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Abstract. Given a finite group G and a faithful irreducible FG-module V where F has
prime order, does G have a regular orbit on V ? This problem is equivalent to determining
which primitive permutation groups of affine type have a base of size 2. In this paper,
we classify the pairs (G,V ) for which G has a regular orbit on V where G is a covering
group of a symmetric or alternating group and V is a faithful irreducible FG-module
such that the order of F is prime and divides the order of G.

1. Introduction

Let G be a finite group acting faithfully on a set Ω. A base B for G is a non-empty
subset of Ω with the property that only the identity fixes every element of B; if B = {ω}
for some ω ∈ Ω, then the orbit {ωg : g ∈ G} of G on Ω is regular. Bases have been
very useful in permutation group theory in the past half century, both theoretically in
bounding the order of a primitive permutation group in terms of its degree (e.g., [3]) and
computationally (cf. [34]). Recently, much work has been done on classifying the finite
primitive permutation groups of almost simple and diagonal type with a base of size 2
[8–10, 12]. In this paper, we consider this problem for primitive permutation groups of
affine type.

A finite permutation group X is affine if its socle is a finite-dimensional Fp-vector space
V for some prime p, in which case X = V : X0 and X0 6 GL(V ), where X0 denotes
the stabiliser of the vector 0 in X. Such a group X is primitive precisely when V is an
irreducible FpX0-module, in which case we say that X is a primitive permutation group
of affine type. Note that X has a base of size 2 on V if and only if X0 has a regular
orbit on V . Thus classifying the primitive permutation groups of affine type with a base
of size 2 amounts to determining which finite groups G, primes p, and faithful irreducible
FpG-modules V are such that G has a regular orbit on V .

More generally, given a finite group G and a faithful FG-module V where F is any field,
we can ask whether G has a regular orbit on V . This problem is of independent interest
to representation theorists. Indeed, the classification of the pairs (G,V ) for which G has
no regular orbits on V where G is a p′-group that normalises a quasisimple group acting
irreducibly on the faithful FpG-module V [16, 25, 26] provided an important contribution
to the solution of the famous k(GV )-problem [32], which proved part of a well-known
conjecture of Brauer concerning defect groups of blocks [7].

However, little work has been done on the regular orbit problem in the case where the
characteristic of the field divides the order of the group. Hall, Liebeck and Seitz [19,
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Theorem 6] proved that if G is a finite quasisimple group with no regular orbits on a
faithful irreducible FG-module V where F is a field of characteristic p, then either G is of
Lie type in characteristic p, or G = An where p 6 n and V is the fully deleted permutation
module (cf. §4.3), or (G,V ) is one of finitely many exceptional pairs. These exceptional
pairs are not known in general. Motivated by this result, we classify the pairs (G,V ) for
which G has a regular orbit on V where G is a scalar extension of a covering group H
of the symmetric group Sn or the alternating group An and V is a faithful irreducible
FpH-module such that p 6 n. The case where p > n follows from [16, 25].

Let S be a finite group. A finite group L is a covering group or cover of S if L/Z(L) ' S
and Z(L) 6 L′. We say that L is a proper covering group when Z(L) 6= 1. The proper
covering groups of Sn for n > 5 are 2.S+

n and 2.S−n , and these groups are isomorphic
precisely when n = 6 [20, 33]. The proper covering groups of An are 2.An for n > 5, and
3.An and 6.An for n = 6 or 7 [20, 33]. The following is our main result.

Theorem 1.1. Let H be a covering group of Sn or An where n > 5. Let G be a group
for which H 6 G 6 H ◦ F∗p where p is a prime and p 6 n. Let V be a faithful irreducible
FpH-module, and let d := dimFp(V ).

(i) If either V or V ⊗Fp sgn is the fully deleted permutation module of Sn, then G has
a regular orbit on V if and only if G = An and p = n− 1.

(ii) If neither V nor V ⊗Fp sgn is the fully deleted permutation module of Sn, then G
has a regular orbit on V if and only if (n, p,G, d) is not listed in Table 1.

n p G d

5 2 A5, S5 4

3 A5 × F∗3, S5 × F∗3 6

2.A5, 2.S+
5 , 2.S−5 4

5 H = 2.A5 2

2.S−5 ◦ F∗5, H = 2.S+
5 4

2.A5 ◦ F∗5 4

6 2 A6, S6 4

3.A6 6

3 H ∈ {A6, S6} 6

2.A6, 2.S6 4

5 H ∈ {A6, S6}, G 6= A6 5

H = 2.A6 4

G 6= H = 3.A6 6

7 2 A7 4

S7 8, 14

3.A7 12

3 2.A7, 2.S+
7 , 2.S−7 8

n p G d

7 5 H = 3.A7 6

7 H ∈ {2.A7, 2.S
−
7 } 4

H = 3.A7 6

8 2 A8 4, 14

S8 8, 14

3 2.A8, 2.S−8 8

5 2.S+
8 ◦ F∗5, H = 2.S−8 8

9 2 A9 8, 20

S9 16

3 2.A9, 2.S−9 8

5 H = 2.A9 8

10 2 A10, S10 16

3 2.A10, 2.S−10 16

5 H = 2.A10 8

11 3 2.A11 16

12 2 S12 32

3 2.A12 16
Table 1. FpG-modules V on which G has no regular orbits

The fully deleted permutation module is a faithful irreducible FpSn-module of dimension
n− 1 when p - n and dimension n− 2 otherwise; its restriction to An is always irreducible
(cf. §4.3). The definitions of sgn and H ◦ F∗p are given in Section 2.

When H is specified in Table 1, we mean that H 6 G 6 H◦F∗p with no restrictions on G.
Also, for certain d listed in Table 1, there exist multiple faithful irreducible FpH-modules
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of dimension d, none of which admit regular orbits; this includes the case where An 6 H
and d is the dimension of the fully deleted permutation module.

Theorem 1.1 follows from Theorem 4.1 and Remark 4.2 in the case where H is Sn or An,
and Theorem 5.1 in the case where H is a proper covering group of Sn or An. Moreover,
Theorems 4.1 and 5.1 are consequences of more general results concerning regular orbits
of central extensions of almost simple groups with socle An (cf. Lemmas 4.4 and 5.3).

Observe that when An 6 H and n > 7, representations only occur in Table 1 for p = 2.
Moreover, when 2.An 6 H, every representation listed in Table 1 is a basic spin module
(cf. §5) except when (n, p,G, d) = (5, 5, 2.A5 ◦ F∗5, 4).

It is well known that the group algebras of 2.S+
n and 2.S−n are isomorphic over every

field containing a primitive fourth root of unity. Thus, over such fields, the representation
theory of 2.S+

n and 2.S−n is essentially the same, and typically, in order to answer a rep-
resentation theoretical question, it suffices to consider one of the double covers. However,
this is not the case for the regular orbit problem. Indeed, even over a splitting field con-
taining a primitive fourth root of unity, there is an example where only one double cover
has a regular orbit; this occurs for (n, p) = (8, 5) in Table 1. Other examples occur for
(n, p) = (5, 5), in which case Fp is not a splitting field but contains a primitive fourth root
of unity, and (n, p) = (7, 7), (8, 3), (9, 3) or (10, 3), in which case Fp does not contain a
primitive fourth root of unity.

As an immediate consequence of Theorem 1.1, we obtain a result concerning bases of
primitive permutation groups of affine type.

Corollary 1.2. Let X be a primitive permutation group of affine type with socle V ' Fdp
where p is a prime. Suppose that H 6 X0 6 H ◦ F∗p where H is a covering group of Sn or
An for n > 5, and assume that p 6 n.

(i) If either V or V ⊗Fp sgn is the fully deleted permutation module of Sn, then X has
a base of size 2 on V if and only if X0 = An and p = n− 1.

(ii) If neither V nor V ⊗Fp sgn is the fully deleted permutation module of Sn, then X
has a base of size 2 on V if and only if (n, p,G, d) is not listed in Table 1 where
G := X0.

In fact, it can be established by routine computations using Magma [6] that for
(n, p,X0, d) listed in Table 1 with n > 7, the affine group X has a base of size 3 with
the following exceptions: (7, 2, A7, 4), (8, 2, A8, 4), (8, 2, S8, 8) and (9, 2, A9, 8), in which
case X has a base of minimal size 4, 5, 4 and 4 respectively. When (i) holds, the minimal
base size of X cannot be constant in general, for |X| is not bounded above by |V |c for any
absolute constant c. In either case, d+ 1 is an upper bound on the minimal base size, for
any basis of V is a base for X0.

This paper is organised as follows. In §2 we collect some notation, definitions and basic
results, and in §3 we determine some bounds for the dimensions of faithful representations
admitting no regular orbits. In §4 we consider the regular orbits of Sn and An, and in §5
the regular orbits of the proper covering groups of Sn and An. In §6 we briefly comment
on our computational methods.

2. Preliminaries

Unless otherwise specified, all groups in this paper are finite, and all homomorphisms
and actions are written on the right.

Let G be a finite group. We denote the derived subgroup of G by G′, the centre of G
by Z(G), the conjugacy class of g ∈ G by gG, and the generalised Fitting subgroup of G
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by F ∗(G) (cf. [1] for a definition). The group G is quasisimple if G = G′ and G/Z(G) is
simple, and almost quasisimple if G/Z(G) is almost simple.

Lemma 2.1. Let G be a finite almost quasisimple group.

(i) F ∗(G) = F ∗(G)′Z(G) and F ∗(G)/Z(G) is the socle of G/Z(G).
(ii) F ∗(G)′ is quasisimple and Z(F ∗(G)′) = F ∗(G)′ ∩ Z(G).

Proof. Follows from [18, Lemma 2.1] and [1, 31.1]. �

In particular, if G is an almost quasisimple group and the socle of G/Z(G) is An, then
F ∗(G)′ is a quasisimple group with F ∗(G)′/Z(F ∗(G)′) ' An. Hence F ∗(G)′ is a covering
group of An, so F ∗(G)′ is one of An or 2.An for n > 5, or 3.An or 6.An for n = 6 or 7. We
will consider the regular orbit problem for almost quasisimple groups G with F ∗(G)′ = An
in §4 (cf. Lemma 4.4) and F ∗(G)′ = 2.An in §5 (cf. Lemma 5.3).

Let F be a field. We denote the characteristic of F by char(F ), the multiplicative group
of F by F ∗, and the group algebra of G over F by FG. All FG-modules in this paper are
finite-dimensional, and we denote the dimension of an FG-module V by dimF (V ). We
denote the finite field of order q by Fq.

Let V be an FG-module. We say that V can be realised over a subfield K of F if there
exists an F -basis B of V such that the matrix of the F -endomorphism g of V relative to
B has entries in K for every g ∈ G. If F is a finite field and V has character χ, then V
can be realised over K if and only if K contains χ(g) for all g ∈ G [5, Theorem VII.1.17].

For an extension field E of F and an FG-module V , we denote the extension of scalars
of V to E by V ⊗F E (cf. [11] for a definition). An irreducible FG-module V is absolutely
irreducible if V ⊗F E is irreducible for every field extension E of F . Note that V is
absolutely irreducible if and only if EndFG(V ) = F [11, Theorem 29.13], where EndFG(V )
denotes the set of FG-endomorphisms of V . The field F is a splitting field for G if every
irreducible FG-module is absolutely irreducible.

Let F be a finite field, H a finite group and V a faithful FH-module, and let S(H) be
the set of h ∈ H for which there exists λh ∈ F ∗ such that vh = λhv for all v ∈ V . Note
that S(H) 6 Z(H). The central product of H and F ∗, denoted by H ◦F ∗, is the quotient
(H × F ∗)/N where N = {(h, λ−1

h ) : h ∈ S(H)}. The FH-module V naturally becomes
a faithful F (H ◦ F ∗)-module under the action vN(h, λ) := (λv)h for all v ∈ V , h ∈ H
and λ ∈ F ∗. Now V is an irreducible F (H ◦ F ∗)-module if and only if V is an irreducible
FH-module. Moreover, if V has dimension d and ρ is the corresponding representation of
H in GLd(F ), then H ◦F ∗ ' 〈Hρ,F ∗〉 = HρF ∗. If V is a faithful irreducible FH-module
and |Z(H)| 6 2, then S(H) = Z(H), for a central involution must act as −1 on V .

Lemma 2.2. Let F be a field, G a finite group and V an absolutely irreducible FG-module.
For each g ∈ Z(G), there exists λg ∈ F ∗ such that vg = λgv for all v ∈ V . If V is faithful,
then the map g 7→ λg for all g ∈ Z(G) is an injective homomorphism from Z(G) to F ∗.

Proof. Let g ∈ Z(G). The F -endomorphism of V defined by v 7→ vg for all v ∈ V lies in
EndFG(V ) = F , so the first claim holds. The second is straightforward. �

When F is a finite field and V is a (faithful) irreducible FG-module, we can use the
field k := EndFG(V ) to construct a (faithful) absolutely irreducible representation of G
with the same G-orbits as V . Define k-scalar multiplication on the additive group V to
be evaluation, and let G act in the same way. Now V is a (faithful) absolutely irreducible
kG-module since EndkG(V ) ⊆ EndFG(V ) = k, and clearly G has a regular orbit on the
FG-module V if and only if G has a regular orbit on the kG-module V .

Let H be a subgroup of G, and let V be an FG-module. We denote the restricted
module of V from G to H by V ↓ H. We say that V ↓ H splits if it is not irreducible.
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Lemma 2.3. Let G be a finite group with subgroup H, and let F be a field. If W is an
irreducible FH-module, then there is an irreducible FG-module V for which W 6 V ↓ H.

Proof. Follows from Frobenius-Nakayama reciprocity [5, Theorem VII.4.5]. �

Let N be a normal subgroup of G, V an FG-module and W an irreducible FN -
submodule of V . For g ∈ G, the normality of N implies that the conjugate Wg is an
irreducible FN -submodule of V . The following is well known from Clifford theory.

Lemma 2.4. Let G be a finite group, N E G and F a field. Let V be an irreducible
FG-module and W an irreducible FN -submodule of V . Then V ↓ N is a direct sum of
conjugates of W , and if [G : N ] = 2, then V ↓ N = W or W ⊕Wg for all g ∈ G \N .

Proof. Since
∑

g∈GWg is an FG-submodule of V , it is equal to V , and so the first claim

holds. If [G : N ] = 2 and g ∈ G \N , then V = W +Wg, so the second claim holds. �

Let N be an index 2 subgroup of G. The sign module, denoted by sgn, is the one-
dimensional FG-module for which g ∈ N acts as 1 and g ∈ G \ N acts as −1. For an
FG-module V , the associate of V is the FG-module V ⊗F sgn where (v⊗λ)g := (vg)⊗(λg)
for all v ∈ V , λ ∈ sgn and g ∈ G.

3. Bounds for dimensions of non-regular representations

In this section, we determine bounds for the dimensions of faithful irreducible repre-
sentations of almost quasisimple groups that admit no regular orbits. These are obtained
using the standard technique of counting fixed points.

Let G be a finite group, F a field, and V an FG-module. We define CV (g) := {v ∈ V :
vg = v} for all g ∈ G. For X ⊆ G, we define [V,X] := span{v − vg : v ∈ V, g ∈ X}, and
when X = {g}, we write [V, g]. Note that dimF (V ) = dimF (CV (g)) + dimF ([V, g]) for all
g ∈ G. For v ∈ V , we denote the stabiliser of v in G by CG(v).

The following is a simple but crucial result.

Lemma 3.1. Let G be a finite group and F a field. Let V be a faithful FG-module. If G
has no regular orbits on V , then V =

⋃
g∈G\{1}CV (g).

Proof. If v ∈ V and v /∈ CV (g) for all 1 6= g ∈ G, then v lies in a regular orbit of G. �

Lemma 3.1 implies that if V is a faithful FG-module where G is finite and F is infinite,
then G has a regular orbit on V , for no vector space over an infinite field is a finite union
of proper subspaces. Moreover, Lemma 3.1 gives us a bound for the size of V that is easily
computed using Magma. To see this, we need the following useful observation about fixed
points of central elements.

Lemma 3.2. Let G be a finite group and F a field. Let V be a faithful irreducible FG-
module. If 1 6= g ∈ Z(G), then CV (g) = 0.

Proof. This follows from the fact that CV (g) is a proper FG-submodule of V . �

Now we provide the bound mentioned above.

Lemma 3.3. Let G be a finite group and F a finite field. Let V be a faithful irreducible
FG-module. If G has no regular orbits on V , then

|V | 6
∑
g∈X
|gG||CV (g)|,

where X is a set of representatives for the conjugacy classes of non-central elements of
prime order in G.
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Proof. Let 0 6= v ∈ V . Now v ∈ CV (g0) for some g0 ∈ G \ Z(G) by Lemmas 3.1 and 3.2.
This implies that CG(v) is a non-trivial group, so there exists h0 ∈ CG(v) of prime order
and v ∈ CV (h0). In particular, h0 /∈ Z(G) by Lemma 3.2. Since |CV (g)| = |CV (h−1gh)|
for all g, h ∈ G, the result follows. �

Let G be an almost quasisimple group where G/Z(G) has socle T , and let g ∈ G\Z(G).
Now 〈T,Z(G)g〉 is generated by the T -conjugates of Z(G)g, so we may define r(g) to be
the minimal number of T -conjugates of Z(G)g generating 〈T,Z(G)g〉.

The following result appears in various incarnations in the literature; the version given
here, which is essentially [18, Lemma 3.2], is the one most suited to our purposes; see also
[26, Lemma 2] and the proof of [19, Theorem 6].

Lemma 3.4. Let G be an almost quasisimple group and F a field. Let V be a faithful
irreducible FG-module. Then

dimF (CV (g)) 6 dimF (V )

(
1− 1

r(g)

)
for all g ∈ G \ Z(G).

Proof. Let g denote the coset Z(G)g for g ∈ G, and let N := N/Z(G) where N/Z(G)
is the socle of G/Z(G). Fix g ∈ G \ Z(G). Let g1, g2, . . . , gr be conjugates of g = g1

that generate 〈N, g〉 where r := r(g) and the representatives g2, . . . , gr are chosen to be
conjugates of g in G. By this choice, |CV (g)| = |CV (gi)| for 1 6 i 6 r. Let W :=
[V, 〈g1, . . . , gr〉] = span{[V, gi] : 1 6 i 6 r}. Now W is spanned by r(g) dimF ([V, g])
elements. Observe that [V,N ′] is a subspace of [V, 〈g1, . . . , gr〉], for N 6 〈g1, . . . , gr〉Z(G),
and so N ′ 6 〈g1, . . . , gr〉. But 1 6= N ′ EG and V is faithful, so [V,N ′] is a non-zero FG-
submodule of V . Thus [V,N ′] = [V, 〈g1, . . . , gr〉] = V , so r(g) dimF ([V, g]) > dimF (V ).
Now dimF (V )− dimF (CV (g)) > dimF (V )/r(g), and the result follows. �

The next result is a natural generalisation of part of the proof of [19, Theorem 6].

Lemma 3.5. Let G be an almost quasisimple group and V a faithful irreducible FqG-
module where q is a power of a prime. If G has no regular orbits on V , then

dimFq(V ) 6 r(G) logq |G|,

where r(G) := max {r(g) : g ∈ G \ Z(G)}.

Proof. By Lemmas 3.1, 3.2 and 3.4,

qdimFq (V ) = |V | 6
∑

g∈G\Z(G)

qdimFq (CV (g)) 6 |G|qdimFq (V )
(

1− 1
r(G)

)
.

Now qdimFq (V )/r(G) 6 |G|, and so dimFq(V ) 6 r(G) logq |G|. �

Now we give some more specific bounds for the case where the socle of G/Z(G) is An.

Lemma 3.6. Let G be an almost quasisimple group, and suppose that the socle of G/Z(G)
is An where n > 5. Let V be a faithful irreducible FqG-module where q is a power of a
prime. If G has no regular orbits on V , then

(1) dimFq(V ) 6 (n− 1) logq |G|,

and if n > 7, then

(2) dimFq(V ) 6 max {(n− 1) logq (n(n− 1)|Z(G)|), n2 logq (2n!|Z(G)|)}.
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If n > 7 and |Z(G)| 6 n, then

(3) dimFq(V ) 6 n
2 logq (2n!|Z(G)|).

Proof. If g ∈ G \ Z(G), then r(g) 6 n − 1 for n > 5 by [17, Lemma 6.1], so equation (1)
follows from Lemma 3.5.

Suppose that n > 7. Then G/Z(G) = Sn or An. Let g ∈ G \ Z(G), and write g for the
coset Z(G)g. If g is not a transposition, then r(g) 6 n/2 by [17, Lemma 6.1]. Let S1 be
the set of g ∈ G for which g is a transposition, and let S2 be the set of g ∈ G \ Z(G) for
which g is not a transposition. It follows from Lemmas 3.1, 3.2 and 3.4 that

|V | 6
∑
g∈S1

|CV (g)|+
∑
g∈S2

|CV (g)| 6 |S1|qdimFq (V )(1− 1
n−1) + |S2|qdimFq (V )(1− 2

n),

and since qdimFq (V ) = |V |, we obtain that

1 6 2 max{|S1|q−
1

n−1
dimFq (V ), |S2|q−

2
n

dimFq (V )}.

If 1 6 2|S1|q− dimFq (V )/(n−1), then dimFq(V ) 6 (n − 1) logq(2|S1|). Similarly, if 1 6

2|S2|q−2 dimFq (V )/n, then dimFq(V ) 6 (n/2) logq(2|S2|). Thus

dimFq(V ) 6 max {(n− 1) logq(2|S1|), n2 logq(2|S2|)}.
Since 2|S1| = n(n− 1)|Z(G)| and |S2| 6 |G| 6 n!|Z(G)|, we have proved equation (2).

Suppose in addition that |Z(G)| 6 n. First we claim that n5 6 2n! for n > 8. Note
that (n+ 1)4 6 5n4 6 n5, so if n5 6 2n!, then (n+ 1)5 6 n5(n+ 1) 6 2(n+ 1)!. Thus the
claim holds by induction, and so (n(n− 1)|Z(G)|)2 6 2n!|Z(G)| for n > 8. Now

(n− 1) logq (n(n− 1)|Z(G)|) 6 n
2 logq (2n!|Z(G)|),

and so dimFq(V ) 6 (n/2) logq (2n!|Z(G)|) when n > 8 by equation (2). Now suppose that

n = 7. It suffices to show that (42|Z(G)|)12/7 6 2 · 7!|Z(G)| when |Z(G)| 6 7, and this is

true since 4212/7|Z(G)|12/7−1 6 4212/7712/7−1 6 2 · 7!. �

Motivated by equations (2) and (3) of Lemma 3.6, we finish this section with a technical
observation.

Lemma 3.7. If C is an absolute constant where C > 5, then logq (C(q − 1)) is a decreasing
function in q for q ∈ R and q > 2.

Proof. Let f(q) := logq (C(q − 1)). Now f ′(q) < 0 precisely when q log q < (q−1) log(C(q−
1)). Subtracting (q− 1) log q from both sides, we obtain log q < (q− 1) log(C(q− 1)/q), so
it suffices to prove that q < Cq−1(1 − 1/q)q−1. But C > 5 and q > 2, so q < (C/2)q−1 6
Cq−1(1− 1/q)q−1, as desired. �

4. Symmetric and alternating groups

Our notation for this section follows that of James [21]. For a partition µ of n, let Mµ
F

denote the permutation module of Sn on a Young subgroup for µ over a field F , and let
SµF denote the Specht module for µ over F , which is the submodule of Mµ

F spanned by the
polytabloids. Let <,> denote the unique Sn-invariant symmetric non-degenerate bilinear

form on Mµ
F for which the natural basis of Mµ

F is orthonormal, and write Sµ⊥F for the
orthogonal complement of SµF with respect to this form. Define

Dµ
F := SµF /(S

µ
F ∩ S

µ⊥
F ).

When context permits, we omit the subscript F and write Mµ, Sµ, or Dµ.
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It is well known that for a field F of characteristic p, the Dµ
F afford a complete list of

non-isomorphic irreducible FSn-modules as µ ranges over the p-regular partitions of n [21,
Theorem 11.5]; recall that a partition µ is p-regular for p prime if no part of µ is repeated
p times, and always 0-regular for convenience. In particular, when p > n (or when p = 0),
the SµF afford a complete list of non-isomorphic irreducible FSn-modules as µ ranges over
the partitions of n. Every field is a splitting field for Sn [21, Theorem 11.5], and every
field containing Fp2 for p prime is a splitting field for An (cf. [28, Corollary 5.1.5] or [29]).

For each p-regular partition µ of n, there exists a unique p-regular partition λ for which
Dλ ' Dµ⊗F sgn, and we denote this partition by m(µ). Note that m(µ) = µ when p = 2,
so we omit m(µ) from Table 2 below. Moreover, given an irreducible FAn-module V ,
there exists a p-regular partition µ for which V 6 Dµ ↓ An by Lemma 2.3.

In this section, we prove the following theorem.

Theorem 4.1. Let H be Sn or An where n > 5. Let G be a group for which H 6 G 6
H × F∗p where p is a prime and p 6 n. Let V be a faithful irreducible FpH-module and µ
a p-regular partition of n for which V 6 Dµ ↓ H. Let d := dimFp(V ).

(i) If either µ or m(µ) is (n − 1, 1), then G has a regular orbit on V if and only if
G = An and p = n− 1.

(ii) If neither µ nor m(µ) is (n− 1, 1), then G has a regular orbit on V if and only if
(n, p, µ,G, d) is not listed in Table 2.

n p µ G d m(µ)

5 2 (3,2) A5, S5 4 -

3 (3,1,1) A5 × F∗3, S5 × F∗3 6 (3,1,1)

6 2 (4,2) A6, S6 4 -

3 (4,1,1) H ∈ {A6, S6} 6 (4,1,1)

5 (3,3) H ∈ {A6, S6}, G 6= A6 5 (2,2,2)

(2,2,2) H ∈ {A6, S6}, G 6= A6 5 (3,3)

7 2 (4,3) A7 4 -

S7 8 -

(5,2) S7 14 -

8 2 (5,3) A8 4 -

S8 8 -

(6,2) A8, S8 14 -

9 2 (5,4) A9 8 -

S9 16 -

(5,3,1) A9 20 -

10 2 (6,4) A10, S10 16 -

12 2 (7,5) S12 32 -
Table 2. FpG-modules V on which G has no regular orbits

For a partition µ of n, the dimension ofDµ is the rank of the Gram matrix with respect to
a basis of Sµ. However, there is no formula that computes this rank in general, in contrast
to the Specht module Sµ, whose dimension is given by the characteristic-independent hook
formula [21, Theorem 20.1]. Thus we require lower bounds for the dimension of Dµ. These
we obtain using a method of James [22], which requires the following notation.

Let F be a field of characteristic p. For each non-negative integer m, write Rn(m) for
the class of irreducible FSn-modules V such that for some p-regular partition µ of n,
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(i) µ1 > n−m where µ1 is the largest part of µ, and
(ii) V ' Dµ or V ' Dµ ⊗F sgn.

Now [22, Lemma 4] and [22, Appendix Table 1] enable us to construct functions f(n) with
the property that for every irreducible FSn-module V , either V ∈ Rn(2) or dimF (V ) >
f(n) (cf. Lemma 4.3).

Thus the proof of Theorem 4.1 divides into two cases. Suppose we are given a faithful
irreducible FpSn-module V on which G has no regular orbits. If V /∈ Rn(2), then dimFp(V )
is bounded below by f(n) and above by functions of §3, and this is usually a contradiction.
Otherwise V ∈ Rn(2), in which case the functions of §3 are useless since dimFp(V ) 6 n2,
so we use constructive methods instead. Note that for a field F , the only non-faithful
irreducible FSn-modules are the trivial module D(n) and the sign module D(n) ⊗F sgn,
and so an irreducible FSn-module V is faithful if and only if V /∈ Rn(0).

We will often make use of the known Brauer character tables of the symmetric and
alternating groups. The Brauer Atlas [23] contains the Brauer character tables of Sn and
An for n 6 12 and p 6 n, while GAP [13] in conjunction with the SpinSym package [27]
contains the Brauer character tables of Sn and An for n 6 17 and p 6 n, as well as n = 18
when p = 2, 3, 5 or 7, and n = 19 when p = 2. Moreover, for those character tables in [13],
SpinSym provides a function to determine the corresponding partitions.

Remark 4.2. If H = Sn or An and (n, p,G, d) is listed in Table 1, then (n, p, µ,G, d) is
listed in Table 2 by [23]. Hence Theorem 1.1 follows from Theorem 4.1 for such H.

This section is organised as follows. In §4.1 we consider modules that are not in Rn(2),
and in §4.2 and §4.3 we consider modules that are in Rn(2)\Rn(1) and Rn(1) respectively.
Lastly, in §4.4 we prove Theorem 4.1.

4.1. Modules not in Rn(2). The following lemma is the key tool for this case. It relies
significantly on [22]. We include the case p > n for completeness.

Lemma 4.3. Let F be a field of positive characteristic p. Let V be an irreducible FSn-
module where n > 15 when p = 2 and n > 11 when p is odd. Let

f(n) := 1
6(n3 − 9n2 + 14n− 6).

For p = 2, let fp(n) be defined by fp(n) = f(n) for n > 23 and

fp(15) = fp(16) = 127,

fp(17) = fp(18) = 253,

fp(19) = fp(20) = 505,

fp(21) = fp(22) = 930.

For odd p, let fp(n) be defined by fp(n) = f(n) for n > 16 and

fp(11) = 54,

fp(12) = 88,

fp(13) = 107,

fp(14) = 175,

fp(15) = 213.

Then V ∈ Rn(2) or dimF (V ) > fp(n).
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Proof. Suppose that there is a function g : N→ R and a positive integer N for which:
(i) 2g(n) > g(n+ 2) for all n > N .
(ii) For n = N or N + 1, if U is an irreducible FSn-module, then U ∈ Rn(2) or

dimF (U) > g(n).
(iii) For all n > N , if U ∈ Rn(4) \Rn(2), then dimF (U) > g(n).

Then [22, Lemma 4] implies that for all n > N , either V ∈ Rn(2) or dimF (V ) > g(n).
Thus it suffices to show that fp(n) satisfies conditions (i)-(iii) with N = 15 when p = 2
and N = 11 otherwise. Note that 2f2(n) > f2(n+ 2) for all n > 15, and if p is odd, then
2fp(n) > fp(n + 2) for all n > 11. Moreover, using the lower bounds of [22, Appendix
Table 1], it is routine to verify that if U ∈ Rn(4)\Rn(2) and n > 11, then dimF (U) > f(n)

unless U is D(7,4) or its associate, in which case dimF (U) > 55 > fp(11) for all odd p.
Since f(n) > fp(n) for all p and n > 11, it remains to check condition (ii).

Let U be an irreducible FSn-module, and suppose that U is not in Rn(2). To begin,
suppose that p = 2. If n = 15 or 16, then dimF (U) > (n− 1)(n− 2)/2 by [22, Theorem 7]
since U 6∈ Rn(2). Using the Brauer character table of Sn [13], we check that dimF (U) >
128 > f2(n). Thus condition (ii) holds with N = 15.

Now suppose that p is an odd prime and n = 11 or 12. First assume that p 6 n.
Since dimF (U) > (n − 1)(n − 2)/2 by [22, Theorem 7], dimF (U) > 55 when n = 11 and
dimF (U) > 89 when n = 12 by [23]. Thus dimF (U) > fp(n), as desired. Assume instead
that p > n. Now U ' Sµ for some partition µ of n. The dimensions of the Specht modules
are listed in the decomposition matrices in [21, Appendix]: dimF (U) > 55 when n = 11
and dimF (U) > 89 when n = 12. Thus condition (ii) holds with N = 11. �

Note that the dimension of D
(n−3,3)
F for a field F of positive characteristic is precisely

f(n) + 1 for infinitely many n by [22, Appendix Table 1], so Lemma 4.3 provides a tight
lower bound for dimF (V ) for V /∈ Rn(2).

Let F be an arbitrary field. By [22, Theorem 5], there are only finitely many n for which
Dµ 6∈ Rn(3) and dimF (Dµ) 6 n3. Motivated by classifying these exceptional modules,
Müller [30] determined the dimensions of the irreducible FSn-modules of dimension at
most n3 for char(F ) ∈ {2, 3} along with the corresponding partitions; we will use this
information whenever character tables are not available.

We begin with a reduction for almost quasisimple groups G with F ∗(G)′ ' An.

Lemma 4.4. Let G be an almost quasisimple group where N := F ∗(G)′ ' An and n > 11.
Let F be a finite field. Let V be a faithful irreducible FG-module, k := EndFG(V ) and
q := |k|. Let W be an irreducible kN -submodule of V and µ a char(F )-regular partition of
n for which W 6 Dµ ↓ N . If G has no regular orbits on V and Dµ /∈ Rn(2), then n 6 20,
and if char(F ) 6 n and q is odd, then (n, q) = (11, 5) and dimk(W ) = dimk(D

µ) = 55.
Moreover, if n > 15 and q is even, then (n, µ, q, dimk(W ),dimk(D

µ)) is listed in Table 3.

In fact, dimk(V ) = dimk(W ) or 2 dimk(W ) by Lemma 2.4, for W is an irreducible
kF ∗(G)-submodule of V by Lemmas 2.1 and 2.2, and [G : F ∗(G)] 6 2 by Lemma 2.1.

Proof of Lemma 4.4. Suppose that G has no regular orbits on V and Dµ /∈ Rn(2). Let
p := char(F ). Since V is a faithful absolutely irreducible kG-module, Lemma 2.2 implies
that Z(G) 6 k∗, and so |Z(G)| 6 q − 1. Let

g(q, n) := max {(n− 1) logq (n(n− 1)(q − 1)), n2 logq (2n!(q − 1))}.

Now equation (2) of Lemma 3.6 implies that dimk(V ) 6 bg(q, n)c. Since dimk(D
µ) is

equal to dimk(W ) or 2 dimk(W ) by Lemma 2.4, it follows that dimk(D
µ) 6 2bg(q, n)c.

Note that if n is fixed, then g(q, n) is a decreasing function in q by Lemma 3.7.
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n µ q dimk(W ) dimk(D
µ)

15 (8, 7) 2, 4, 8, 16, 32 64 128
16 (9, 7) 2, 4, 8, 16, 32, 64 64 128

(13, 3) 2 336 336
17 (9, 8) 2, 4, 8 128 256
18 (10, 8) 2 256 256
19 (10, 9) 2 512 512

4 256 512
20 (11, 9) 2 512 512

4 256 512
Table 3. Possible dimk(W ) and dimk(D

µ) when n > 15 and q is even

To begin, suppose that q is odd. Recall the function fp(n) defined in Lemma 4.3. Since
n > 11 and Dµ /∈ Rn(2) by assumption, it follows from this lemma that fp(n) < dimk(D

µ).
Thus fp(n) < 2bg(q, n)c. However, if n > 21, then 2bg(q, n)c 6 2bg(3, n)c 6 fp(n), a
contradiction. Thus n 6 20 for odd q, as claimed. Similarly, if q > 121, then we obtain a
contradiction for all n > 11, so q < 121. Moreover, if q > 5, then n 6 15; if q > 9, then
n 6 14; if q > 11, then n 6 13; if q > 25, then n 6 12; and if q > 27, then n 6 11.

Hence if we assume that p 6 n, then (n, q) is listed in Table 4. Suppose that q = 3
and n = 19 or 20. Since dimk(D

µ) 6 2g(3, n) 6 n3, we apply [30] to determine the
dimensions of those Dµ for which fp(n) < dimk(D

µ) 6 2bg(3, n)c. However, there are
no such Dµ when n = 20, and when n = 19, the only possible dimension is 647, in
which case W = Dµ ↓ N since 647 is odd, so dimk(D

µ) 6 dimk(V ) 6 bg(3, 19)c = 352,
a contradiction. Similarly, for each remaining (n, q) besides (11, 5), we use the Brauer
character tables in [13, 23, 27] to determine that if there exists a p-regular partition µ for
which fp(n) < dimk(D

µ) 6 2bg(3, n)c, then W = Dµ ↓ N and bg(q, n)c < dimk(D
µ), a

contradiction. Thus (n, q) = (11, 5), and by a similar argument, dimk(W ) = dimk(D
µ) =

55.

n q
11 3, 5, 7, 9, 11, 25, 27, 49, 81
12 3, 5, 7, 9, 11, 25
13 3, 5, 7, 9, 11, 13
14 3, 5, 7, 9
15 3, 5, 7
16 6 n 6 20 3
Table 4. Possible odd q when n > 11

We may assume for the remainder of the proof that q is even and n > 15. Recall the
function f2(n) defined in Lemma 4.3. As for odd q, it follows that f2(n) < dimk(D

µ), and
so f2(n) < 2bg(q, n)c. However, if n > 31, then 2bg(q, n)c 6 2bg(2, n)c 6 f2(n), and if
n > 21 and q > 4, then 2bg(q, n)c 6 2bg(4, n)c 6 f2(n), both contradictions. Thus either
n 6 20, or q = 2 and 21 6 n 6 30.

Suppose for a contradiction that q = 2 and 21 6 n 6 30. Since dimk(D
µ) 6 2g(2, n) 6

n3, we apply [30] to determine the dimensions of those Dµ for which f2(n) < dimk(D
µ) 6

2bg(2, n)c; these are listed in Table 5. Moreover, if dimk(D
µ) 6= 1024, then µ = (n− 3, 3),

and if dimk(D
µ) = 1024, then µ = (11, 10) or (12, 10). If (n,dimk(D

µ)) 6= (21, 1024), then
W = Dµ ↓ N by [4, Theorem 1.1], so dimk(D

µ) 6 dimk(V ) 6 bg(2, n)c. However, it can
be verified that bg(2, n)c < dimk(D

µ) in each case, a contradiction. Similarly, if n = 21
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and dimk(D
µ) = 1024, then Dµ ↓ An is irreducible over k = F2 by [4, Theorems 5.1 and

6.1], in which case dimk(D
µ) 6 dimk(V ) 6 bg(2, 21)c = 697, a contradiction.

n 21, 22 23, 24 25, 26 28 30
dimk(D

µ) 1024, 1120 1496 2000 2548 3248
Table 5. Possible dimk(D

µ) when q = 2 and n > 21

Thus q is even and 15 6 n 6 20. Note that if q > 128, then 2bg(q, n)c 6 2bg(128, n)c 6
f2(n), a contradiction. Moreover, if q > 8, then n 6 18; if q > 16, then n = 18 or n 6 16;
if q > 32, then n 6 16; and if q > 64, then n = 16. Hence (n, q) is listed in Table 6.

n q
15 2, 4, 8, 16, 32
16 2, 4, 8, 16, 32, 64
17 2, 4, 8
18 2, 4, 8, 16
19, 20 2, 4

Table 6. Possible even q when 15 6 n 6 20

First suppose that n = 20. Since dimk(D
µ) 6 2g(2, n) 6 n3, we apply [30] to determine

that the only Dµ for which f2(n) < dimk(D
µ) 6 2bg(q, n)c are those with dimension 512

or 780 when q = 2 and dimension 512 when q = 4. Moreover, if dimk(D
µ) = 512, then

µ = (11, 9), and if dimk(D
µ) = 780, then µ = (17, 3). If q = 2 and dimk(D

µ) = 780, then
W = Dµ ↓ N by [4, Theorem 1.1], and so dimk(D

µ) 6 dimk(V ) 6 bg(2, 20)c = 620, a
contradiction. Thus dimk(D

µ) = 512 and q = 2 or 4, in which case Dµ ↓ An is irreducible
if and only if q = 2 by [4, Theorems 5.1 and 6.1]. Thus either q = 2 and dimk(W ) = 512,
or q = 4 and dimk(W ) = 256.

Similarly, using the Brauer character tables in [13, 23, 27], we determine for each re-
maining (n, q) in Table 6 that if there exists a 2-regular partition µ for which f2(n) <
dimk(D

µ) 6 2bg(q, n)c and either Dµ ↓ N splits, or W = Dµ ↓ N and bg(q, n)c >
dimk(D

µ), then (n, µ, q, dimk(W ),dimk(D
µ)) is listed in Table 3. �

Now we are in a position to determine the regular orbits of Sn × F∗p on FpSn-modules
not in Rn(2). We also prove some results for FpSn-modules in Rn(2) \ Rn(1) when n is
small, as the inclusion of these cases simplifies the proof.

Proposition 4.5. Let G be a group for which Sn 6 G 6 Sn × F∗p where n > 7 and p is a
prime such that p 6 n. Let µ be a p-regular partition of n and V the FpSn-module Dµ.

(i) If Dµ /∈ Rn(2), then G has no regular orbits on V if and only if p = 2 and
µ = (bn/2c+ 1, b(n− 1)/2c) for 7 6 n 6 10 or n = 12.

(ii) If Dµ ∈ Rn(2) \Rn(1) where either n 6 11, or 12 6 n 6 14 and p = 2, then G has
no regular orbits on V if and only if p = 2 and µ = (n− 2, 2) for 7 6 n 6 8.

Proof. We will prove (i) and (ii) simultaneously. Therefore, we will assume throughout this
proof that either Dµ /∈ Rn(2), or Dµ ∈ Rn(2) \ Rn(1) and either n 6 11, or 12 6 n 6 14
and p = 2. In particular, Dµ is faithful. Note that EndFpG(V ) = Fp.

Suppose that G does not have a regular orbit on V . First consider the case where p = 2
and n > 15. Lemma 4.4 implies that µ and dimF2(Dµ) are listed in Table 3. If µ is (9, 7),
(13, 3), (10, 8) or (11, 9), then using Magma (cf. §6 for further details), we determine that
Sn×F∗p has a regular orbit on V , a contradiction. Otherwise, µ is (8, 7), (9, 8) or (10, 9), in
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which case Dµ = Dλ ↓ Sn where λ is (9, 7), (10, 8) or (11, 9) respectively by [21, Theorem
9.3], so G has a regular orbit on V , a contradiction.

Next suppose that either p = 2 and n 6 14, or p is odd. We claim that (n, p,dimFp(D
µ))

is listed in Table 7. Note that if p is odd, then n 6 11 by Lemma 4.4. Let

g(p, n) := n
2 logp (2n!(p− 1)).

Since Z(G) 6 F∗p by Lemma 2.2 and p 6 n, equation (3) of Lemma 3.6 implies that
dimFp(V ) 6 bg(p, n)c. Note that if U is an irreducible FpSn-module such that U ∈ Rn(1)
but U does not have dimension 1, then dimFp(U) is either n− 2 when p | n, or n− 1 when
p - n (cf. §4.3). Hence by [13, 23], the dimensions of those Dµ for which Dµ /∈ Rn(1) and
dimFp(V ) 6 bg(p, n)c are precisely those listed in Table 7, proving the claim.

n p dimFp(D
µ)

7 2 8×, 14×, 20
3 13, 15, 20
5 8, 13, 15, 20
7 10, 14

8 2 8×, 14×, 40, 64
3 13, 21, 28, 35
5 13, 20, 21
7 14, 19, 21

9 2 16×, 26, 40, 48, 78
3 21, 27, 35, 41
5 21, 27, 28, 34
7 19, 28

n p dimFp(D
µ)

10 2 16×, 26, 48
3 34, 36, 41
5 28, 34, 35
7 35, 36, 42

11 2 32, 44,100,144
3 34, 45
5 43, 45, 55
7 44, 45
11 36, 44

12 2 32×, 44, 100, 164
13 2 64, 208
14 2 64, 208

Table 7. Possible dimFp(D
µ)

Suppose that dimFp(D
µ) is listed in Table 7 with no adjacent ×. Using Magma, we

determine that Sn×F∗p has a regular orbit on V , a contradiction. All of these computations
are routine except for n = 12 and dimF2(V ) = 44; in this case we use Orb [31]. Also,
we do not require Magma when p = 2 and (n,dimFp(D

µ)) is one of (11, 44), (11, 100), or

(13, 208), for in these cases Dµ = Dλ ↓ Sn where λ is a p-regular partition of n + 1 such
that dimFp(D

λ) is listed in Table 7 by [21, Theorem 9.3].

Thus dimFp(D
µ) is listed in Table 7 with an adjacent ×. From the decomposition

matrices in [21], µ = (bn/2c+ 1, b(n− 1)/2c) when dimF2(Dµ) = 2b(n−1)/2c for 7 6 n 6 10
or n = 12, and µ = (n− 2, 2) when dimF2(Dµ) = 14 for 7 6 n 6 8, as desired.

Conversely, suppose that p = 2 and µ is either (n−2, 2) for 7 6 n 6 8, or (bn/2c+1, b(n−
1)/2c) for 7 6 n 6 10 or n = 12. Note that G = Sn. If µ = (6, 2) or (bn/2c+1, b(n−1)/2c)
for 7 6 n 6 10, then |V | < |G|, so G has no regular orbits on V . If µ = (5, 2), then no
orbit is regular by Magma, and if µ = (7, 5), then no orbit is regular by Orb [31]. �

Now we consider the regular orbits of An × F∗p.

Proposition 4.6. Let G be a group for which An 6 G 6 An × F∗p where n > 7 and p
is a prime such that p 6 n. Let V be a faithful irreducible FpAn-module, and let µ be a
p-regular partition of n for which V 6 Dµ ↓ An. Suppose that Dµ /∈ Rn(2).

(i) If V 6= Dµ ↓ An, then G has no regular orbits on V if and only if p = 2 and µ is
(5, 3, 1) or (bn/2c+ 1, b(n− 1)/2c) for 7 6 n 6 9.

(ii) If V = Dµ ↓ An, then G has no regular orbits on V if and only if p = 2 and
µ = (6, 4).



14 JOANNA B. FAWCETT, E. A. O’BRIEN, AND JAN SAXL

Proof. (i) By Lemma 2.4, Dµ ↓ An = V ⊕V g for every g ∈ Sn \An. Now EndFpG(V ) = Fp
since for every field F of characteristic p, the irreducible FSn-module Dµ⊗Fp F restricted
to An is (V ⊗Fp F )⊕ (V ⊗Fp F )g, and so V ⊗Fp F must be irreducible by Lemma 2.4. Note
that G has a regular orbit on V if and only if G has a regular orbit on V g.

Suppose that G does not have a regular orbit on V . We claim that (n, p,dimFp(D
µ)) is

listed in Table 8. First suppose that p = 2 and n > 15. Lemma 4.4 implies that dimF2(Dµ)
is listed in Table 3 where q = 2, W = V and k = F2, so the claim holds.

(n, p) (7,2) (8,2) (9,2) (9,5) (10,2) (10,5) (15,2) (16,2) (17,2)
dimFp(D

µ) 8× 8×, 40 16×, 40× 70 128 70 128 128 256
Table 8. Possible dimFp(D

µ) when V 6= Dµ ↓ An

Now suppose that either p = 2 and n 6 14, or p is odd. Note that if p is odd, then
n 6 11 by Lemma 4.4. Let

h(p, n) := n logp(n!(p− 1)/2).

By Lemma 2.2, Z(G) 6 F∗p, so Lemma 3.5 implies that dimFp(V ) 6 r(G) logp(n!(p−1)/2).
Since r(G) = r(An) 6 n/2 by [17, Lemma 6.1], and since dimFp(V ) = dimFp(D

µ)/2, we
obtain that dimFp(D

µ) 6 bh(p, n)c. By [13, 23, 27], the dimensions of those Dµ for which
Dµ ↓ An splits (over Fp) are precisely those listed in Table 8, proving the claim.

Suppose that dimFp(D
µ) is listed in Table 8 with no adjacent ×. Using Magma, we

determine that An × F∗p has a regular orbit on V , a contradiction. Thus dimFp(D
µ)

is listed in Table 8 with an adjacent ×. Using the decomposition matrices in [21], we
determine that µ is (5, 3, 1) when dimF2(Dµ) = 40 and (bn/2c + 1, b(n − 1)/2c) when

dimF2(Dµ) = 2b(n−1)/2c for 7 6 n 6 9, as desired.
Conversely, suppose that p = 2 and µ = (bn/2c + 1, b(n − 1)/2c) for 7 6 n 6 9 or

(5, 3, 1). Note that G = An. If µ 6= (5, 3, 1), then |V | < |G|, so G does not have a regular
orbit on V , and if µ = (5, 3, 1), then we use Magma to check no orbit is regular.

(ii) If G has no regular orbits on V , then Sn×F∗p has no regular orbits on Dµ, so p = 2
and µ = (bn/2c+1, b(n−1)/2c) for 7 6 n 6 10 or n = 12 by Proposition 4.5. In particular,
G = An. Since Dµ ↓ An is irreducible, the only possibilities for µ are (6, 4) or (7, 5). If
µ = (7, 5), then we use Magma to find a regular orbit of G on V , a contradiction. Hence
µ = (6, 4), in which case |V | < |G|, so G does not have a regular orbit on V . �

4.2. Modules in Rn(2) \ Rn(1). In this section, it is natural to work over an arbitrary
field, and we obtain the following more general result for modules in Rn(2) \Rn(1).

Proposition 4.7. Let H be Sn or An where n > 5. Let G := H×A where F is a field and
A is a finite subgroup of F ∗. Let V be a faithful irreducible FH-module where V 6 Dµ ↓ H
and Dµ ∈ Rn(2) \Rn(1). If n > 12, then G has a regular orbit on V .

Proposition 4.7 extends Step 5 of the proof of [19, Theorem 6], which exhibits a regular
orbit of An on modules in Rn(2) \ Rn(1) for n > 30. Our methods of proof are similar.
Although Proposition 4.7 is trivial when F is an infinite field by Lemma 3.1, we include
such F here since Lemma 3.1 only guarantees the existence of a regular orbit, whereas our
proof is constructive.

For modules in Rn(2) \Rn(1), we are primarily concerned with the partitions (n− 2, 2)
and (n − 2, 1, 1). For these partitions, the modules Mµ and Sµ can be understood most
readily using graphs. We assume a familiarity with basic terminology from graph theory
throughout this section.
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If µ = (n−2, 2), then Mµ is the permutation module of Sn on the set of unordered pairs
from {1, . . . , n}, so the set of simple undirected graphs on n vertices with edges weighted
by field elements is isomorphic to Mµ if we identify each unordered pair {i, j} with the
edge whose ends are i and j. With this viewpoint, the Specht module Sµ is spanned by
the alternating 4-cycles, which are graphs of the form {i, j} − {j, k} + {k, l} − {l, i} for
distinct i, j, k, l ∈ {1, . . . , n}. Observe that the sum of {1, 2} − {2, 3}+ {3, 4} − {4, 1} and
{1, 4} − {4, 5}+ {5, 6} − {6, 1} is the alternating 6-cycle {1, 2} − {2, 3}+ {3, 4} − {4, 5}+
{5, 6} − {6, 1}. Continuing in this way, we conclude that Sµ contains every alternating
2m-cycle for m > 2.

Similarly, if µ = (n − 2, 1, 1), then Mµ is the permutation module of Sn on the set
of ordered pairs from {1, . . . , n}, so the set of simple directed graphs on n vertices with
edges weighted by field elements is isomorphic to Mµ if we identify each ordered pair
(i, j) with the edge whose tail is i and head is j. With this viewpoint, the Specht module
Sµ is spanned by the directed 3-cycles, which are graphs of the form (i, j) − (j, i) +
(j, k) − (k, j) + (k, i) − (i, k) for distinct i, j, k ∈ {1, . . . , n}. Observe that the sum of
(1, 2)− (2, 1)+(2, 3)− (3, 2)+(3, 1)− (1, 3) and (1, 3)− (3, 1)+(3, 4)− (4, 3)+(4, 1)− (1, 4)
is the directed 4-cycle (1, 2)−(2, 1)+(2, 3)−(3, 2)+(3, 4)−(4, 3)+(4, 1)−(1, 4). Continuing
in this way, we conclude that Sµ contains every directed m-cycle for m > 3.

Lemma 4.8. Let F be a field, and suppose that n > 7. If V is an FSn-module in
Rn(2) \Rn(1), then V ↓ An is irreducible.

Proof. For n > 30, this is proved in Step 5 of the proof of [19, Theorem 6]. We reproduce
this proof here in order to deal with smaller n. Since the modules in Rn(2) \ Rn(1) have
the form Dµ or Dµ ⊗F sgn where µ is (n − 2, 2) or (n − 2, 1, 1), and since Dµ ↓ An '
Dµ ⊗F sgn ↓ An, it suffices to assume that V = Dµ where µ is (n− 2, 2) or (n− 2, 1, 1).

Suppose for a contradiction that Dµ ↓ An is not irreducible, and let W be an irreducible
FAn-submodule of Dµ. Lemma 2.4 implies that Dµ = W ⊕Wg where g = (12) ∈ Sn.
Recall that dimF ([W, g]) = dimF (W )−dimF (CW (g)). But CW (g) = 0 since W ∩Wg = 0,
and (n2 − 5n + 2)/2 6 dimF (Dµ) by [22, Appendix Table 1], so (n2 − 5n + 2)/4 6
dimF (Dµ)/2 = dimF ([W, g]). Moreover, dimF ([W, g]) 6 dimF ([Mµ, g]) = dimF (Mµ) −
dimF (Cµ) where Cµ := CMµ(g), and dimF (Mµ) is either n(n − 1)/2 or n(n − 1) when

µ is (n − 2, 2) or (n − 2, 1, 1) respectively. Hence dimF (C(n−2,2)) 6 (n2 + 3n − 2)/4 and

dimF (C(n−2,1,1)) 6 (3n2 + n− 2)/4.
Now we consider the dimension of Cµ and compare it to the upper bounds above to

obtain a contradiction for all but the smallest n. Suppose that µ = (n− 2, 2). The graphs
{1, 2}, {i, j} and {1, i}+ {2, i} are fixed by g for all i, j /∈ {1, 2}, and these form a linearly
independent set in Mµ, so dimF (Cµ) > 1 + (n− 2)(n− 3)/2 + (n− 2) = (n2 − 3n+ 4)/2.
But this is impossible unless n = 7. Next suppose that µ = (n−2, 1, 1). The graphs (i, j),
(1, 2) + (2, 1), (1, i) + (2, i), and (i, 1) + (i, 2) are fixed by g for all i, j /∈ {1, 2}, and again
these form a linearly independent set, so dimF (Cµ) > (n−2)(n−3)+1+(n−2)+(n−2) =
n2 − 3n+ 3. But this is impossible unless n 6 11.

Hence either n = 7 when µ = (n− 2, 2), or 7 6 n 6 11 when µ = (n− 2, 1, 1). If n = 11
and char(F ) = 11, then dimF (Dµ) = 36, and so Dµ ↓ An is irreducible by [23]. Otherwise,
Dµ ↓ An is irreducible by [13, 27] (including the case char(F ) > n or char(F ) = 0). �

Note that when n = 5 or 6, there are examples of FSn-modules V in Rn(2) \Rn(1) for
which V ↓ An is not irreducible.

We will need the following technical result about graphs. For a graph Γ, we denote the
vertex set of Γ by V Γ and the edge set of Γ by EΓ, and for u ∈ V Γ, we denote the valency
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of u by |u| and the set of vertices adjacent to u by Γ(u). We denote the complete graph
with ` vertices by K` and the complete bipartite graph with parts of size ` and `′ by K`,`′ .

Lemma 4.9. Let Γ be a finite simple undirected graph. Suppose that |V Γ| > 12 and 1 6
|EΓ| 6 2|V |+8, and suppose that the maximal valency of Γ is at most 8. Either there exist
distinct v1, v2, v3, v4 ∈ V Γ such that {v1, v2} ∈ EΓ but {v2, v3}, {v3, v4}, {v4, v1} /∈ EΓ, or
|V Γ| = 12 and Γ is one of K4,8, K6 ∪K6 or K5 ∪K7.

Proof. Let a ∈ V Γ have minimal non-zero valency. Note that if u ∈ V Γ has valency 0,
then since |V Γ| > 12 and |a| 6 8, we may take v4 ∈ V Γ \ (Γ(a) ∪ {a, u}) along with
v1 = a, v2 ∈ Γ(a) and v3 = u. Thus we may assume that every vertex has non-zero
valency. In particular, since 2|EΓ| =

∑
v∈V Γ |v|, it follows that 2|EΓ| > |V Γ||a|. Thus

|a| 6 5, or else 6|V Γ| 6 2|EΓ| 6 2(2|V Γ| + 8), and so |V Γ| 6 8, a contradiction. Choose
b ∈ V Γ \ Γ(a) with maximal valency. Let A := Γ(a) \ Γ(b), let B := Γ(b) \ Γ(a), and let
C := V Γ \ (Γ(a) ∪ Γ(b) ∪ {a, b}).

Suppose first that C 6= ∅. If A 6= ∅, then let v1 = a, v3 = b and choose v2 ∈ A and
v4 ∈ C. By the symmetry of this argument, we may assume that Γ(a) = Γ(b). Now
|a| = |b|, but a has minimal valency and b has maximal valency in V Γ \ Γ(a), so every
vertex of C has the same valency as a and b. If there is an edge whose ends are both in
C, then we may take v1 and v2 to be the ends of this edge along with v3 = b and v4 = a.
Otherwise, every vertex of C is adjacent to every vertex of Γ(a). Now every vertex of Γ(a)
has valency at least |C| + 2, so |C| 6 6, but |a| 6 5, so |V Γ| = 2 + |a| + |C| 6 13. If
|V Γ| = 13, then Γ must contain a subgraph isomorphic to K5,8, but K5,8 has 40 edges,
so Γ has at least 40 edges, contradicting our assumption that |EΓ| 6 34. Similarly, if
|V Γ| = 12, then Γ must contain a subgraph isomorphic to K5,7 or K4,8, but K5,7 has 35
edges, K4,8 has 32 edges, and |EΓ| 6 32, so Γ must be K4,8.

Thus we may assume that C is empty. Note that |B| = |V Γ| − |a| − 2 > 12− 5− 2 = 5.
This implies that |Γ(a)∩Γ(b)| 6 3, so |A|+ |B| = |V Γ|− |Γ(a)∩Γ(b)|−2 > 12−3−2 = 7.
Moreover, A 6= ∅ since |b| 6 8 and |V Γ| > 12. If there is an edge that has one end in
A and the other in B, then we may take these ends to be v1 and v2 respectively along
with v3 = a and v4 = b, so we assume that there is no such edge. Suppose further that
there exists u ∈ Γ(a) ∩ Γ(b). The vertex u cannot be adjacent to every vertex of A and
B or else |u| > 9. If u is not adjacent to some vertex of A, then we take v1 = a, v2 = u,
v3 ∈ A \ Γ(u), and v4 ∈ B. Thus by symmetry we may assume that Γ(a) ∩ Γ(b) is empty,
so that Γ consists of exactly two connected components.

If the component containing a is not complete, then we may choose distinct non-adjacent
vertices v1, v4 ∈ A and take v2 = a and v3 = b. By symmetry, we may assume that the
components of Γ are K|A|+1 and K|B|+1. Since |A| 6 5 and |B| 6 8, the initial assumptions
on |V Γ| and |EΓ| imply that |V Γ| = 12, so Γ is K6 ∪K6 or K5 ∪K7. �

For s ∈ Sµ, the underlying graph of s is either the graph s with weights removed when
µ = (n − 2, 2), or the graph s with weights, direction and multiple edges removed when
µ = (n− 2, 1, 1). Thus the underlying graph of s ∈ Sµ is always a finite simple undirected
graph. Recall that Dµ = Sµ/(Sµ ∩ Sµ⊥).

Lemma 4.10. Let µ be (n − 2, 2) or (n − 2, 1, 1), and suppose that n > 12. Let F be a
field for which µ is char(F )-regular, and let A be a finite subgroup of F ∗. If there exists
s ∈ Sµ whose underlying graph has trivial automorphism group, maximal valency at most
4, and at most n + 4 edges when n > 13 or at most 14 edges when n = 12, then Sn × A
has a regular orbit on Dµ and Dµ ⊗F sgn.
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Proof. We claim it suffices to prove that s − λsg /∈ Sµ⊥ for all 1 6= g ∈ Sn and λ ∈ F ∗.
Suppose that this occurs. Then s 6∈ Sµ⊥ since Sµ⊥ is an FSn-submodule of Mµ. If
(s + Sµ ∩ Sµ⊥)gλ = s + Sµ ∩ Sµ⊥ for some g ∈ Sn and λ ∈ A, then s − λsg ∈ Sµ⊥, so
g = 1. But s 6∈ Sµ⊥, so λ = 1. Hence Sn × A has a regular orbit on Dµ. Moreover, if
(s+ Sµ ∩ Sµ⊥ ⊗ 1)gλ = s+ Sµ ∩ Sµ⊥ ⊗ 1 for some g ∈ Sn and λ ∈ A, then either g ∈ An
and s− λsg ∈ Sµ⊥, or g ∈ Sn \An and s+ λsg ∈ Sµ⊥. If the latter holds, then g = 1, but
this is ridiculous since g /∈ An, so the former holds. Again g = 1, so λ = 1. Hence Sn ×A
has a regular orbit on Dµ ⊗F sgn, and the claim is proved.

Fix 1 6= g ∈ Sn and λ ∈ F ∗. Now s− λsg 6= 0, or else g is a non-trivial automorphism
of the underlying graph of s. Moreover, the underlying graph Γ of s − λsg has at most
2n+ 8 edges when n > 13 or at most 28 edges when n = 12, and its vertices have valency
at most 8. Note that if n = 12, then Γ cannot be K4,8, K6 ∪ K6 or K5 ∪ K8, as these
graphs have too many edges. Hence Lemma 4.9 implies that there exist distinct vertices
i, j, k, l such that {i, j} is an edge of Γ but {j, k}, {k, l} and {l, i} are not edges of Γ. Let

s′ :=

 {i, j} − {j, k}+ {k, l} − {l, i} if µ = (n− 2, 2),
(i, j)− (j, i) + (j, k)− (k, j)

+(k, l)− (l, k) + (l, i)− (i, l) if µ = (n− 2, 1, 1),

so that s′ ∈ Sµ. We claim that < s − λsg, s′ >6= 0, in which case s − λsg /∈ Sµ⊥,
as desired. Certainly this holds if µ = (n − 2, 2) since < s − λsg, s′ > is the weight
of the edge {i, j} in s − λsg, so we assume that µ = (n − 2, 1, 1). Observe that (u, v)
is an edge of t ∈ Sµ if and only if (v, u) is an edge of t. Also, if (u, v) has weight δ
in t, then (v, u) has weight −δ in t. Let δ be the weight of (i, j) in s − λsg. Now
<s− λsg, s′>=<δ(i, j)− δ(j, i), (i, j)− (j, i)>= 2δ 6= 0 since µ is char(F )-regular. �

Proof of Proposition 4.7. By Lemma 4.8, it suffices to show that Sn×A has a regular orbit
on V , where V is Dµ or Dµ ⊗F sgn and µ is (n− 2, 2) or (n− 2, 1, 1).

Suppose first that n > 13. Let m := 2bn/2c. If µ = (n− 2, 2), then define

s1 := {1, 2} − {2, 4}+ {4, 5} − {5, 1},
s2 := {2, 3} − {3, 4}+ {4, 6} − {6, 2},
s3 := {5, 6} − {6, 7}+ · · ·+ {m−1,m} − {m, 5},

and if µ = (n− 2, 1, 1), then define s1, s2 and s3 by replacing each weighted edge ±{i, j}
above by (i, j)−(j, i). Note that s1, s2 and s3 are in Sµ in either case. Let s := s1 +s2 +s3.
Now the underlying graph of s has m + 4 edges and maximal valency 4. Moreover, it is
routine to verify that the underlying graph of s has a trivial automorphism group. Thus
Sn ×A has a regular orbit on Dµ and Dµ ⊗F sgn for n > 13 by Lemma 4.10.

Now suppose that n = 12 and |F | 6= 2. We may choose non-zero elements λ1 and λ2 of
F such that λ1 + λ2 6= 0. For µ = (n− 2, 2), define

s1 := λ1({1, 2} − {2, 3}+ {3, 4} − {4, 1}),
s2 := λ2({3, 4} − {4, 5}+ {5, 6} − {6, 7}+ {7, 8} − {8, 3}),
s3 := λ1({7, 8} − {8, 9}+ {9, 10} − {10, 11}+ {11, 12} − {12, 7}),

and for µ = (n−2, 1, 1), define s1, s2 and s3 by replacing each weighted edge ±λk{i, j} by
λk(i, j)− λk(j, i). Now s := s1 + s2 + s3 ∈ Sµ and the underlying graph of s has 14 edges,
maximal valency 3 and trivial automorphism group, so we are done by Lemma 4.10.

Lastly, if n = 12 and |F | = 2, then Sn has a regular orbit on V by Proposition 4.5(ii). �
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4.3. Modules in Rn(1). Now we find the only infinite class of faithful irreducible modules
on which Sn has no regular orbits. Neither module in Rn(0) is faithful for n > 5, so we are
only concerned with modules in Rn(1) \Rn(0). In particular, we are primarily concerned
with the partition (n− 1, 1).

Let F be a field and µ = (n−1, 1). The FSn-module Mµ is the permutation module Fn

where Sn acts on Fn by permuting the coordinates. The deleted permutation module Sµ =
{(a1, . . . , an) ∈ Fn :

∑n
i=1 ai = 0} and has dimension n−1. Moreover, Sµ⊥ = {(a, . . . , a) ∈

Fn}, and clearly Sµ ∩ Sµ⊥ is either 0 when p - n, or Sµ⊥ when p | n, so the fully deleted
permutation module Dµ has dimension n − 1 if p - n and dimension n − 2 if p | n. Note
that Dµ ↓ An is irreducible for n > 5.

The regular orbits of Sn×F∗q on S(n−1,1) were determined by Gluck [15], and also Schmid

[32] for char(Fq) > n. We now determine the regular orbits on D(n−1,1).

Proposition 4.11. Let V be the FpSn-module D(n−1,1) where n > 5 and p is a prime
such that p 6 n.

(i) If Sn 6 G 6 Sn × F∗p, then G does not have a regular orbit on V or V ⊗Fp sgn.
(ii) If An 6 G 6 An × F∗p, then G has a regular orbit on V if and only if G = An and

p = n− 1.

Proof. Let µ := (n − 1, 1) and W := Sµ ∩ Sµ⊥. Let H 6 G 6 H × F∗p where H = Sn or
An. We prove (i) and (ii) simultaneously by considering the various possibilities for p in
relation to n.

Suppose that p 6 n− 2. Clearly every n-tuple of elements from Fp must contain either
three repeated entries or two pairs of repeated entries, so every element of V is fixed by
some non-trivial element of An. But if An has no regular orbits on V , then G has no
regular orbits on V or V ⊗Fp sgn, so this case is complete.

Suppose that p = n. Again, it suffices to prove that An has no regular orbits on V .
Let v + W ∈ V . Note that if v has exactly one pair of repeated entries, then there is
exactly one b ∈ Fp that does not appear in v, but the sum of the elements of Fp vanishes,
as does the sum of the coordinates of v, so b must be the repeated entry, a contradiction.
Moreover, if v has at least two pairs of repeated entries or a triple of repeated entries,
then v +W is certainly fixed by a non-trivial element of An. Hence we may assume that
v is of the form (v1, . . . , vp) where vi 6= vj for all i 6= j. Let g ∈ Sn be the permutation for
which vg = (v1 + 1, . . . , vp + 1). Now g has no fixed points and fixes v +W . Moreover, g
must be a p-cycle, for if (i1 · · · ik) is a cycle of g for some k ∈ {2, . . . , p}, then vik = vi1 + 1
and vij = vij+1 + 1 for all j ∈ {1, . . . , k − 1}, and it follows that vi1 = vi1 + k. Thus k = p
and g ∈ An, as desired.

Suppose that p = n − 1. Then V = Sµ. First we claim that if 1 6= λ ∈ F∗p and v is an
element of V with exactly one pair of repeated entries, then there exists 1 6= g ∈ An such
that vgλ = v. Write v = (v1, . . . , vn), and let i and j be the unique pair of distinct indices
for which vi = vj . Since the sum of the elements in Fp is zero, it follows that vi = 0. Thus
the non-zero entries of v are the p − 1 distinct elements of F∗p, and so the set of entries
of v contains a transversal T for the cosets of 〈λ〉 in F∗p. Let m be the order of λ in F∗p.
As in the proof of [15, Lemma 2], each coset of 〈λ〉 has the form {vi0 , . . . , vim−1} for some

vi0 ∈ T , where vij = λjvi0 for 1 6 j 6 m − 1. Define g ∈ An to be the product of the
disjoint cycles (i0, . . . , im−1) and (i j) if needed. Now g 6= 1 and vgλ = v, as claimed.

If G = An, then (1, 2, . . . , p − 1, 0, 0) lies in a regular orbit of G, so we may assume
that G 6= An. We claim that G does not have a regular orbit on V or V ⊗Fp sgn. Let
0 6= v ∈ V . If v has a triple of repeated entries or two pairs of repeated entries, then some
g ∈ An fixes both v and v ⊗ 1, so we may assume that v has exactly one pair of repeated
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entries, say with indices i and j. Suppose that H = Sn. Some element of Sn will fix v, so
G has no regular orbits on V . Moreover, by the claim there exists 1 6= g ∈ An such that
vg = −v, so g(i j) fixes v⊗ 1, and we conclude that G has no regular orbits on V ⊗Fp sgn.
Thus H = An. Since An < G, there exists 1 6= λ ∈ G ∩ F∗p. Now there exists 1 6= g ∈ An
such that vgλ = v by the claim, and gλ ∈ G, so G has no regular orbits on V . �

4.4. Proof of Theorem 4.1. Let d := dimFp(V ). There exists a non-negative integer
m for which Dµ ∈ Rn(m). Since V is faithful as an FpH-module, Dµ is faithful as an
FpSn-module, so Dµ /∈ Rn(0). If Dµ ∈ Rn(1) \ Rn(0), then (i) holds by Proposition 4.11,
so we assume that Dµ /∈ Rn(1), in which case the condition of (ii) holds.

Suppose that n > 7. Note that for µ listed in Table 2, dimFp(V ) is as listed by [21, 23].
If Dµ 6∈ Rn(2), then we are done by Propositions 4.5(i) and 4.6, so we assume that
Dµ ∈ Rn(2) \ Rn(1), and if H = Sn, then we are done by Propositions 4.5(ii) and 4.7.
Hence we assume that H = An, in which case we are done by Proposition 4.7 unless
n 6 11. Recall that V ↓ An = Dµ by Lemma 4.8, and suppose that G does not have a
regular orbit on V . Then Sn × F∗p does not have a regular orbit on Dµ, so Proposition
4.5(ii) implies that p = 2 and µ = (n − 2, 2) for 7 6 n 6 8. If µ = (5, 2), then G has
a regular orbit on V by Magma, so µ = (6, 2), in which case G does not have a regular
orbit on V since |V | < |G|.

Thus n = 5 or 6. Using [13, 27], we determine the possibilities for µ and d. If
(n, p, µ,G, d) is not listed in Table 2, then G has a regular orbit on V by Magma, so we
may assume that (n, p, µ,G, d) is listed in Table 2. If µ is (3, 2) or (4, 2), then |V | < |G|,
so G does not have a regular orbit on V . Otherwise, we determine that G has no regular
orbits on V using Magma. �

5. Covering groups

Recall that the proper covering groups of Sn and An are 2.S+
n and 2.S−n for n > 5, 2.An

for n > 5, and 3.An and 6.An for n = 6 or 7. We focus on the double covers of Sn and An
for most of this section, as 3.An and 6.An will be dealt with computationally. For n > 5,

2.S+
n := 〈z, s1, . . . , sn−1 : z2 = 1, s2

i = (sisi+1)3 = 1, zsi = siz, (sisj)
2 = z if |i− j| > 1〉,

2.S−n := 〈z, t1, . . . , tn−1 : z2 = 1, t2i = (titi+1)3 = z, zti = tiz, (titj)
2 = z if |i− j| > 1〉.

The centre of each group is {1, z}, and they are isomorphic precisely when n = 6, in which
case we write 2.S6. We also write 2.Sεn when no distinction between the two covers needs
to be made. The cover 2.An is the derived subgroup of 2.Sεn and has centre {1, z}.

Let G be 2.Sεn or 2.An where n > 5, and let z be the unique central involution of G.
Let F be a field, and let V be an irreducible FG-module. Now z must act as 1 or −1
on V . (Indeed, this is the case for a central involution in any finite group.) Since every
non-trivial normal subgroup of G contains z, it follows that V is faithful precisely when
z acts as −1. In particular, G has no faithful irreducible representation over a field of
characteristic 2. In this section, we prove the following theorem.

Theorem 5.1. Let H be a proper covering group of Sn or An where n > 5. Let G be
a group for which H 6 G 6 H ◦ F∗p where p is a prime and p 6 n. Let V be a faithful
irreducible FpH-module. Let d := dimFp(V ). The group G has a regular orbit on V if and
only if (n, p,G, d) is not listed in Table 1.

Let G be 2.Sεn or 2.An where n > 5. We will be primarily interested in the so-called
basic spin modules of G, for these have minimal dimension among the faithful irreducible
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modules by [24] (cf. Theorem 5.2). In fact, non-basic spin modules have such large dimen-
sion that they almost always have regular orbits. Indeed, there is only one non-basic spin
module listed in Table 1; it arises for n = p = 5 when G = 2.A5 ◦F∗5 and has dimension 4.

Over the complex numbers, the irreducible representations of G can be indexed by cer-
tain partitions of n [33], and the complex basic spin modules of G are those representations
corresponding to the partition (n). For an algebraically closed field of positive character-
istic p, a basic spin module is a composition factor of the reduction modulo p of a complex
basic spin module, and by [35], this reduction is irreducible except when p | n and either
n is odd for G = 2.Sεn, or n is even for G = 2.An. Moreover, there are at most two basic
spin modules, and when there are two, they are either associates or conjugates. Lastly,
every basic spin module of 2.An arises as a submodule of a basic spin module of 2.Sεn.

Let p be a prime. As in [24], define

δ(G) :=

 2

⌊
1
2 (n−1−κ(p,n))

⌋
if G = 2.Sεn

2

⌊
1
2 (n−2−κ(p,n))

⌋
if G = 2.An,

where κ(p, n) := 1 if p | n and 0 otherwise. Now δ(G) is the dimension of a basic spin
module of G over a splitting field of characteristic p [35]. Moreover, Kleshchev and Tiep
[24] provide a lower bound for the dimensions of faithful irreducible representations of G
in terms of δ(G), which we now state.

Theorem 5.2. Let G be 2.Sεn or 2.An where n > 8, and let F be an algebraically closed
field of positive characteristic. If V is a faithful irreducible FG-module for which dimF V <
2δ(G), then V is a basic spin module and dimF V = δ(G).

Theorem 5.2 can be applied to any finite field in the following way. Let V be a faithful
irreducible FG-module where F is a finite field and G is 2.Sεn or 2.An. Let k := EndFG(V ).
Recall that V is a faithful absolutely irreducible kG-module. If V is the realisation over
k of a basic spin module of G, then we also refer to V as a basic spin module. For n > 8,
Theorem 5.2 implies that either dimk(V ) = δ(G), in which case V is a basic spin module,
or 2δ(G) 6 dimk(V ) 6 dimF (V ).

Unlike Sn, not every field is a splitting field for 2.Sεn. However, every field containing
Fp2 for p an odd prime is a splitting field for 2.Sεn and 2.An (cf. [28, Corollary 5.1.5]).
Note that there are instances where Fp is a splitting field for 2.An but not for 2.Sεn.

The Brauer character tables of 2.S+
n and 2.An for p 6 n and 5 6 n 6 12 may be found

in [23] and also in [13] for p 6 n and 5 6 n 6 13. The Brauer character tables of 2.S−n
for 5 6 n 6 18 and p ∈ {3, 5, 7} may be found in GAP [13] via the SpinSym package [27].
We can convert the character table of one double cover to that of the other using GAP.
When the reduction modulo p of an ordinary irreducible representation of 2.Sεn or 2.An is
irreducible, the Brauer character is the ordinary character restricted to p-regular elements
and can therefore be accessed using the generic character tables in GAP.

We begin with a reduction for almost quasisimple groups G with F ∗(G)′ ' 2.An.

Lemma 5.3. Let G be an almost quasisimple group where N := F ∗(G)′ ' 2.An and
n > 8. Let F be a finite field. Let V be a faithful irreducible FG-module, k := EndFG(V )
and q := |k|. Let W be an irreducible kN -submodule of V . If G has no regular orbits on
V , then n 6 20, and if char(F ) 6 n, then the following hold.

(i) If n > 13, then W is a basic spin module and (n, q) is listed in Table 9. If there is
no ∗ next to q, then V ↓ N = W and W is an absolutely irreducible kN -module.

(ii) If n 6 12 and W is not a basic spin module, then V ↓ N = W and W is an
absolutely irreducible kN -module where (n, q,dimk(W )) is listed in Table 10.
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n q
13 3∗, 5∗, 7∗, 9∗, 11∗, 13∗, 25

27, 49, 81, 121, 169, 243
14 3∗, 5, 7∗, 9, 11, 13, 49
15 3∗, 5∗, 9, 11, 13, 25, 27
16 3, 5, 7
17 3∗, 7, 9, 11
18 3∗, 9
19 3
20 5

Table 9. Possible q when n > 13

n q dimk(W )
8 9 24

7 16
9 3 48
10 3, 5 48
11 5 56

Table 10. Possible q and dimk(W ) when n 6 12 and W is non-basic

Proof. Suppose that G has no regular orbits on V . Let p := char(F ). Since V is a
faithful absolutely irreducible kG-module, Lemma 2.2 implies that Z(G) 6 k∗, and so
|Z(G)| 6 q − 1. Let

g(q, n) := max {(n− 1) logq (n(n− 1)(q − 1)), n2 logq (2n!(q − 1))}.

Now equation (2) of Lemma 3.6 implies that dimk(V ) 6 bg(q, n)c. Note that if n is fixed,
then g(q, n) is a decreasing function in q by Lemma 3.7.

Since Z(N) 6 Z(G) by Lemma 2.1, the central involution of N must act as −1 on V .
Thus p 6= 2 and W is a faithful kN -module, so δ(N) 6 dimk(W ) by Theorem 5.2. In

particular, δ(N) 6 bg(q, n)c. If n > 21, then bg(q, n)c 6 bg(3, n)c < 2b(n−3)/2c 6 δ(N), a
contradiction. Thus n 6 20, as claimed.

We assume for the remainder of the proof that p 6 n. Let E := EndkN (W ). Suppose
that n > 13. First we claim that either (n, q) is listed in Table 9 or (n, q) ∈ P where

P := {(13, 125), (13, 343), (14, 343), (15, 7), (17, 5)}.

If q > 7 and n > 19, then bg(q, n)c 6 bg(7, n)c < 2b(n−3)/2c 6 δ(N), a contradiction.
Hence if q > 7, then n 6 18. Similarly, if q > 17, then n 6 16; if q > 49, then either
n = 16 or n 6 14; if q > 121, then n 6 14; and if q > 625, then either n = 14 or
n 6 12. If n = 14 where q > 25 and p 6= 7, then bg(q, 14)c 6 bg(25, 14)c < 64 = δ(N),
a contradiction, and if n = 14 and 74 | q, then bg(q, 14)c 6 bg(74, 14)c < 32 = δ(N),
a contradiction. Similarly, if n = 16, then κ(p, n) = 0, so we obtain a contradiction for
q > 9. In fact, if (n, q) is one of (20, 3), (19, 5), (17, 13), or (18, q) where q ∈ {5, 7, 11, 13},
then κ(p, n) = 0, and we obtain contradictions. The claim follows.

Let Q be the set of (n, q) listed in Table 9 with an adjacent *. By the claim, 2δ(N) 6
bg(q, n)c if and only if (n, q) ∈ Q. This has several consequences.

Firstly, W is a basic spin module, or else Theorem 5.2 implies that 2δ(N) 6 dimE(W ) 6
dimk(W ) 6 bg(q, n)c, and so (n, q) ∈ Q, but for such (n, q), there is no faithful irreducible
EN -module whose dimension lies between 2δ(N) and bg(q, n)c by [13, 27], a contradiction.
Secondly, if (n, q) /∈ Q, then W is an absolutely irreducible kN -module, for if not, then
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dimk(W ) > 2 dimE(W ) = 2δ(N), so 2δ(N) 6 bg(q, n)c, a contradiction. Thirdly, (n, q) is
listed in Table 9, for if not, then (n, q) ∈ P by the claim, but this implies that W is not
an absolutely irreducible kN -module by [13, 27], so (n, q) ∈ Q, a contradiction. Lastly,
if (n, q) /∈ Q, then V ↓ N is irreducible, or else 2 dimk(W ) 6 dimk(V ) by Lemma 2.4, so
2δ(N) 6 bg(q, n)c, a contradiction. Thus we have proved (i).

Henceforth, we may assume that n 6 12 and W is not a basic spin module. Now
2δ(N) 6 dimE(W ) 6 bg(p, n)c. For each (n, p), we use [13, 23, 27] to determine the
possibilities for dimE(W ). Either these are the dimensions given in Table 10, or n = 8,
p = 5 and dimE(W ) = 24. Since dimE(W ) 6 bg(q, n)c, it follows that either q is listed
in Table 10, or n = 8 and q = 3 or 5. If n = 8 and p = 3 or 5, then no faithful
irreducible Fp2N -module of dimension 24 can be realised over Fp [23], so dimk(W ) = 48
when q = 3 or 5, while bg(q, 8)c < 48, a contradiction. Thus (n, q,dimE(W )) is listed in
Table 10, in which case W is an absolutely irreducible kN -module [23], so E = k. Lastly, if
V ↓ N 6= W , then 2 dimk(W ) 6 dimk(V ) 6 bg(q, n)c by Lemma 2.4, a contradiction. �

Next we consider the double covers of the symmetric group.

Proposition 5.4. Let H := 2.Sεn where n > 8, and let G be such that H 6 G 6 H ◦ F∗p
where p is a prime and p 6 n. Let V be a faithful irreducible FpH-module.

(i) If ε = −, then G has no regular orbits on V if and only if dimFp(V ) = δ(H) and
(n, p) is one of (8, 3), (8, 5), (9, 3), or (10, 3).

(ii) If ε = +, then G has no regular orbits on V if and only if dimFp(V ) = δ(H) and

(n, p) = (8, 5) and G = 2.S+
n ◦ F∗p.

Proof. We will prove (i) and (ii) simultaneously. Suppose that G does not have a regular
orbit on V . Lemma 5.3 implies that n 6 20. Let k := EndFpG(V ) and q := |k|. Let W be
an irreducible kN -submodule of V where N := F ∗(G)′ = 2.An.

First we claim that q is either p or p2. Let χ be the character of the kG-module V and
Fp(χ) the subfield of k generated by Fp and the image of χ. By [5, Theorem VII.1.16], the
FpG-module V is a direct sum of [k : Fp(χ)] irreducible FpG-modules, so k = Fp(χ). Since

χ is also the character of the irreducible kG-module V ⊗k k, where k denotes the algebraic
closure of k, it follows from [5, Theorem VII.2.6] that k is contained in the unique smallest
splitting field for G in k. Since Fp2 is a splitting field for H, the claim follows.

Suppose that n > 12. We claim that dimk(V ) = δ(H) and that (n, p, ε) is listed in
Table 11. By Lemma 5.3, W is a basic spin module and (n, q) is listed in Table 9 for
n > 13. Suppose that either n = 12 or (n, q) is such that (n, p) has an adjacent ∗ in Table
9. Then dimk(V ) = δ(H) by [13, 23, 27], and dimFp(V ) = 64 when (n, p, ε) = (12, 11,−),
but equation (3) of Lemma 3.6 implies that dimFp(V ) 6 57, a contradiction. Hence the
claim holds in this case.

n 12 12 13 14 14 15 16 16 17, 18
p 3, 5, 7 11 p 6 n 3, 7 11 3, 5 3 7 3
ε ± + ± ± − ± + − ±

Table 11. Possible p and ε when n > 12

We may therefore assume that (n, q) is such that (n, p) has no adjacent ∗ in Table 9.
Now q = p, W = V ↓ N and W is a faithful absolutely irreducible kN -module by Lemma
5.3. Thus dimk(V ) = dimk(W ) = δ(N). But if either n is even and p | n, or n is odd and
p - n, then δ(H) = 2δ(N), and so dimk(V ) < δ(H), contradicting Theorem 5.2.
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We conclude that either n is even and p - n, or n is odd and p | n. Now dimk(V ) =
dimk(W ) = δ(N) = δ(H). If n = 14 and (p, ε) is one of (5,±), (11,+) or (13,±), or n = 16
and (p, ε) is one of (3,−), (5,±) or (7,+), then k = Fp2 by [13, 27], a contradiction.

Thus (n, p, ε) is listed in Table 11 and dimk(V ) = δ(H). Using Magma, we determine
that H ◦ F∗p has a regular orbit on V , a contradiction.

Hence n 6 11. First suppose that W is not a basic spin module. Lemma 5.3 implies
that V ↓ N = W and dimk(W ) is listed in Table 10. Using [13, 23, 27], we determine that
if (n, q) is one of (8, 9), (10, 5) or (11, 5), then there is no faithful irreducible kH-module of
dimension 24, 48 or 56 respectively, a contradiction. Thus (n, q) is one of (8, 7), (9, 3) or
(10, 3). If ε = +, then k = Fp2 by [13], a contradiction, and if ε = −, then using Magma,
we determine that H ◦ F∗p has a regular orbit on V , a contradiction.

Thus W is a basic spin module, in which case dimk(V ) = δ(H) by [13, 23, 27]. Moreover,
(n, q, ε, dimFp(V )) is one of (8, 3,−, 8), (8, 5,±, 8), (9, 3,−, 8), (10, 3,−, 16), or else H ◦ F∗p
has a regular orbit on V by Magma. Note that dimFp(V ) = δ(H) since k = Fp. Now (i)

holds, so we may assume that ε = +. If G = 2.S+
8 , then G has a regular orbit on V by

Magma, a contradiction, so G = 2.S+
8 ◦ F∗5, as desired.

Conversely, suppose that dimFp(V ) = δ(H) and either ε = − and (n, p) is one of (8, 3),

(8, 5), (9, 3) or (10, 3), or ε = + and (n, p) = (8, 5) and G = 2.S+
n ◦ F∗p. If (n, p) is (8, 3) or

(9, 3), then |V | < |G|, and so G has no regular orbits on V . Otherwise, we use Magma
to check that no orbit is regular. �

Using Proposition 5.4, we now consider the double cover of the alternating group.

Proposition 5.5. Let H := 2.An where n > 8, and let G be such that H 6 G 6 H ◦ F∗p
where p is a prime and p 6 n. Let V be a faithful irreducible FpH-module. Then G
has no regular orbits on V if and only if dimFp(V ) = δ(H) and either p = 3 and n ∈
{8, 9, 10, 11, 12}, or p = 5 and n ∈ {9, 10}.

Proof. Suppose that G has no regular orbits on V . Let k := EndFpG(V ) and q := |k|. As

in the proof of Proposition 5.4, q is either p or p2 since Fp2 is a splitting field for H. For
ε ∈ {+,−}, let V ε be an irreducible Fp(2.Sεn)-module for which V 6 V ε ↓ H, which exists
by Lemma 2.3. Since r(G) = r(An) 6 n/2 by [17, Lemma 6.1], Lemma 3.5 implies that

dimFp(V ) 6 r(G) logp |G| 6 n
2 logp(n!p−1

2 ) =: h(p, n).

Suppose that n > 13. Lemma 5.3 implies that V is a basic spin module and (n, q) is
listed in Table 9. We claim that (n, q) ∈ P where

P := {(13, 3), (13, 13), (14, 5), (14, 13), (15, 5), (16, 5), (20, 5)},
in which case H ◦ F∗p has a regular orbit on V by Magma, a contradiction. If (n, q) =
(17, 11), then 128 = δ(H) = dimFp(V ) 6 bh(p, n)c = 124, a contradiction. In addition, if

(n, q) is one of (15, 11), (15, 13), (17, 7) or (19, 3), then q = p2 by [13], a contradiction.
We may assume that V ε is a basic spin module. If V = V ε ↓ 2.An for some ε ∈ {+,−},

then G has a regular orbit on V by Proposition 5.4, a contradiction. Thus V ε ↓ 2.An =
V ⊕ V g for every g ∈ 2.Sεn \ 2.An and ε ∈ {+,−}. If (n, p) is one of (13, 5), (13, 7),
(13, 11), (14, 7), (14, 11), (16, 7), (17, 3) or (18, 3), then V − ↓ H does not split by [13, 27],
a contradiction. Similarly, if p = 3 and 14 6 n 6 16, then V + ↓ H does not split by
[13, 27], a contradiction. Lastly, if (n, p) is one of (13, 3), (13, 13) or (15, 5), then q = p by
[13, 27]. Thus (n, q) ∈ P , proving the claim.

Hence n 6 12. First suppose that V is not a basic spin module. Then (n, q) is listed
in Table 10. If (n, q) = (8, 9), then 48 = dimFp(V ) 6 bh(p, n)c = 38, a contradiction. If

(n, q) is one of (8, 7), (9, 3) or (10, 3), then V = V − ↓ H, so G has a regular orbit on V by
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Proposition 5.4, a contradiction. Lastly, if (n, q) is (10, 5) or (11, 5), then we determine
that H ◦ F∗p has a regular orbit on V using Magma, a contradiction.

Thus V is a basic spin module, and we may assume that V ε is also a basic spin module.
First suppose that V 6= V ε ↓ H for both ε ∈ {+,−}. Using [23], we determine that (n, p)
is one of (9, 5), (9, 7), (10, 5), (11, 3), (11, 5) or (12, 3). If (n, p) is (9, 7) or (11, 5), then
H ◦ F∗p has a regular orbit on V by Magma, a contradiction. Thus (n, p) is one of (9, 5),
(10, 5), (11, 3) or (12, 3), in which case q = p by [23], so dimFp(V ) = δ(H).

Lastly, if V = V ε ↓ H for some ε ∈ {+,−}, then 2.Sεn ◦ F∗p has no regular orbits on V ε,
so dimFp(V ) = δ(H) and (n, p) is one of (8, 3), (8, 5), (9, 3) or (10, 3) by Proposition 5.4.
If (n, p) = (8, 5), then H ◦ F∗p has a regular orbit on V by Magma, a contradiction.

Conversely, suppose that dimFp(V ) = δ(H) and either p = 3 and n ∈ {8, 9, 10, 11, 12},
or p = 5 and n ∈ {9, 10}. If (n, p) is one of (8, 3), (9, 3), (10, 5) or (12, 3), then |V | < |G|,
so G has no regular orbits on V . Otherwise, no orbit is regular by Magma. �

Proof of Theorem 5.1. Let d := dimFp(V ). If n > 8, then we are done by Propositions 5.4
and 5.5, so we may assume that n 6 7. Using [13, 23, 27], we determine the possibilities
for d. If (n, p,G, d) is not listed in Table 1, then we use Magma to prove that G has a
regular orbit on V . Thus we may assume that (n, p,G, d) is listed in Table 1. If either
(n, p, d) = (7, 3, 8) and G = 2.A7, or (n, p, d) = (5, 5, 4) and H = 2.S+

5 or G = 2.S−5 ◦ F∗5
or G = 2.A5 ◦ F∗5, then no regular orbits exist by Magma. Similarly, if H = 3.A6 6= G
and (n, p, d) = (6, 5, 6), or if H = 3.A7 and (n, p, d) = (7, 5, 6) or (7, 7, 6), then no regular
orbits exist by Magma. Otherwise, |V | < |G|, so G has no regular orbits on V . �

6. Comments on computations

We used functions from [27] to construct representations for covering groups of Sn and
An. Various representations are also available via the Atlas package [36]. Magma has
an implementation of the Burnside algorithm to construct all faithful irreducible represen-
tations of a finite permutation group over a given finite field. We used this to construct
representations, either all or those of specified degree, for certain small degree permutation
groups. We use our implementation of the algorithm of [14] to rewrite a representation
over a smaller field.

We used the Orb package [31] to prove that a 44-dimensional representation of S12

over F2 has a regular orbit and a 32-dimensional representation of S12 over F2 has no
regular orbits. We used Lemma 3.3 extensively to decide whether a group G has a regular
orbit. Its realisation assumes knowledge of conjugacy classes of G. While these can
often be readily computed, we used the infrastructure of [2] for these computations with
covering groups for Sn and An where n > 11. Most remaining computations reported
here are routine and were performed using Magma. Records of these are available at
http://www.math.auckland.ac.nz/~obrien/regular.
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