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Abstract—We prove that the automor- representation theory to deduce significant con-
|[O7h?isgé Eng])UIO dOf k? binaary 55e7lf-1dou:il4dougly-ﬁven sequences for the structure AfG' when C is
code has order or d where
d dvides 18 or 24. or it is Ay x Ch. a self-dual doubly-eve¢72,_36, 16] cod_e. We
apply these results to devise a practical algo-
Keywords Automorphism group, extremal coderithm to decide ifG is the automorphism group
of length 72 of C. Finally we use this algorithm to study
KG computationally. If KG does not satisfy
|. INTRODUCTION the requisite properties, then we conclude that

The existence of a binary self-dual doubly: cannot be the automorphism group of the
even|[72,36,16] code remains a long-standingcode; otherwise our algorithm constructs For
question, first posed by Sloane [17] in 1973droups of order 36 (with the noted exception),
Determining the automorphism group of suc6, and 72, this program was successful.

a code may be a useful first step to construct All computations were carried out using
it. In a series of papers [4], [5], [7], [10], MAGMA [1]. The minimum distance of a code
[14], [15], [20], both its order and structurewas determined using the algorithm of Brouwer
were investigated. The strongest result is th& Zimmermann [3]. We use the descriptions
following established in [6]. and identifiers of the groups of certain orders

ided by the BIALL GRouUPSIib 2].
The automorphism group of a binary seIf-prOVI ed by the ibrary [2]

dual doubly-even[72,36,16] code has order
5,7,10,14, 56, or a divisor of 72. II. BACKGROUND AND NOTATION

In this paper, we exclude all groups of Let K be the binary field; and letKG =
order72,56 and all but one group of orde6, {>_,cckq9 | ks € K} denote the group
obtaining the following. algebra of a finite (multiplicative written) group
G over K. The multiplication in the algebra
KG is given by the multiplication in the group
G extended linearly.

If H is a subgroup of7, then we may write
G = U;_,Hg; where{g,...,gs} is a set of

Critical to our proof is the observation thattransversals fron¥ in G. Let K§ denote the
if a codeC has a specific automorphism groupk-vector space generated ¥ g1, ..., Hgs},
G, thenC is a submodule of the group algebréhence K§ = @, KHg;. For an arbitrary
KG where K is the binary field. We use ag € G we haveHg;g = Hg; wherel < j <s
variety of results, some new, from moduladepending oni. Thus K§ is a KG-module

Theorem The automorphism group of a binary
self-dual doubly-evelfi72, 36, 16] code has or-
der 5,7,10,14, or d whered divides18 or 24,
oritis Ay x Cs.



via this action and is the permutation module

corresponding to the permutation action Gf
on the cosetddg;. In particular, KG = K§
for H = (1).

Lemma L:If V = K" = KG andC =
C* is doubly-even then the Sylo@subgroup
of G is not cyclic.

Proof: See the main result of [18], or [12,

If we considerK§ as the ambient space ofTheorem 4.4]. [ |

a code therf{ gy, . ..

, Hgs are used as the fixed

Lemma 2 requires some facts from repre-

basis. The natural non-degenerate bilinear forsentation theory which we now recall. if is a
on K§ which defines the concept of duality for K G-module thenl’* = Homg (V, K) becomes

codes is given by
(Hgi, Hg;) = dij.

Observe that the forn ,
(Hgix, Hgjx) =

1)

(Hgi, Hygj)

forall x € G andi,j =1,...,s. In particular,
for the group algebralG = K¢ the bilinear
form is given by

-) is G-invariant since

a KG-module via

o(fg) = (vg™")f

wherev € V, f € V* andg € G. The module
V* is thedual moduleof V. If V* is isomorphic
to V as aKG-module thenV is self-dual (as
a module). Recall that the triviak G-module
is K on which all elements of7 act as the
identity; it is self-dual. The regulakl G-module

o V = KG is also self-dual sincex : KG —
(9:h) = Sgn- @ (G defined by
Let C' be a binary linear code of length B
n with automorphism grougs. Thus C is a z(ya) = (2,9)
subspace of the vector spaée = K". Via for z,y € KG and (-,-) as in (2) is an
the action ofG' as a group of permutations onisomorphism. It is well know that
the coordinate positions, the spate carries
the structure of a (right)X G-module. Since” KG=P&.. &P
is invariant underG, we deduce that is a with indecomposable moduld3. By the Krull-
submodule ofl”. The module structure of the Schmidt Theorem [9, Chap. |, Theorem 11.4],
ambient spacé’ can be described as follows.this decomposition is unique up to isomor-
If i1,...,is are representatives of the orbits ophism. Each summand; is a projective in-
G on©Q = {l,...,n} and if G; denotes the decomposable modulfor KG. Since theP;
stabilizer ofi € Q in G, then are direct summands okG, a free module,
V=K"=K& 1.. 3) they r_]ave a particular structure which we now
_ B describe.
Furthermore, if|G : G| = n; (the length Lemma 2:Let P be an indecomposable
of the orbit containingi;), then the elements direct summand oK G.
in the first componentKG have non-zero  g) p has a largest completely reducible sub-
entries in the firstn; positions, those in the module, namely its socle := soc(P),
second componean have non-zero entries and S is irreducible.
in positionsny +1,....,n1+nz, and so on. The 1) p has a unique maximal submodulgP)
bilinear form onV is the orthogonal sum of the and P/J(P) = S.
bilinear forms on the componenfsg, . c) The isomorphism type of is uniquely
determined by the isomorphism type 8f
IIl. PRELIMINARIES (We call P the projective coverof S and
As above letl” denote the ambient space  write P = P(S5).)
of a binary codeC with automorphism group d) Let Q be a direct sum of projective in-
G. decomposable modules; i.e. an arbitrary

L K& .



projective module. IfQ is a submodule or a left and a rightX G-module. Thus we may
a factor module of some modul®& then) write

is (up to isomorphism) a direct summand KG=B1&...8 B; (4)
of W. . . . .
Its proof can be found in [11, Chap. VI§10— with two-sided idealsB;. If we write

11]. l=fit+...+fs 5)
Lemma 3:Let V = K" = KG and sup- .

pose that all of its projective indecomposabl&ith fi € Bi, then thef; are in the center of

modules are self-dual modules and occur wit'® algebrak'G and f; f; = d;; fi. Moreover

multiplicity 1 in a direct decomposition akG. Bi = fikG = KGf;. We say that (5) is

If C =Ct < KG then a decomposition ofl into central orthogonal
idempotentsif B; cannot be split into a non-
soc(C) = soc(K Q). trivial direct sum of two-sided ideals then we

Proof: Write V. = KG = P, & ... & call B; ablockand f; a block idempotentThe
P,, with projective indecomposable moduleslock idempotentf; is uniquely determined by
P;. By assumption, theP; are pairwise non- the block B;.
isomorphic. Obviously, To obtain an orthogonal decomposition in
(4) with respect to the bilinear form oK G
defined in (2), we need a particular property of
the idempotents;. Let": KG — KG denote
the antialgebra automorphism &G defined

soc(V) =soc(Py) & ... @ soc(Py,),

and sodP;) = S; for pairwise non-isomorphic
irreducible modulesS;, by Lemma 2 c). Sup- e ]
pose that, for somg soc(P;) Z soc(C). Since by g — g~ for g € G. Suppose that alf; in
the socle ofP is irreducible,C N P, = 0. If we (3) satisfy fi = fi. Then
definea : V. — C* by c(va) = b(v,c) for KG=B,1... 1B, (6)
v € V andc € C then we easily see that

For, if x,y € KG andi # j, then

(Bi, Bj) = (2fi,yf5) = (fixfi.9) = (7
since Kera = C+ = C (see [19, Proposition  (fizf;,y) = (fif;z,y) = (0,y) = 0.

2.3]). ThuskF; is (up to isomorphism) a submod-
ule of C*. It follows that P is a factor module
of (C*)* = C'. HenceP, is (up to isomorphism)
a factor module o’ sinceP;" = P;. Thus there

V/C=V/Ct =

Moreover, the restriction of-, -) on B; is non-
degenerate, or in other word8; = B} as a
right KG-module. Finally, we putV; = Vf;
andC; = Cf; CV; fori=1,...,t. Note that

i hai . .
'S & chain V; and C; are KG-modules since th¢; are in
0<X<Y<C<K<Z<U<LV the center ofK G.
Lemma 4:Consider an arbitrary)” as in
of KG-modules with (3).
Y/X2U/Z =P, avV=Wnl..lV,andC=Cy L... L

C; as KG-modules.
Applying Lemma 2 d), the projective indecom- b) If C = C* then(; is a self-dual code in

posable modulé®; has multiplicity at least two Vifori=1,...,t.
in V = KG, contradicting the assumption of Proof: a) Clearly,V =V fi®...®Vf;
the lemma. B andC = Cfie...aC f; by standard arguments

In order to carry out computations succesgsee [11, Chap. VII, Theorem 12.1]). The proof
fully, we need a finer splitting of the ambientthat the decompositions are orthogonal is as in
spaceV as given in (3). Note thak(G is both (7). For, letv andw be elements i/ = K™,



Since G is a group of isometries o/, we the groupG cannot be the automorphism group
have (vg,w) = (v,wg™?) for all g € G. In of C.

particular, In the remainder, leC always be a binary
. self-dual doubly-eveifir2, 36, 16] code with au-
Vi, Vi) =V, V)= (V,Vfifi) = tomorphism group.
(V. Vfifi)=0
for i # j. This proves that the decompositions IV. EXCLUDING |G| = 72

of V andC are orthogonal.
b) SinceC = C* in V andC; C V;, it follows
that C; = C;- in the spacéV;.

Throughout this section we assume that
|G| = 72. Since elements of order 2 and 3 in
G act fixed-point-freely on th&2 coordinate
positions (see [4, Theorem 5.3] and [5, Theorem
X 1.1]), the action of7 on the positions is regular:
Let C' be a binary self-r:jue;l ”doybly'elvennamely,G has just one orbit on th& positions.
[_72’36’ 16] code. We use the fo owing aldo- s ¢ s a self-dual doubly-evelt-invariant
rithm to demonstrate that a specified groGp code in the group algebr& G
IS not_ the automorphism group ﬁ To show that none of thé&0 groups of

Flrs_t, we search for pairwise OrthOQOnabrder 72 occurs as an automorphism group of
central idempotents iK', say 1. .., f. SUCh o \ye proceed as follows. By Lemma 1, we
that f; = f; fori =1,....t and may assume that the Sylo@+subgroup ofG
is not cyclic. Among the remaining 43 groups,
precisely three do not have a normal subgroup

Finding such decompositions is easy sincgf order3. They are:
the groups we consider are solvable and small(;) G = (Cs x C3).Qs
For instance, ifH is a normal subgroup off (i) G = (C5 x C3).Ds
of odd order then we may takf = >, ., h (iii) G = (C3 x C3).(Cy x Cy)
andf; =1— f1. where Qs is the quaternion group of orde;

Dg the dihedral group of orde$, and C,, is
Lemma 4 implies thatC = Cf; 1L ... L Cyc"c of ordern.

Cfi whereC'f; is a self-dual doubly-even code  For (7 of type (i), the ambient spac& G

inVf;. . has exactly602361 submodules of dimension
Next we carry out the following steps:  36. All have minimum distance strictly smaller

Step 1.In eachV f; we compute all self-dual than 16. Thus G cannot be the automorphism

doubly-even andi-invariant codes, say;, of group ofC'.

The basic algorithm

1:f1++ft

minimum distance at least6. We call such ~ Next we consider the groug: of type
codesgood Let £; be a listing of all good (ii). Let H = (z,y) denote the normal Sylow
codes inV f;. 3-subgroup ofG. The conjugation action of
Step 2. We construct all modulesU in DsonH has three orbits: namely, the orbit
L:={U=U+...4+U | U € L;}. z,2%,y,y?, and the orbitzy,z?y, xy?, z%y>.
Step 3.We compute the minimum distance ofWe putfi = 3=, .y h, fo = z+2*+y+y* and
everyU < L. f3 = xy+ 22y +xy? +22y>. One easily checks

that the f; are central orthogonal idempotents
in KG and1 = f; + fo + f3. Furthermore,
Suppose that the minimum distance for allf; = fl for i =1,2,3. Finally, dim KGf; = 8
U € £ computed in Step 3 is strictly smalleranddim KG fo = KG f3 = 32. We now follow
than16. SinceC is one particular module i, the three steps of the algorithm described



above. In Step 1 we get6 good codes in the

Step 1. The componerdt G f; contains exactly block KG'fy and 18 in each blockK'G:f; for

6 modulesU; € £,. In each of KGf, and 1=2,...,5. Step 2 produces 6.29856 mpdules
KGfs there are90 modulesU € L, resp. U..StepBShows that all hgve minimum distance
Us € L. strictly smaller thanl6. This eliminates ).

Next letG = C3 x Cy x A4 and letz be a
Step 2. We compute all x 90 x 90 modules generator of the normal subgroup of ordeie

UeL. put fi =142+ 22 and f, =1 — f,. Clearly,
Step 3. All modulesU € £ have minimum f1 and f, are central orthogonal idempotents
distance strictly smaller that6. with 1 = f1 + f2. Since thef; are again

block idempotents and; = f;, we proceed as
ThusG is not the automorphism group ¢f.  above. One computes thdim K G f; = 24, so
dim KGfy, = 48. The block KGf, contains
Finally, the group in €i) can be ruled out exactly three irreducible modules, all of dimen-
similarly: we check all4 x 90 x 90 modules Ssion 2. Lemma 3 implies that sq©'f;) =
UelL. soc(K G f2). We now compute the spacés=
) Uy + soc(KGfs) for all Uy € £1. (Here we
‘There remain 40 groups of order 72 take only a particular subspace &fGf, in
which have a normal subgroufl’ of order step 1 which is contained in tH€G-submodule
3. Let f = > ey h. Clearly, f is a central ¢, of ¢) All such modules have minimum
idempotent inK G which satisfiesf = f. We distance strictly smaller than6. Thus a group

put fi = f and fo = 1 — f and apply the of type (3) cannot be the automorphism group
algorithm. For37 of these groups, all relevantof .

U € £ have minimum distance strictly smaller  |n the last cases = (C5 x A,)(t) where
than 16. Consequently these groups do nofhe involutiont acts non-trivially onCs and
occur as automorphism groups. Ault) = S,. We again putf; = 1 + z + 22
wherex generates the normal subgroup of order
In three cases it was not possible to com3 andf, = 1—f;. As in case §), dim KGf; =
pute directlyl,. These are: 24 and dim KGf, = 48. The block KGf,
() G =[(C5xC5)x(CyxCq)](t) where the containsr607 submodules, exacty8 are good.
involution ¢ inverts all elements of order The componentK G f; has 9576333 submod-
3 and the Sylow2-subgroup ofG is a ules, exactly5184 are good. All modules inC

dihedral group of ordesg. have minimum distance strictly smaller than 16.
(B) G = C3 x Cy x Ay where A, is the Thus we have eliminate@ and this completes

alternating group on letters. the proof for|G| = 72.
(7) G = (C3 x Ay)(t) where the involutiort

acts nontrivially onCs and A (t) = S;. V. EXCLUDING |G| = 56

In case() let T = {1,ta,t5 ", ... t5,t5"} Throughout this section we assume that
be a Sylow3-subgroup ofG. If we put f; = |G| = 56. Let T denote a Sylowr-subgroup

Siertandfi=t;+t; fori=2,...,5then of G.
L= fito o+ fs Lem.ma 5:.G has a normal subgrouf of
order 8 isomorphic toCs x Cy x C3, and G
is a decomposition ofl into central pairwise has an element of ordér which permutes the
orthogonal idempotents. Since tife are also 7 involutions of H. Moreover, the action ofr
block idempotents and; = f;, we may apply on the72 coordinate positions has three orbits
the algorithm. of lengths56, 8, 8.



Proof: Observe that [6, Lemma 2] impliesCorollary 7.16]) implies thaB | dim P;, we
|[Ng(T)| = 7 or 14. Since|G : Ng(T)| = deduce that?, must be indecomposable. Since
1mod 7 we get|Ng(T)| = 7. ThusG has P; is a permutation module, it contains the
exactly 8 Sylow 7-subgroups and contairs- trivial module as a submodule. Thus, by Lemma
8 = 48 elements of ordef. Hence the Sylow 2, the socle ofP; must be the trivial module.
2-subgroup ofG is normal. Since &-element c) Note thatP; & P, has non-zero entries in at
does not centralize an involutiot; has exactly most the lasti6 coordinates. Thus, if
7 involutions. This implies that the Sylow-
subgroup is elementary abelian. By [4, Theorem CN(P o) #0

5.3], an involution has no fixed points, and bythen the intersection containsas the only non-

[8, proof of Proposition 4.1], an element ofzerg vector, since the minimum weight 6f is
order7 has exactly two fixed points. Thus the;g Suppose that

Cauchy-Frobenius Lemma [16, Theorem 3.22]
implies that the action o€y on the coordinate CN(P&P)=0.

positions has In this case the projective modulg, & P; is

1 . .
L 5648-6-2)=3 (up to isomorphism) a submodule of the factor
56 module

orbits, say of lengthsn,, mo, m3. Sincem; | K™/C=K™/0t = .

56 and m; + mo + ms = 72, we find the
unique solutionm; = 56, ms = ms = 8 (up Since P = P; it follows that
to renumbering). | . *

Just one of the 13 groups of order 56, (PoR)=PoR=hob
namely 56411 in the notation of the 8ALL- is a submodule of>** = C. Since a projec-
GRoupslibrary, satisfies Lemma. tive submodule or factor module is always a

Lemma 6:Let G be the group64#11. direct summand (see Lemma 2 d)), the module

a)V=K?=KG®P &P, whereP, =~ P = P, occurs (up to isomorphism) in a

P, ~ K. The elements of( have non- direct decomposition o/ = K™ into inde-

zero entries only in the firsi6 positions, composable modules with multiplicity at least

the elements of?; only in position57 up 4. This contradicts the fact thaf contains the

to 64, and the elements aP, only in the Pprojective cover of the trivial module exactly

last 8 positions. three times sincd{G contains it only once.

b) P, = P, is the projective cove?(K) of d) SinceC contains both the all one-vector of
the trivial modulek. length72 andw, it contains their sum which has

c) CN(P,@P,) = {0,v} wherev has entry a1 as entry exactly in the firsi6 coordinates.
1 exactly in the lastl6 coordinates. By repeated shortening @f (16 times), we see

d) If Co = KGNC C KG thenCy contains thatdim Cp = 21 sincedim C' = 36. [
the all one-vector ofKG and dim C, = Recall that for akKG-module V' the socle
21. soc(V) := soc; (V) is defined as the largest
Proof: a) This follows immediately by completely reducible submodule &f. Induc-

Lemma 5. tively, we define thek-th socle sog (V) of V

b) It is easy to see thaP; is isomorphic to by

- _ 1
the KC; moduleeKG wheree i diert 50Cx (V) /50C6_1 (V) = 0¢(V/50Gk_1 (V).
Sincee? = e we getKG = e KGB(1—-¢)KG.
Thus P; is a direct summand of{G. Since We call sog (V) C socy(V) C ... the socle
dim P; = 8, and a result of Dickson (see [11,seriesof V.



Lemma 7:Let G be the groups6#11. Its  P(V) or P(V*). This contradicts the fact that
group algebrd{G has the following properties. dim Cy = 21 anddim P(V) = dim P(V*) =
a) There are (up to isomorphism) exactly4. n

three irreducible modules: the trivial mod- ~ To excludeG as an automorphism group

ule K and two moduled’ resp.V* with 0of C' we proceed as follows. In sg¢KG)
V 2 V*, both of dimensiors. we compute all self-orthogonal submodules of

b) The projective coverP(K) of the trivial dimension21. The 1394667 such modules all
module K has exactly4 submodules dif- have minimum distance strictly less tha6.

ferent from0, namely K c V4 C V, C Hence a group of ordes6 is not an auto-
P(K) with Vi/K =V, V,/V; = V* and morphism group of a binary self-dual doubly-
P(K)/V; 2 K. even|[72, 36, 16] code.
¢) LetP(V)andP(V*) denote the projective
covers of// resp.V*. Then sog(P(V)) # VI. EXCLUDING |G| = 36
P(V), but sog (V) = P(V). The same Throughout this section we assume that
holds forV*. |G| = 36. Since neither involutions nor el-
d) Co <soc3(KG). ements of order3 have fixed points by [4,

Proof: a) Over the fieldFg, the group Theorem 5.3] and [5, Theorem 1.1], the action
G has exactly7 irreducible modules since theof GG on the 72 coordinate positions is fixed-
normal Sylow2-subgroupH is in the kernel of point-free. Thus the ambient spad€’ is an
every irreducible module. Over the binary fieldorthogonal sum of two copies of the regular
K we have only three irreducible modules, thenodule K G:
trivial one K and two moduled” andV* 2V
of dimension3. The latter are direct sums 6f V=K"=KGLKG,
Galois conjugate modules ovEg of dimension where the first G has non-zero entries in the
1. first 36 positions and the second in the 136t
b) By the proof of Lemma 6 we know that  There are (up to isomorphisn} groups
P(K) = eKG = eKH wheree = (1: 3>, ct.  of order 36. For each groupG, we deduce,
Thus, P(K) is the regular moduleK H on using Schur’s algorithm [13] as implemented in
which T acts by conjugation. This proves al-MAGMA, that all of its irreducible representa-
ready that the moduleP(K) has exactly4 tions, and hence all of its projective indecom-
submodules different fror, namely posable modules, ovéf are self-dual. Thus the
T3 C e Ced C eKH blocks of KG are self-dual and consequently
we may write
whereJ = {a | a € KH, a has even weight =it +f
is the unique maximal ideal il H. Observe IR
that the factor moduleg?/Ji+! are irreducible with block idempotentsf; = f; € KG. Recall
and J/J?3 is not completely irreducible. SincethatG is 2-nilpotentif it has a normal subgroup
P(K) = P(K)* the assertion now follows. N where2 { |N| and G/N is a 2-group. If
c) This is a consequence of the fact tfdl’) = G is 2-nilpotent, then each block contains (up
PK)®V resp.P(V*) = P(K) @ V*. to isomorphism) exactly one irreducible module
d) Note thatKG = P(K) ® P(V) @ P(V*). (see[l11, Chap. VIl, Theorem 14.9]). This is true
Since the weights of the code words @, for all but two groups: 36#3 and 36#11.
are divisible by2, the subcode&’, is contained We now proceed as follows. Lef; be a
in the uniqgue maximal idealM of KG with listing of good codes iV f; for i = 1,...,t,
KG/M = K. Thus, if Cy € socs(KG) then and letL consist of all code® = Uy +...+U;
Cy contains a direct summand isomorphic tavith U; € £;.



# | Group | Dimensions of irreducible modulep dim V f; | dim soc(V ft)
1 Dig x Ca 1,2,6] 8 16, 48 24, 48
2 Co x Cy 1,2,6| 8 16, 48| 12, 24, 36, 48
3 1,2,6 24, 48 12, 36, 48
4 Co -Cy 1,2,6| 8 16, 48 24, 48
5 | Cg x O3 x Ca 1,2,6| 8 16, 48 12, 36, 48
11 As X C3 1,2,2,2,2 24, 48 12, 36, 48
TABLE |
DATA FOR CERTAIN GROUPS OF ORDER6
Case 1.For each groug6+i with 6 <4 < 10 Proof: Let S be the unique irreducible
and12 < i < 14, we compute module belonging toK'G' f and suppose that
o soc(KGf) contains S with multiplicity m.
U=U,+...+ U, Since V.= KG & KG, the socle of V' f
has a direct decomposition consisting &f
where U; runs over all codes inC; for j = direct summands (all isomorphic &). Suppose
1,...,t. None of the code$/ is doubly-even that sodCf) hasm’ < m direct summands.

and of minimum distance at leas. Hence Clearly, all of them are isomorphic t6. Then
none of these groups is an automor'phlsrr! group. cr<p e, @ P, <
(Of course, we can terminate our investigation _ (8)

i : PP®..oPy®.. ®Pyy, =VSf
for a particular group if the set of modules . ) o
U, + ...+ U, wheres < t does not contain a Where allP; are isomorphic to a projective in-

doubly-even code of minimum distance at leagiécomposable module with socle isomorphic

16.) to S. To see this, note that
Thus it remains to consideB6#: for Cf<P &...®Py=W
i =1,2,3,4,5,11. In Table I, for each group )
we list dim Vf; for i = 1,...,t and the follows directly from Lemma 8. Furthermore

dimensions of the socle series 6ff,, the V[ iS projective and contains only as a
component of dimensiod8. Where the group composition factor. Thud f is a direct sum of
has a name indicating its structure, we use thigrojective indecomposable modules isomorphic
to P andW is (up to isomorphism) a submod-
To prove Lemma 9 we need Lemma g!l® and hence a direct summand16f, which
which easily follows from the fact that projec-Proves (8). Finally note thaP = P* and
tive KG-modules are injective (see [11, Chap. VI/Cf =Vf/(CH*: = (Cf).
VII, Theorem 7.8]).
Lemma 8:Let W be aK G-module and let AS in Lemma 3,(Cf)* contains more direct
P be a projectivek G-module with so¢P) = summands isomorphic t@ than C'f. This
soc(W). Then W is (up to isomorphism) a contradicts the Krull-Schmidt Theorem. =

submodule ofP. R Case 2.To deal with the groups36#i for
Lemma 9:Let f = f be a central idempo- ; = 1,4, we modify the computation of all
tent of KG and suppose thak'G f contains good codes in the componei := V f, of
only one irreducible module (up to isomor-dimension48. Note that the irreducible module
phism) as composition factor. Then in V; has dimensior6 and the socle series of
V; has dimensiong&4, 48. Applying Lemma 9,
2dim soc(C' f) > dim soc(V f). we proceed as follows.



(i) We compute all submodules of dimension  Proof: If soc(V f) C Cf then (w,0) €
12 in sod V%). Cf CVf=P L Pforal w e soc(P).

(i) For each submodulé/ in (i) we compute Note that(C'f)- NV f = Cf sinceCf is good.
all irreducible submodule§'in V;/M and Let (z,y) € Cf. Thus
take thepullbackof S in V;: namely,{v |
v eV, v+ M e S). This leads to a list, 0= ((w,0), (z,9)) = (w,2)
say M;, of submodules of dimensiots
in V;.

(i) We remove from M; all submodules

for all w € soc(P;). Since the restriction
of (-,-) to P, is non-degeneratey must be
] an element of sog(P;) since it is the only
~ Which are not good. _ maximal submodule inP;. By a symmetry
(iv) For all U in M; we compute all irre- argument, we see thaj € socy(P,). Thus

ducible submodules df; /U and take their .. € 50C,(P;) L S0C(P>) = s0C(V f).
pullbacks inV;. This leads to a listl, of (@9) 2(F1) 2(F2) 2 f>.

submodules of dimensiogd in V;. To construct the list of good codes in)(
(v) We remove fromM. all modules which e search, according to Lemma 10, for all
are not good and obtaif,. submodules, say, in soc,(V f) of dimension

For 36#1 the list M, is already empty 12 and take their pullbacks ifr f, i.e.
which rules out this group. F@6+#4 we obtain

a non-empty listZ, and proceed as in Case 1 {vlveVf,v+soc (Vi) € X}

to rule out this group. L .
group The resulting listZ, contains only those mod-

Case 3.Next we consider36#3 and 36#5. ules which are good. We combine the modules
Both groups have exactly three irreducible modkom £, with the good modules from the other
ules which have dimensioh, 2 and 6 respec- plocks, and establish that all resulting codes
tively. Since36#5 is 2-nilpotent, there are three haye minimum distance strictly smaller than 16.
blocks. But36#3 is not2-nilpotent and has two Lemma 11:A good code in ) is a pro-
blocks. In this case the principal block Containisective indecomposable module.

the trivial module and the irreducible module Proof: Let C'f be a code in /). Since the

of dimension2. Thus both groups have a blocksocle ofC'f is irreducible,C f is a submodule of
which contains the irreducible mOdu|e, Sﬁy, the projective coverP of SOC(Cf), by Lemma
of dimensionG. If f is the corresponding block 8. Sincedim C'f = 24 = dim P, we deduce

idempotent thenl/f = P, L P, with P, = thatCf = P. =
P(W), which has socle series To construct the list of good codes i)(
w we proceed as follows. First we search for
w w . all submodules ofV f/soc(V f) of dimension
1% 18 by taking maximal submodules of maximal

msubmodules. By Lemma 11, we only consider
those which have d2-dimensional socle. In
: TR . the next step we take the pullbacks lifif of
d cod , dist| ht : > . .
%2;) ggde:ozzsfwvxiih I;:?al:lns Soév;)?ases the remaining codes, which have dimension
g ’ and construct all their maximal submodules.

() glc;od codes which have an imeducible SOI_:inally we test self-orthogonality and minimum

) ) distance at least 16. For boBi6#3 and 36#5,
To find the good codes imj we apply the the resulting list is empty.
following resuilt.

Lemma 10:Let C'f be a good code iV f Case 4.The remaining groug- is 36#11 and
with soc(V f) C Cf. ThenCf C socy(V f). is isomorphic to A x C3. There are5 irre-

We rule out both groups using the algorith
described in Case 1. To construct the isbf



ducible moduled<, Wy, Wy, W3, W, of dimen-

sion 1,2,2,2,2 and two blocks. The principal
block containsK and sayW;. Furthermore, if

Py = P(K) andPi = P(WZ)

KG=(Py®P) L (PP Py) =
KGf L KGfy

with block idempotentsf; = 1 + y + y? where
Cs = (y) and fo = y + y>. Note that f,

defines the principal block. The socle series of

the blocks are as follows:

1 Wi
KGfi= W, & W 1 1
| A
Wa W3
KGf, = W3 Wy & Wy Wy
Wy W5
Wy
& Wy W3
W,

It is easy to determine that; contains exactly [
192 good codes inV f;. However we were [12]
unable, using existing resources, to determine
the good codes i/ f, and hence we are not

able to eliminate this case.
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