2 = −r2e
iφ, φ ∈ IR.

Hence, writing vj = rje
iθj , so that zj = rje

3iθj , we calculate

r0e
3iθ0 = r0e

iφ =⇒ θ0 =
φ

3
+

2π

3
k0, k0 = 0, 1, 2,

r1e
3iθ1 = −r1e

iφ =⇒ θ1 =
φ

3
+

π

3
+

2π

3
k1, k1 = 0, 1, 2,

r2e
3iθ2 = −r2e

iφ =⇒ θ2 =
φ

3
+

π

3
+

2π

3
k2, k2 = 0, 1, 2.

Since φ is arbitrary, so is θ0. Hence after the change of variables θ := (φ+2πk0)/3, we can
describe the solutions corresponding to the point (r0, r1, r2) on this edge of the triangle by

v0 = r0e
iθ, v1 = r1e

iθei π
3 ωj1 , v2 = r2e

iθei π
3 ωj2 , θ ∈ IR, j1, j2 ∈ {0, 1, 2},

where ω := e
2πi
3 . We can give a more precise description of this edge by solving the

equations r2
0 + r2

1 + r2
2 = 1 and r0 = r1 + r2 for r1, r2 in terms of r0, which gives

r1 =
r0 ±

√

2 − 3r2
0

2
and r2 =

r0 ∓
√

2 − 3r2
0

2
.

Note the half of the edge where r1 ≥ r2 is given by the choice of ‘+’ in the formula for r1,
and the choice ‘−’ gives the half with r1 ≤ r2. For these to give r1, r2 > 0, we must have

2 − 3r2
0 ≥ 0, r0 −

√

2 − 3r2
0 > 0 ⇐⇒ r2

0 ≤ 2

3
, r2

0 >
1

2
.

Hence 1
2 < r2

0 ≤ 2
3 along this edge, with r1 and r2 given by the formula above.

The other edges are similar.
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Second Triangle Edge r1 = r0 + r2, r0, r2 > 0. The same as the first edge with the roles
of v0 and v1 interchanged.

Third Triangle Edge r2 = r0 + r1, r0, r1 > 0. The same as the first edge with the roles
of v0 and v2 interchanged.

Clearly the diagonal matrices Ω and Q map a solution corresponding to a particular
vertex or edge to another such solution, and 〈S, Pj : j ∈ ZZ+

3 〉 is the group of six permutation
matrices which permute the coordinates of v ∈ C3 and hence map a vertex/edge solution
to another vertex/edge solution (where the vertex/edge may be different). The action of
the Fourier transform matrix

F =
1√
3





1 1 1
1 ω ω2

1 ω2 ω



 , F 2 =





1 0 0
0 0 1
0 1 0



 , F 4 = I, ω = e
2πi
3 = −1

2
+

√
3

2
i

on solutions is much more complicated. Consider it applied to a first vertex solution

v =
1√
2





eiθ

eiφ

0



 , Fv =
1√
6





eiθ + eiφ

eiθ + ωeiφ

eiθ + ω2eiφ



 , F 2v =
1√
2





eiθ

0
eiφ



 .

If we choose θ = φ+π+ 2π
3 j, then the j–entry of Fv is zero, and we have a vertex solution.

Since (θ, φ) 7→ Fv is continuous, it then follows that Fv can be a solution corresponding
to any vertex or edge of the triangle by making an appropriate choice of θ and φ. It is
interesting to observe that such a large set of solutions is given by the simple formula

v =
1√
6





eiθ + eiφ

eiθ + ωeiφ

eiθ + ω2eiφ



 , θ, φ ∈ IR.

Since F 2 is a permutation, F 2v is vertex solution, F 3v is permutation of Fv, and F 4v = v.

7.3. The case d = 5

Let d = 5, so that

ω = −1

4
+

√
5

4
+

1

4

√
2

√

5 +
√

5i.

We find a solution v which is an eigenspace of the element of order three given by

A := (FQ2)2 = −Q3F.

Proposition 7.1. If d is odd, then

Q
d+1

2 F = (−i)
d−1

2 (FQ
d−1

2 )2, (FQ
d−1

2 )6 = (−1)
d−1

2 I, (7.2)

and hence Q
d+1

2 F has scalar order 3.

Proof: For d prime (7.2) follows from Theorem 3.17 and Lemma 4.3, and for d

not prime, the Gauss sums can also be evaluated to obtain the result. Thus A := Q
d+1

2 F
has scalar order three, since

A3 = (Q
d+1

2 F )3 = (FQ
d+1

2 )3 = (−i)
d−1

2 I.
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Lemma 7.3. The matrix B = FQ2 has spectrum {µ, µ2, µ3, µ4, µ5}, µ := e
π
3

i = 1
2 +

√
3

2 i.
Its orthonormal eigenvectors corresponding to µ and µ4 are

x :=











r0

r1ω
4

−r2ω
−r2ω
r1ω

4











, y :=











0
−r3ω

4

r4ω
−r4ω
r3ω

4











(7.4)

respectively, where the rj > 0 are given by

r0 =

√

5 +
√

5

15
, r1 =

1

2
√

2

(

1 +

√

5 − 2
√

5

15

)

, r2 =
1

2
√

2

(

1 −

√

5 − 2
√

5

15

)

,

r2
3 =

1

4

(

1 +

√

5 + 2
√

5

15

)

, r2
4 =

1

4

(

1 −

√

5 + 2
√

5

15

)

.

Proof: The calculations in the original derivation are involved. It is difficult to
simplify the surds, e.g.,

√
5 = ω + ω4 − ω2 − ω3 = 1 + 2(ω + ω4) = −1 − 2(ω2 + ω3).

We note the following eigenvectors with entries from the field QQ[ω, µ],

x̃ =











2ω3(
√

5µ + 1 − w − w3 + w4)
(
√

5µ − 1)(1 + ω) + 2ω2

(
√

5µ + ω2)(
√

5µ + ω4) + ω3 − 2ω2

(
√

5µ + ω2)(
√

5µ + ω4) + ω3 − 2ω2

(
√

5µ − 1)(1 + ω) + 2ω2











, ỹ =











0
ω − 1

ω3 − ω +
√

5µ
−ω3 + ω −

√
5µ

1 − ω











,

for which
x̃

‖x̃‖ = e−
11
15

πix,
ỹ

‖ỹ‖ = e
7
10

πiy.

However, it is easy to verify the result once it is obtained.

Thus A = (FQ2)2 = B2 has a 2–dimensional eigenspace for the eigenvalue µ2 = e
2π
3

i

with an orthonormal basis given by the vectors x and y of (7.4).

Theorem 7.5. Define a complex number

z :=

√

1 +
√

3

2
√

2





√

5 −
√

5

5
− i

√

5 +
√

5

5



 .

Then the four unit vectors v in the e
2π
3

i eigenspace of A given by

v = vβ := αx + βy, α = 1
2

√

3 −
√

3 =
√

1 − |z|2, β = z,−z, z,−z
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each generate a Heisenberg frame for C5.

Proof: It is straightforward (but tedious) to check that all the equations are
satisfied. We leave the details to the reader who might note that

(

z

|z|

)4

=
−3 + 4i

5
, |z|2 =

1 +
√

3

4
.

Observe that the permutation matrix P−1 = F 2 commutes with A, so if v is a solution
in an eigenspace of A, then is F 2v is a solution in the same eigenspace. In this case

F 2vz = v−z, F 2v−z = vz, F 2vz = v−z, F 2v−z = vz.

There are two inequivalent solutions in this eigenspace: vz and vz, which are conjugate to
each other. The following comparison with the numerical results of [RBSC04], indicates
that these are all of the solutions. In [RBSC04] solutions v and w are considered equivalent
if

v = αUw, |α| = 1, U ∈ H.

We allow U ∈ E (and so have fewer equivalence classes). Let E act on the equivalence
classes considered in [RBSC04]. Then the equivalence class [v] containing v is stabilised
by A, 〈−I〉 (which have orders 3, 2) and by H (of order 125), so that size of its orbit is

|Orbit of [v]| =
|E|

Stab([v])
=

30000

6 · 125 = 40.

Taking the conjugate of this orbit gives another 40 solutions, which accounts for the total
of 80 (inequivalent) solutions found numerically by [RBSC04].

7.4. The case d = 7

Let d = 7, then the permutation matrix P2 has order three. We will find a solution
v which is an eigenvector P2 for the eigenvalue 1, i.e., satisfying v2j = vj , 0 ≤ j ≤ d − 1,
which we write as

v =



















a
b
b
c
b
c
c



















, a, b, c ∈ C.

Consider the equations of Theorem 6.6, in terms of the vectors Vn, 0 ≤ n ≤ (d− 1)/2 = 3,
defined by (Vn)j = vj−nvj+n.

V0 =



















a2

b2

b2

c2

b2

c2

c2



















, V1 =



















bc
ab
bc
b2

c2

bc
ac



















.
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Since P2v = v, we have

(Vn)j = vj−nvj+n = v2(j−n)v2(j+n) = v2j−2nv2j+2n = (V2n)2j ,

i.e., Vn = P2V2n or, equivalently, V2n = P−1
2 Vn = P 2

2 Vn. Hence we calculate

V2 = P 2
2 V1, V3 = V−3 = V4 = P 2

2 V2 = P 2
2 (P 2

2 V1) = P2V1.

Since V2, V3 are permutations of V1, the equations of Theorem 6.6 reduce to

(a) ‖V0‖2 =
2

d + 1
,

(b) ‖V1‖2 =
1

d + 1
,

(c) {V0, V1, P2V1, P
2
2 V1} is an orthogonal set.

Using P2V0 = V0 and P ∗
2 = P−1

2 = P 2
2 , we calculate

〈V0, P2V1〉 = 〈P 2
2 V0, V1〉 = 〈V0, V1〉, 〈V0, P

2
2 V1〉 = 〈P2V0, V1〉 = 〈V0, V1〉,

〈V1, P
2
2 V1〉 = 〈P 2

2 V1, V1〉 = 〈V1, P2V1〉, 〈P2V1, P
2
2 V1〉 = 〈V1, P

4
2 V1〉 = 〈V1, P2V1〉.

Hence {V0, V1, P2V1, P
2
2 V1} is an orthogonal set if and only if 〈V0, V1〉 = 0, 〈V1, P2V1〉 = 0.

Consequently, the equations we must solve are:

(1) ‖V0‖2 = 1/4 : |a|4 + 3|b|4 + 3|c|4 = 1/4
(2) ‖V1‖2 = 1/8 : 3|b|2|c|2 + |b|4 + |c|4 + |a|2|b|2 + |a|2|c|2 = 1/8

(3) 〈V0, V1〉 = 0 : bca2 + a|b|2b + c|b|2b + b
2
c2 + c2b2 + b|c|2c + a|c|2c = 0

(4) 〈V1, P2V1〉 = 0 : |b|2|c|2 + a|b|2c + b|c|2c + b2ac + c2ab + c|b|2b + a|c|2b = 0.

Consider the first two equations in |a|, |b|, |c|. The first minus twice the second gives

|a|4 − 2|a|2(|b|2 + |c|2) + |b|4 + |c|4 − 6|b|2|c|2 = 0,

which may be expressed as

(|a|2 − (|b|2 + |c|2))2 = 8|b|2|c|2,

so that
|a|2 − (|b|2 + |c|2) = ±2

√
2|b||c|. (7.6)

Now a solution will satisfy ‖v‖2 = |a|2 + 3(|b|2 + |c|2) = 1. From this subtract (7.6) to get

4(|b|2 + |c|2) = 1 ∓ 2
√

2|b||c|. (7.7)

Now we make a simplifying assumption, that b, c ∈ IR. Since we may multiply a
solution by a scalar to get an equivalent solution this is effectively the condition b/c ∈ IR.
The equations (3),(4) become

(3) 〈V0, V1〉 = 0 : a2bc + a(b3 + c3) + bc(b + c)2 = 0
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(4) 〈V1, P2V1〉 = 0 : bc(bc + (a + a)(b + c) + b2 + c2) = 0.

In view of (7.6), bc = 0 does not yield a solution and so (4) simplifies to

(4) 〈V1, P2V1〉 = 0 : bc + (a + a)(b + c) + b2 + c2 = 0.

Let a = x + iy, then (by taking real and imaginary parts) we have five real equations in
the four real variables x, y, b, c.

Since a + a = 2x, solving (4) for x gives

x = −b2 + c2 + bc

2(b + c)
. (7.8)

Here we cannot have b+c = 0, since substituting this into (3) gives a2bc = 0, which doesn’t
yield a solution. Next expand equation (3)

(x2 − y2 + 2ixy)bc + (x − iy)(b3 + c3) + bc(b + c)2 = 0,

and take its imaginary part to obtain

y(2xbc − (b3 + c3)) = 0. (7.9)

We now treat the two cases: y 6= 0 and y = 0.
Case y 6= 0: Solving (7.9) gives

x =
b3 + c3

2bc
. (7.10)

Comparing (7.8) and (7.10), we have

b3 + c3

2bc
+

b2 + c2 + bc

2(b + c)
= 0

so that
(b + c)(b3 + c3) + bc(b2 + c2 + bc) = (b2 + c2 + bc)2 − 2b2c2 = 0.

Solving (b2 + c2 + bc)2 = 2b2c2, gives

b2 + c2 = (−1 ±
√

2)bc = (−1 +
√

2δ)bc, δ ∈ {−1, 1}. (7.11)

Given that b, c ∈ IR, we may rewrite (7.7) as

4(b2 + c2) = 1 + 2
√

2εbc, ε ∈ {−1, 1}. (7.12)

Solving (7.11) and (7.12) for b2 + c2 and bc gives

b2 + c2 =
1

4

√
2ε − 2 + 2δ(2δ − ε)

(2δ − ε)2 − 2
, bc =

1

4

√
2(2δ − ε) + 2

(2δ − ε)2 − 2
.

23



Multiply top and bottom by −δε to make the denominators positive

b2 + c2 =
1

4

−
√

2δ − 2δε + 2

4 − 3δε
, bc =

1

4

√
2(δ − 2ε) − 2δε

4 − 3δε
,

and combine to obtain

(b ± c)2 = b2 + c2 ± 2bc =
1

4

2 − 2δε(1 ± 2) +
√

2(−δ ± 2δ ∓ 4ε)

4 − 3δε
.

The values (b+ c)2 and (b− c)2 given by this formula are both nonnegative only if δ = −1,
which gives

(b + c)2 =
1

4

2 + 6ε +
√

2(−1 − 4ε)

4 + 3ε
, (b − c)2 =

1

4

2 − 2ε +
√

2(3 + 4ε)

4 + 3ε
.

Since multipliying v by the scalar −1 gives an equivalent solution, we may assume that
b + c > 0, and since the permutation matrix P−1 = F 2 maps v to another solution with
the b and c interchanged, we may further assume that b > 0 and b > c, i.e., b − c > 0,
giving

b + c = 2α, α =
1

4
√

4 + 3ε

√

2 + 6ε −
√

2(1 + 4ε) > 0,

b − c = 2β, β =
1

4
√

4 + 3ε

√

2 − 2ε +
√

2(3 + 4ε) > 0.

We therefore have
b = α + β, c = α − β,

where the possible values of α and β are

α =

√

3
√

2 − 4

4
, β =

√

4 −
√

2

4
(ε = −1), α =

√

8 − 5
√

2

4
√

7
, β =

4
√

2

4
(ε = 1).

The choice ε = −1 does not lead to a solution, since this implies

3(b2 + c2) = 3((α + β)2 + (α − β)2) = 6(α2 + β2) =
3

4

√
2 > 1,

contradicting ‖v‖2 = |a|2 + 3(b2 + c2) = 1. For choice ε = 1, we determine the possible
values of a. Using equation (4) to eliminate a from (3), gives

(bc) a2 + (−b3 − c3) a + (b3c + bc3 + c2b2 − b4 − c4) = 0,

which is a quadratic in a with real coefficients. Solving this in the form

(α2 − β2) a2 − 2α(α2 + 3β2) a + (α4 − 3β4 − 14α2β2) = 0,
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leads to a complex conjugate pair of solutions

a = −
√

8 − 5
√

2(2
√

2 + 1 ± 7i)

2
√

7(3
√

2 − 2)
≈ −0.31093791 ∓ 0.56852731i, arg(a) ≈ ∓118.68◦.

With the values of b, c given below, this gives inequivalent solutions

b =
1

4

(√

8 − 5
√

2√
7

+
4
√

2

)

, c =
1

4

(√

8 − 5
√

2√
7

− 4
√

2

)

.

Case y = 0: Substitute (7.8), with x = a, into equation (3), and factor to obtain

− (2b2 + 3bc + 2c2)(b4 − 2b3c − 5b2c2 − 2bc3 + c4)

4(b + c)2
= 0.

Since the quadratic form (b, c) 7→ 2b2 + 3bc + 2c2 is positive definite, we must have

b4 − 2b3c − 5b2c2 − 2bc3 + c4 = (b2 + c2)2 − 2bc(b2 + c2) − 7b2c2 = 0.

Solving the above quadratic in b2 + c2 gives

b2 + c2 =
2bc ±

√
4b2c2 + 28b2c2

2
= (1 ± 2

√
2)bc = (1 + 2

√
2δ)bc, δ ∈ {−1, 1}. (7.13)

Solving (7.12) and (7.13) for b2 + c2 and bc gives

b2 + c2 =
2
√

2 + δ

2(4
√

2 + 2δ −
√

2εδ)
, bc =

δ

2(4
√

2 + 2δ −
√

2εδ)
,

and so

(b ± c)2 = b2 + c2 ± 2bc =
2
√

2 + δ ± 2δ

2(4
√

2 + 2δ −
√

2εδ)
.

The values (b ± c)2 given by this formula are both nonnegative only if δ = 1, which gives

(b + c)2 =
2
√

2 + 3

2(4
√

2 + 2 −
√

2ε)
, (b − c)2 =

2
√

2 − 1

2(4
√

2 + 2 −
√

2ε)
.

As in the previous case, we may assume wlog that b + c > 0, b − c > 0, so that

b = α + β, c = α − β, α =

√

2
√

2 + 3

2
√

2
√

4
√

2 + 2 −
√

2ε
, β =

√

2
√

2 − 1

2
√

2
√

4
√

2 + 2 −
√

2ε
.

The choice ε = −1 does not lead to a solution, and for ε = 1, we get

α =

√

2
√

2 + 3

2
√

2
√

3
√

2 + 2
=

√

6 + 5
√

2

4
√

7
, β =

√

2
√

2 − 1

2
√

2
√

3
√

2 + 2
=

√

2 −
√

2

4
,
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which gives a solution, with the a = x obtained from (7.8) as

a = −
√

3
√

2 − 2

2
√

7
.

Theorem 7.14. For d = 7, there are three inequivalent vectors of the form

v = (a, b, b, c, b, c, c)T , a ∈ C, b, c ∈ IR

which generate a Heisenberg frame for C7, namely the pair of conjugate solutions given by

a = −
√

8 − 5
√

2(2
√

2 + 1 ± 7i)

2
√

7(3
√

2 − 2)
, b =

√

8 − 5
√

2

4
√

7
+

4
√

2

4
, c =

√

8 − 5
√

2

4
√

7
−

4
√

2

4
,

and the all real solution given by

a = −
√

3
√

2 − 2

2
√

7
, b =

√

6 + 5
√

2

4
√

7
+

√

2 −
√

2

4
, c =

√

6 + 5
√

2

4
√

7
−
√

2 −
√

2

4
.

Proof: Since the above system of equations solved above was over determined, we
need to check the solutions derived above satisfy all the equations. This is easily done.

A numerical calculation shows the orbits of the above solutions under E are distinct,
and so these solutions are not equivalent.

We now count the number of times [RBSC04] count vectors in the E–orbit of the
above v as different solutions. Since each v is stabilised by P2, 〈i〉 and H, this is

|Orbit of [v]| =
|E|

Stab([v])
=

460992

3 · 4 · 73
= 112.

Since our three solutions are inequivalent they account for all the 336 = 3 × 112 solutions
found numerically by [RBSC04].
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