
SHARP ERROR ESTIMATES FOR INTERPOLATORY
APPROXIMATION ON CONVEX POLYTOPES

ALLAL GUESSAB∗ AND GERHARD SCHMEISSER†

Abstract. Let P be a convex polytope in the d-dimensional Euclidean space. We consider an
interpolation of a function f at the vertices of P and compare it with the interpolation of f and its
derivative at a fixed point y ∈ P. The two methods may be seen as multivariate analogues of an
interpolation by secants and tangents, respectively. For twice continuously differentiable functions,
we establish sharp error estimates with respect to a generalized Lp norm for 1 ≤ p ≤ ∞. The case
p = 1 is of special interest since it provides analogues of the midpoint rule and the trapezoidal rule
for approximate integration over the polytope P. In the case where P is a simplex and p > 1, this
investigation covers recent results by S. Waldron [8] and by M. Stämpfle [6].
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1. Introduction and Notation. Denote by P1 the class of all polynomials in
d real variables of degree at most 1, also called the class of affine functions on Rd.
Let P ⊂ Rd be a convex polytope of positive measure with vertices v1, . . . , vn, and let
B1, . . . , Bn be an associated system of continuous functions on P with the following
properties:

Non-negativity. For i = 1, . . . , n, we have

Bi(x) ≥ 0 (x ∈ P).(1.1)

Linear precision. For every λ ∈ P1, we have

λ(x) =
n∑

i=1

λ(vi)Bi(x).(1.2)

Warren [10] showed that B1, . . . , Bn can be chosen as rational functions, which are
uniquely determined if one requires that each Bi have minimal degree. Furthermore,
for an arbitrary convex polytope, he presented an algorithm for constructing these
functions B1, . . . , Bn in a finite number of steps.

Since vertices of a convex polytope are extremal points, it is easily deduced from
the “linear precision” that

Bi(vj) = δij (i, j ∈ {1, . . . , n}),(1.3)

where we use Kronecker’s delta. As a consequence of (1.2) and (1.3), the functions
B1, . . . , Bn are linearly independent and span an n-dimensional linear space Rn which
contains P1 as a subspace.

By C(P), C1(P), and C2(P), we denote the spaces of functions which are de-
fined on P and are continuous, continuously differentiable, and twice continuously
differentiable, respectively.
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Next, let L be a positive linear functional on C(P). The positivity means that
L(f) > 0 for every nontrivial non-negative function f ∈ C(P).

Examples of such functionals are weighted integrals

L(f) :=
∫

P

w(x)f(x)dx
(
f ∈ C(P)

)
,(1.4)

where w is integrable and positive on P except for a set of measure zero.
For f ∈ C(P), we introduce

‖f‖p :=
(
L(|f |p)

)1/p (1 ≤ p < ∞)(1.5)

and

‖f‖∞ := sup
x∈P

|f(x)| ,(1.6)

which define norms on C(P). When L is given by (1.4) and w = 1, then ‖ · ‖p is
the familiar Lp norm. For general L, we may think of P as being equipped with a
mass distribution such that L(1) is the total mass of P. The possibility of having an
arbitrary L is of interest mainly in our applications of the case p = 1 (see Section 4).
For this reason, we do not use a weighted supremum norm.

By ‖ · ‖, without any subscript, and by 〈·, ·〉, we want to denote the Euclidean
norm and the standard inner product in Rd.

In this paper, we shall study the linear interpolation operator Λv, defined by

Λv[f ] :=
n∑

i=1

f(vi)Bi

(
f ∈ C(P)

)
,(1.7)

which interpolates f at the vertices of P, and shall compare it with

Λy[f ] := f(y) + Df(y)(· − y)
(
f ∈ C1(P)

)
,(1.8)

where y ∈ P. Clearly, Λy[f ] interpolates f at y and the same holds for the first
derivative.

As regards our notation, we want to follow the convention that a superscript
in roman type indicates an abbreviation for a word while a subscript in italic type
is a mathematical quantity. In particular, the superscript v shall always refer to
interpolation at the vertices. Similarly, we shall use the superscripts sb for smallest
ball and cm for center of mass.

2. Auxiliary Results. For convenient reference, we first state some properties
of the operators Λy and Λv as lemmas.

Lemma 2.1. For y ∈ P, the operator Λy has the following properties.
(i) It maps C1(P) into P1.
(ii) It reproduces functions from P1.
(iii) It approximates convex functions from below.
Proof. The properties (i) and (ii) are obvious. Property (iii) is a well known fact

about differentiable, convex functions; see [5, p. 98, Theorem A].
Lemma 2.2. The operator Λv has the following properties.
(i) It maps C(P) into Rn.
(ii) It reproduces functions from Rn.
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(iii) It approximates convex functions from above.
(iv) If f, g ∈ C(P) and f(vi) ≤ g(vi) for i = 1, . . . , n, then Λv[f ] ≤ Λv[g].

Proof. Since {B1, . . . , Bn} is a basis of Rn, the properties (i) and (ii) are obvious
consequences of the definition of Λv.

Next, it follows from (1.2) that

x =
n∑

i=1

viBi(x) (x ∈ P),

which is a representation of x as a convex combination of the vertices of P. Hence,
for a convex function f ,

f(x) = f

(
n∑

i=1

viBi(x)

)
≤

n∑
i=1

f(vi)Bi(x) = Λv[f ](x) (x ∈ P),

and so statement (iii) is verified.
Finally, recalling (1.1), we see that, under the hypothesis of statement (iv),

Λv[f ] =
n∑

i=1

f(vi)Bi ≤
n∑

i=1

g(vi)Bi = Λv[g].

This completes the proof.

It will turn out that the constants in our error estimates are determined by the
interpolation error of the quadratic function ‖ · ‖2. We therefore introduce the (non-
negative) functions

ey := ‖ · ‖2 − Λy

[
‖ · ‖2

]
,(2.1)

where y ∈ P, and

ev := Λv
[
‖ · ‖2

]
− ‖ · ‖2 =

n∑
i=1

‖vi‖2Bi − ‖ · ‖2.(2.2)

Representations, interrelations, and estimates for these functions are stated in the
following lemma.

Lemma 2.3. The functions ey and ev are non-negative and vanish at the inter-
polation points of Λy and Λv, respectively. They satisfy the equations

ey = ‖ · −y‖2,(2.3)

ev =
n∑

i=1

‖ · −vi‖2Bi ,(2.4)

ev + ey =
n∑

i=1

ey(vi)Bi .(2.5)

Furthermore, denoting by

Bsb =: {x ∈ Rd : ‖x− xsb‖ ≤ rsb}(2.6)
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the smallest ball that contains P, we have

ev(x) ≤ (rsb)2 − ‖x− xsb‖2 ≤ (rsb)2(2.7)

for all x ∈ P.

For notational simplicity, we write

Λsb := Λy and esb := ey if y = xsb.(2.8)

Proof. From the definition of the functions ey and ev, it is clear that they vanish
at the interpolation points of Λy and Λv, respectively. Since ‖·‖2 is a convex function,
the statements (iii) of Lemmas 2.1 and 2.2 show that ey and ev are non-negative.

Next, from the definition of ey, we deduce that

ey(x) = ‖x‖2 −
(
‖y‖2 + 2〈y, x− y〉

)
= ‖x‖2 + ‖y‖2 − 2〈y, x〉 = ‖x− y‖2,

which is (2.3).
Since ev + ey belongs to Rn, statement (ii) of Lemma 2.2 shows that, for any

x ∈ P, we have

ev(x) + ey(x) =
n∑

i=1

(
ev(vi) + ey(vi)

)
Bi(x) =

n∑
i=1

ey(vi)Bi(x) ,(2.9)

which is (2.5).
Substituting y = x in (2.9) and using (2.3), we obtain (2.4).
For a proof of (2.7), we first note that xsb ∈ P, as a consequence of the convexity

of P. Since

hsb := (rsb)2 − ‖ · −xsb‖2(2.10)

is non-negative on P, while ev vanishes at all the vertices of P, we clearly have

hsb(vi)− ev(vi) ≥ 0 (i = 1, . . . , n).

Therefore statement (iv) of Lemma 2.2 implies that Λv[hsb − ev] ≥ 0. Furthermore,
using (2.3), (2.5), and the notation (2.8), we find that

hsb − ev = (rsb)2 − esb − ev = (rsb)2 −
n∑

i=1

esb(vi)Bi ,(2.11)

which obviously belongs to Rn. Hence statement (ii) of Lemma 2.2 allows us to con-
clude that

hsb − ev = Λv
[
hsb − ev

]
≥ 0 ,(2.12)

which gives (2.7) immediately.
Remark 2.4. Inequality (2.7) is of interest for the following reason. As we shall

see, the best constants in our error estimates for Λv[f ] are determined by norms of ev.
If ev is complicated, then we may use the simpler function (2.10) instead and obtain
a constant which is possibly somewhat worse, but which may still be good enough for
practical applications. In the case where P is a simplex, it can even be shown that

sup
x∈P

ev(x) = sup
x∈P

hsb(x) = (rsb)2;

see [6, Lemma 4.2].



ERROR ESTIMATES FOR APPROXIMATION ON CONVEX POLYTOPES 5

3. Approximation of Functions. We are mainly interested in approximation
of functions from C2(P). However, in the case where P is a simplex, Stämpfle [6,
Theorem 4.1, statements (i)–(iv)] also presented results for functions belonging to
lower regularity classes. These statements extend to Λv by exactly the same arguments
as in [6]. We only mention a result for a Lipschitz class which is more general than
the one considered in [6].

For α ∈ (0, 1] and L > 0, we write f ∈ LipL(α, P) and say that f satisfies a
Lipschitz condition of order α with Lipschitz constant L on P if f ∈ C(P) and

|f(x)− f(y)| ≤ L‖x− y‖α (x, y ∈ P).

Theorem 3.1. Let f ∈ LipL(α, P). Then∣∣f(x)− Λv[f ](x)
∣∣ ≤ L

(
ev(x)

)α/2 (x ∈ P)(3.1)

and, for each p ∈ [1,∞], ∥∥f − Λv[f ]
∥∥

p
≤ L

∥∥(ev)α/2
∥∥

p
.(3.2)

Proof. From (1.2) and the definition of Λv, it is clear that

f(x)− Λv[f ](x) =
n∑

i=1

(
f(x)− f(vi)

)
Bi(x) ,

and so, by the triangle inequality and the Lipschitz condition,

∣∣f(x)− Λv[f ](x)
∣∣ ≤ L

n∑
i=1

‖x− vi‖αBi(x) .(3.3)

Next, using Hölder’s inequality with p := 2/α and q := 2/(2 − α), which is an
admissible pair of exponents, and recalling (1.2) and (2.4), we find that

n∑
i=1

‖x− vi‖αBi(x) =
n∑

i=1

‖x− vi‖αBi(x)1/p ·Bi(x)1/q

≤

(
n∑

i=1

‖x− vi‖αpBi(x)

)1/p

·

(
n∑

i=1

Bi(x)

)1/q

=

(
n∑

i=1

‖x− vi‖2Bi(x)

)α/2

=
(
ev(x)

)α/2
.

Combining this with (3.3), we obtain (3.1). Clearly, (3.2) is an immediate consequence
of (3.1).

For twice differentiable functions f : P → R, we denote by

H[f ](x) :=
(

∂2f

∂xi∂xj
(x)
)

i,j=1,...,d
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the Hessian matrix of f at x and introduceD2f
 := sup

x∈P
sup
y∈Rd

‖y‖=1

∣∣y>H[f ](x)y
∣∣ ,(3.4)

agreeing that the elements of Rd are column vectors so that y>, which denotes the
transpose of y, becomes a row vector. Clearly,

D2f
 = 0 for f ∈ P1 and

D2f
 =

2 |c| for f = c‖ · ‖2.
Subsequently, we shall often refer to the space

F2 :=
{

f := λ + c ‖·‖2 : λ ∈ P1, c ∈ R
}

.(3.5)

The following theorem for Λy is not more than an easy exercise in calculus. We
formulate it as a theorem only in order to compare it with the corresponding result
for Λv.

Theorem 3.2. Let f ∈ C2(P). Then,∣∣f(x)− Λy[f ](x)
∣∣ ≤ 1

2
‖x− y‖2

D2f
 (x, y ∈ P).(3.6)

Furthermore, for each p ∈ [1,∞],∥∥f − Λy[f ]
∥∥

p
≤ cy,p

D2f
,(3.7)

where

cy,p :=
1
2
‖ey‖p .(3.8)

Both inequalities are sharp. Equality is attained for every f ∈ F2.
Proof. By the Taylor formula of order two, we have

f(x)− Λy[f ](x) =
1
2

(x− y)>H[f ]
(
y + θ(x− y)

)
(x− y)

for some θ ∈ (0, 1). Now the definition of
D2f

, given in (3.4), shows that (3.6)
holds. Inequality (3.7) is an immediate consequence of (3.6). Finally, the case of
equality is easily verified.

Theorem 3.3. Let f ∈ C2(P). Then,∣∣f(x)− Λv[f ](x)
∣∣ ≤ 1

2
ev(x)

D2f
 (x ∈ P).(3.9)

Furthermore, for each p ∈ [1,∞],∥∥f − Λv[f ]
∥∥

p
≤ cv

p

D2f
,(3.10)

where

cv
p :=

1
2
‖ev‖p .(3.11)

Both inequalities are sharp. Equality is attained for every f ∈ F2.
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Proof. Inequality (3.6) may be rewritten as

− 1
2
‖x− y‖2

D2f
 ≤ f(x)− Λy[f ](x) ≤ 1

2
‖x− y‖2

D2f
 (x, y ∈ P).(3.12)

Next, from statement (iv) of Lemma 2.2, it follows that inequalities between contin-
uous functions on P are preserved when the operator Λv is applied on both sides.
Moreover, statement (i) of Lemma 2.1 together with statement (ii) of Lemma 2.2
show that

Λv
[
Λy[f ]

]
= Λy[f ] .

Hence (3.12) implies that

− 1
2

Λv
[
‖ · −y‖2

]
(x)
D2f

 ≤ Λv[f ](x)− Λy[f ](x) ≤ 1
2

Λv
[
‖ · −y‖2

]
(x)
D2f

.

Now, taking y = x and noting that Λx[f ](x) = f(x) and, by (2.4),

Λv
[
‖ · −x‖2

]
(x) =

n∑
i=1

‖vi − x‖2Bi(x) = ev(x) ,

we obtain

−1
2

ev(x)
D2f

 ≤ Λv[f ](x)− f(x) ≤ 1
2

ev(x)
D2f

,

which is equivalent to (3.9). Inequality (3.10) is an immediate consequence of (3.9).
The statement on the occurrence of equality is easily verified by a calculation.

Remark 3.4. Since Λv is a positive operator which reproduces affine functions,
inequality (3.9) can also be deduced from [9, Theorem 1.4] in conjunction with the
above Lemma 2.3.

The operator Λy has just one interpolation point, which is of multiplicity two.
Such an interpolation can be described by d + 1 scalar equations. The interpolation
of the operator Λv, which has n simple interpolation points, can be described by n
scalar equations. Since n ≥ d + 1, we may expect that the operator Λv is at least as
precise as Λy. In the following proposition, we compare the constants (3.8) and (3.11)
when p = ∞.

Proposition 3.5. For p = ∞, the constants (3.8) and (3.11) satisfy the relations

cv
∞ ≤ cy,∞ (y ∈ P)(3.13)

and

inf
y∈P

cy,∞ =
(rsb)2

2
(3.14)

the infimum being attained for y = xsb, where rsb and xsb specify the smallest ball
Bsb which contains P, as introduced in (2.6).

If all the vertices of P lie on the boundary of Bsb, then

cv
∞ =

(rsb)2

2
.(3.15)
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Proof. It follows from (2.5) that

ev(x) ≤
n∑

i=1

ey(vi)Bi(x) ≤ max
1≤i≤n

ey(vi) (x ∈ P),(3.16)

which implies (3.13).
Since a convex function, defined on a convex set, attains its supremum at an

extreme point (see for example [4, p. 91]), we have

max
1≤i≤n

ey(vi) = sup
x∈P

ey(x) = 2cy,∞ .(3.17)

This shows that cy,∞ attains its smallest value at a point where

φ(y) := max
1≤i≤n

ey(vi) = max
1≤i≤n

‖y − vi‖2

attains its minimum. Clearly, this is the center of the smallest ball Bsb that contains
P, and so

min
y∈P

φ(y) = φ(xsb) = (rsb)2 .

Thus (3.14) is verified.
If all the vertices of P lie on the boundary of Bsb, then ‖xsb − vi‖ = rsb for

i = 1, . . . , n. Therefore, by (2.4),

ev(xsb) =
n∑

i=1

‖xsb − vi‖2Bi(xsb) = (rsb)2
n∑

i=1

Bi(xsb) = (rsb)2,

which shows that cv
∞ ≥ (rsb)2/2. Combining this inequality with (3.13) and (3.14),

we obtain (3.15).
In the univariate case, where P is an interval [a, b], it is known and also seen from

(3.15) that, for y = (b + a)/2, we have

cv
∞ = cy,∞ =

(b− a)2

8
.

Moreover, the mean value

1
2
(
Λy[f ] + Λv[f ]

) (
y =

a + b

2

)
gives an approximation whose constant in the error bound is (b− a)2/16. A general-
ization is given in the following proposition.

Proposition 3.6. Let f ∈ C2(P). Then, for every y ∈ P and α ∈ [0, 1], we have∥∥f − αΛy[f ]− (1− α)Λv[f ]
∥∥
∞ ≤ c(α, y)

D2f
,(3.18)

where

c(α, y) :=
1
2

sup
x∈P

(
αey(x) + (1− α)ev(x)

)
.(3.19)
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Furthermore,

inf
0≤α≤1

inf
y∈P

c(α, y) ≤ (rsb)2

4
= c( 1

2 , xsb) ,(3.20)

where rsb and xsb are the radius and the center of the smallest ball Bsb that contains
P. Equality occurs in (3.20) if all the vertices of P lie on the boundary of Bsb. In this
case, inequality (3.18) is sharp when α = 1/2 and y = xsb, and equality is attained
for every function f ∈ F2.

Proof. The estimates (3.6) and (3.9) may be rewritten as

−1
2
ey(x)

D2f
 ≤ f(x)− Λy[f ](x) ≤ 1

2
ey(x)

D2f


and

−1
2
ev(x)

D2f
 ≤ f(x)− Λv[f ](x) ≤ 1

2
ev(x)

D2f
.

Multiplying the first inequalities by α and the second by 1−α, and adding the results,
we obtain∣∣f(x)− αΛy[f ](x)− (1− α)Λv[f ](x)

∣∣ ≤ 1
2
(
αey(x) + (1− α)ev(x)

)D2f
.

This implies (3.18).
Next, using (2.5) and the notation (2.8), we find that

c( 1
2 , xsb) =

1
4

sup
x∈P

(
ev(x) + esb(x)

)
=

1
4

sup
x∈P

n∑
i=1

‖xsb − vi‖2Bi(x) .

If vj is a vertex on the boundary of Bsb, then, by (1.1), (1.3), (2.11), and (2.12),

n∑
i=1

‖xsb − vi‖2Bi(vj) = ‖xsb − vj‖2 = (rsb)2 ≥
n∑

i=1

‖xsb − vi‖2Bi(x)

for all x ∈ P. This shows that

sup
x∈P

n∑
i=1

‖xsb − vi‖2Bi(x) = (rsb)2

and completes the proof of (3.20).
Using (3.19), we deduce that

c(α, y) ≥ 1− α

2
sup
x∈P

ev(x) = (1− α) cv
∞ ≥ cv

∞
2

if α ∈ [0, 1
2 ]

and, in conjunction with (3.14),

c(α, y) ≥ α

2
sup
x∈P

ey(x) = α cy,∞ ≥ (rsb)2

4
if α ∈ [ 12 , 1].
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Under the hypothesis that all the vertices of P lie on the boundary of Bsb, we know
from Proposition 3.5 that

cv
∞ =

(rsb)2

2
.

Hence

c(α, y) ≥ (rsb)2

4
(
α ∈ [0, 1], y ∈ P

)
,

which shows that equality occurs in (3.20).
Finally, we have to verify the statement on the occurrence of equality for functions

f from the class F2. For this, it is clearly enough to consider the function f := ‖ · ‖2

only.
Using the notation (2.8), we may rewrite (2.1) and (2.2) as

f(x)− Λsb[f ](x) = esb(x) ,

f(x)− Λv[f ](x) = −ev(x) .

Therefore,

f(x)− 1
2

Λsb[f ](x)− 1
2

Λv[f ](x) =
1
2
(
esb(x)− ev(x)

)
and consequently,∥∥∥∥f − 1

2
Λsb[f ]− 1

2
Λv[f ]

∥∥∥∥
∞

=
1
2

sup
x∈P

∣∣esb(x)− ev(x)
∣∣ .

If all the vertices of P lie on the boundary of Bsb, then

sup
x∈P

∣∣esb(x)− ev(x)
∣∣ ≥ ∣∣esb(xsb)− ev(xsb)

∣∣ = ev(xsb) = (rsb)2,

where the last equation follows from (2.4) and (1.2), and so∥∥∥∥f − 1
2

Λsb[f ]− 1
2

Λv[f ]
∥∥∥∥
∞

≥ (rsb)2

2
.

On the other hand, (3.18) and (3.20) show that∥∥∥∥f − 1
2

Λsb[f ]− 1
2

Λv[f ]
∥∥∥∥
∞

≤ (rsb)2

2
.

Hence equality occurs for f = ‖ · ‖2.

4. Approximation of Linear Functionals. In the case p = 1, Theorems 3.1–
3.3 provide an approximation of L(f), defined in (1.4), by the values of f (and possibly
of Df) at the interpolation points of Λy and Λv, respectively. Indeed, if Λ is any of
the two operators Λy and Λv, and I(f) := L(Λ[f ]), then, using that L is linear and
positive, we have∣∣L(f)− I(f)

∣∣ =
∣∣L(f − Λ[f ])

∣∣ ≤ L
(
|f − Λ[f ]|

)
=
∥∥f − Λ[f ]

∥∥
1

.
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Let us now turn to details. Denoting by id the identity mapping on P and
observing that L(id) is a mapping from P into Rd, we shall consider the operators

Iy(f) := L(Λy[f ]) = L(1)
[
f(y) + Df(y)

(
L(id)
L(1)

− y

)]
(4.1)

and

Iv(f) := L(Λv[f ]) =
n∑

i=1

f(vi)L(Bi) .(4.2)

In the case p = 1, the constants (3.8) and (3.11) can be expressed as

cy,1 =
1
2
L(ey) and cv

1 =
1
2
(
Iv(ey)− L(ey)

)
.(4.3)

Note that the last equation, which is deduced with the help of (2.5), is independent
of y. Now Theorems 3.2 and 3.3 imply the following corollaries.

Corollary 4.1. Let f ∈ C2(P). Then, for any y ∈ P, we have

|L(f)− Iy(f)| ≤ L(ey)
2

D2f
.

Equality is attained for every f ∈ F2.
Corollary 4.2. Let f ∈ C2(P). Then, for any y ∈ P, we have

|L(f)− Iv(f)| ≤ Iv(ey)− L(ey)
2

D2f
.

Equality is attained for every f ∈ F2.
Remark 4.3. The conclusions of Corollaries 4.1 and 4.2 can be refined when, in

addition, f is known to be a convex function. In fact, in this case, we also have

Iy(f) ≤ L(f) ≤ Iv(f)

as a consequence of the statements (iii) of Lemmas 2.1 and 2.2.
The “cubature rule” Iv(f) may be seen as a multivariate analogue of the trape-

zoidal rule. As (4.1) shows, the “cubature rule” Iy(f) simplifies and does not depend
on Df if y is chosen as

xcm :=
L(id)
L(1)

.

In this case, Iy(f) is a multivariate analogue of the midpoint rule.
The point xcm will be called the center of mass of P with respect to the functional

L. Note that xcm always belongs to P. Indeed, if xcm were outside P, then there
would exist a separating hyperplane

λ(x) := a + 〈b, x〉 = 0,

where a ∈ R and b ∈ Rd, such that λ(x) > 0 for x ∈ P and λ(xcm) < 0. Since L is
positive, we would have L(λ) > 0. On the other hand, the linearity of L implies that

L(λ) = aL(1) + 〈b,L(id)〉 = aL(1) + 〈b,L(1)xcm〉 = L(1)λ(xcm) < 0,



12 A. GUESSAB AND G. SCHMEISSER

which is a contradiction.
For notational simplicity, we now write

Λcm := Λy , Icm := Iy , ecm := ey , ccm
p := cy,p if y = xcm.(4.4)

Since

ey(x) = ‖x− y‖2 = ‖x− xcm‖2 + ‖xcm − y‖2 + 2〈x− xcm , xcm − y〉,

we find, using the definition of xcm, that

cy,1 = L(ey) = L(ecm) + L(1)‖xcm − y‖2.

This shows that the constant in the error estimate of Corollary 4.1 becomes smallest
if and only if y = xcm.

Remark 4.4. It may be interesting to compare the operators Icm and Iv. Re-
calling that cv

1 in (4.3) does not depend on y, we may take y = xcm. Then Corollaries
4.1 and 4.2 show that the quotient

κ :=
L(ecm)
Iv(ecm)

(4.5)

indicates which one of the two operators Icm and Iv has the smaller constant in
its error estimate. We see that ccm

1 < cv
1 if and only if κ ∈ (0, 1/2). Since, for

convex functions, Iv approximates L from above, we always have κ ∈ (0, 1). In all the
standard examples considered by us, we found that κ ∈ (0, 1/2). However, κ ∈ [1/2, 1)
will occur when L is of the form (1.4) and the weight function w is large near the
vertices.

5. Examples. We illustrate our results by considering three special classes of
convex polytopes for which interpolation and approximation problems have been stud-
ied in the literature.

5.1. Intervals (the univariate case). Let d := 1, P := [a, b], and L(f) :=∫ b

a
f(x) dx. Then xsb = xcm = 1

2 (a + b),

Λcm[f ](x) = f

(
a + b

2

)
+ f ′

(
a + b

2

)(
x− a + b

2

)
,

and

Λv[f ](x) =
b− x

b− a
f(a) +

x− a

b− a
f(b) .

Moreover,
D2f

 = supa≤x≤b |f ′′(x)| . For the constants (3.8) with y = xcm and
(3.11), we find that

ccm
p =

1
2

[
(b− a)2p+1

22p(2p + 1)

]1/p

(1 ≤ p < ∞)

and

cv
p =

1
2
[
B(p + 1, p + 1)(b− a)2p+1

]1/p
(1 ≤ p < ∞),
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where

B(s, t) :=
∫ 1

0

xs−1(1− x)t−1 dx

is the beta function. Furthermore,

ccm
∞ = cv

∞ =
(b− a)2

8
.

It can be shown that ccm
p < cv

p for 1 ≤ p < ∞. In particular, cv
1/ccm

1 = 2, which
expresses the well known fact that the constant in the error term of the trapezoidal
rule is twice as large as that of the midpoint rule.

5.2. Multidimensional simplices. Let S ⊂ Rd be a non-degenerate simplex
with vertices v0, . . . , vd. The uniquely determined rational basis functions B0, . . . , Bd

of minimal degree are the classical barycentric coordinates, which may be constructed
as follows. Let λi(x) = 0 be the equation of a hyperplane that contains all the vertices
of S other than vi. Then

Bi(x) =
λi(x)
λi(vi)

(i = 0, . . . , d).

For L(f) :=
∫

S
f(x) dx, we obtain

xcm =
1
|S|

∫
S

xdx =
1

d + 1

d∑
i=0

vi ,

where we write |S| for the d-dimensional volume of S. This gives a representation of
ecm in terms of the vertices, which, via (4.4) and (3.17), leads us to

ccm
∞ =

1
2(d + 1)2

max
0≤i≤d

∥∥∥∥∥∥
d∑

j=0

(vi − vj)

∥∥∥∥∥∥
2

.

Since the basis functions Bi belong to P1, the function ev, defined in (2.2), is now
of the form ev = λ − ‖ · ‖2, where λ ∈ P1. Therefore ev(x) = 0 is the equation of
the uniquely defined sphere that contains all the vertices of S (see e. g., Stämpfle [6,
Proposition 3.1]). Thus ev can be represented as

ev(x) = r̂2 − ‖x− x̂‖2

for some r̂ > 0 and x̂ ∈ Rd.
The case of the approximation by Λv with respect to the norm ‖ · ‖∞ is covered

by the papers of Waldron [8, Theorem 2.1] and Stämpfle [6, Theorem 4.1]; also see
de Boor [1]. Clearly, cv

∞ = r̂2/2 when x̂ ∈ S. Otherwise, it can be shown that
cv
∞ = 1

2 (r̂2 − ρ2), where ρ is the distance of x̂ from S. Geometrically, 2cv
∞ may be

interpreted as the square of the radius of the smallest ball that contains S (see [6,
Lemma 4.2]).

For the standard unit simplex of dimension d ≥ 2, a straightforward calculation
gives

ccm
∞ =

d2 + d− 1
2(d + 1)2

and cv
∞ =

d− 1
2d

,
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and so

cv
∞

ccm
∞

= 1− 1
d(d2 + d− 1)

< 1 .

For the calculation of the constants (4.3) for y = xcm, we first determine L(ecm)
with the help of a cubature rule which is exact for all polynomials of degree less or
equal to two, taken from the book of Stroud [7, p. 307, formula Tn : 2-2]. It gives

L(ecm) =
∫

S

ecm(x) dx =
(2− d) |S|

(d + 2)(d + 1)

d∑
i=0

ecm(vi)

+
4 |S|

(d + 2)(d + 1)

∑
0≤i<j≤d

ecm(vij),

where vij = 1
2 (vi + vj). Simplifying the second sum by making use of the special form

of ecm, we arrive at

L(ecm) =
|S|

(d + 2)(d + 1)

d∑
i=0

ecm(vi).

Since the basis functions B0, . . . , Bd belong to P1, we conclude that

L(Bi) = L(1)Bi(xcm) =
L(1)
d + 1

=
|S|

d + 1
(i = 0, . . . , d)

and therefore

Iv(ecm) =
|S|

d + 1

d∑
i=0

ecm(vi).

Thus, by (4.3), the definition of ecm in (4.4), and the representation in (2.3), we have

ccm
1 =

|S|
2(d + 2)(d + 1)

d∑
i=0

‖vi − xcm‖2

and

cv
1 =

|S|
2(d + 2)

d∑
i=0

‖vi − xcm‖2.

These values for ccm
1 and cv

1 also follow from [3, Corollary 6.2, formulae (6.4) and
(6.5)]. We see that cv

1 = (d + 1)ccm
1 and κ = 1/(d + 2) in (4.5).

5.3. Hyperrectangles. Let

R := [a1, b1]× · · · × [ad, bd]

be a rectangle in Rd with vertices

vi := (vi1, . . . , vid) (i = 1, . . . , 2d).

To each vertex vi, there exists exactly one vertex of maximal distance, which we call
the diametrically opposite vertex and which we denote by vi := (vi1, . . . , vid). Any
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two vertices vi and vj have at least one common component unless they are a pair of
diametrically opposite vertices. Therefore

Bi(x) :=
d∏

j=1

xj − vij

vij − vij
(i = 1, . . . , 2d),

where x = (x1, . . . , xd), are the rational basis functions of smallest degree. They span
a polynomial space of dimension 2d, which contains P1 as a subspace.

For L(f) :=
∫

R
f(x) dx, the center of mass is

xcm =
1
2
(a1 + b1, . . . , ad + bd).

With this, we find that

ecm(vi) =
1
4

d∑
i=1

(ai − bi)2 =: (rcm)2 (i = 1, . . . , 2d).

Therefore (2.5) implies that

ecm(x) + ev(x) = (rcm)2

for all x. Consequently,

sup
x∈R

ecm(x) = sup
x∈R

ev(x) = (rcm)2,

or equivalently,

ccm
∞ = cv

∞ =
(rcm)2

2
.

For determining the best constants in the case p = 1, we first calculate

L(ecm) =
∫

R

‖x− xcm‖2 dx =
(rcm)2

3
|R| ,

where |R| =
∏d

i=1(bi − ai), and note that

Iv(ecm) = (rcm)2 |R| .

Hence (4.3) with y = xcm implies that

ccm
1 =

(rcm)2

6
|R| and cv

1 =
(rcm)2

3
|R| .

Thus, cv
1/ccm

1 = 2 and κ = 1/3, as in the univariate case.
In the literature, analogues of the trapezoidal rule for hyperrectangles have been

studied in the context of tensor product rules (see, e.g., [2, § 8.2]).
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