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Abstract

We present an algorithm to reduce the constructive membership probienbfack-box
group G to three instances of the same problem for involution centralise€s. iff G is
a simple group of Lie type in odd characteristic, then this reduction can berped in
(Monte Carlo) polynomial time.

1 Introduction

A vital component of many group-theoretic algorithms is Hitient solution of theconstructive
membership problerwhich may be defined as follows: given a finite grotip= (X), and
g € G, expresg as a straight-line program iN.

One may intuitively think of atraight-line progran{SLP) forg as an efficiently stored group
word on X that evaluates tg. For a formal definition, we refer the reader to [30, p. 10]. &hi
the length of a word in a given generating set constructed imultiplications and inversions
can increase exponentially with, the length of the corresponding SLHirsear in m. Babai &
Szemegdi [5] prove that every element 6f has an SLP of length at moSt(log® |G|) in every
generating set.

The concept of &dlack-box groupwvas also introduced in [5]. In this model, group elements
are represented by bit-strings of uniform length; the omtyug operations permissible are mul-
tiplication, inversion, and checking for equality with thientity element. Permutation groups,
groups of words with a confluent rewriting system, and majroups defined over finite fields
are covered by this model. Over the past decade, a majorchgg@ject, initiated by Babai and
Beals, seeks to develop polynomial-time algorithms to deitez the abstract group-theoretic
structure of a black-box group. We refer the reader to [7pioexcellent account of this work.

Seress [30, p. 17] definestack-box algorithmas one which does not use specific features
of the group representation, nor particulars of how grougrations are performed; it can only
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use the operations listed above. However, a common assumiptihatoraclesare available to
perform certain tasks: for example arder oracleto compute the order of an arbitrary element.
Babai & Beals [7] prove if the primes dividing the order of a ldmx group are known, then
the order of an element can be computed in polynomial time.

Many of the algorithms developed for black-box groups relyandom selections. Babai [4]
presents a black-box Monte Carlo algorithm to construct ilyrpmmial time nearly uniformly
distributed random elements of a finite group. An altermats/theproduct replacement algo-
rithm of Celleret al. [15]. That this also runs in polynomial time was establishgdPak [28].
For a discussion of both algorithms, we refer the reader@opp. 26—30].

In this paper, we show that the constructive membership@noin a black-box group: with
order oracle can be reduced to three instances of the satbleipréor involution centralisers in
G. Ourreduction algorithmapplies to all such groups. HoweverGfhas no non-central invo-
lutions, then the algorithm is not effective; even if it ixsassful, the reduction may run in time
exponential in the size of the input. We prove that the radoalgorithm runs in Monte Carlo
polynomial time for the finite simple groups of Lie type defirever fields of odd characteristic.

We establish some notation. If the elements of a black-boxmé' are represented by bit-
strings of uniform length, thenn is theencoding lengtlof G and|G| < 2™. If G also has Lie
rankr and is defined over a field of sizgthenr = O(y/n) andlogq = O(n). Lety, £ andp
denote the costs of a group operation, constructing a raredement ofG, and an order oracle
respectively.

Our principal result is the following.

Theorem 1 Let G be a black-box group having an encoding of lengtland equipped with
an order oracle. There is a black-box Monte Carlo algorithm ethreduces the constructive
membership problem fdr to three instances of the same problem for involution céistes of
G. Lete > 0 denote the probability that the algorithm fails. df is a simple group of Lie type
defined over a field of odd characteristic, then this reducttgorithm is polynomial and can be
carried out in timeO (n*/2(¢ + p) log(1/¢) + np).

Theorem 1 appears not to be true for groups of Lie type defimedfelds of even character-
istic. In particular, a key component of its proof is Theor&nwhich guarantees the abundance
of elements of even order. But the corresponding result doesatd in even characteristic: now
most elements are regular semisimple and have odd ordeth@pdoportion of elements of even
order isO(1/q). Hence the complexity of the reduction algorithm in thesgesas at least linear
in ¢, and so is not polynomial in the size of the input.

Our reduction algorithniReduct i on, can readily be embedded into a constructive member-
ship algorithmSLPVi aCent r al i ser s, which we present in Section 2. A critical decision is
how to solve each instance of the constructive membersbiglgmm for an involution centraliser.
These can be solved either by a recursive cabli&#Vi aCent r al i ser s or to an arbitrary
constructive membership algorithm. However, our analgsitie cost ofReduct i on applies
only to simple groups of Lie type in odd characteristic. Taedamental difficulty in producing
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an analysis oBLPVi aCentr al i ser s is that it appears to require knowledge of the compo-
sition factors of a black-box group. These are not known todraputable in polynomial time.
The best results in this direction are those of [7].

We can however control to some extent the Lie ranks of theabmlian composition factors
of the three involution centralisers. In particular we gdke following.

Theorem 2 Let GG be a simple group of Lie type and rankdefined over a field of odd char-
acteristic, having a black-box encoding of lengthand equipped with an order oracle. Lét
be a constant wherg/3 < § < 1. If r is sufficiently large, then, at the cost ©{n?) random
selections, we can choose the three involutionsReduct i on so that the Lie ranks of the
non-abelian composition factors of their centralisers atenostjr.

Our principal motivation was a practical algorithm for coastive membership testing. As
we demonstrate, our algorithm works well in practice, arntdrobucceeds in cases where other
constructive membership algorithms fail. The significant@heorem 2 is that it allows us to
direct the algorithm to choose involutions with relativeiyall centralisers, which ensures that
(in practice)SLPVi aCent r al i ser s completes as quickly as possible. If the obstructions to
a fully recursive algorithm could be overcome, then TheoBeoould also be used to bound the
depth of that recursion t0(log ), and the total number of recursive calls to a polynomial.in

Black-box algorithms for constructive membership of therlating groups have been devel-
oped by Beal®t al. [9]. In various works, Brooksbank, Kantor, and Seress hase @éveloped
black-box algorithms for the classical groups; see, fongXe, [14] and [21]. These algorithms
also computeonstructive isomorphisnietween the input grou@@ and a “standard” (or natural)
representation off. Such an isomorphism is not a natural by-product of our wamkbroseet
al. [2] develop another general framework for membershiprigsti black-box groups.

Constructive membership in a permutation group can be deédigeonstructing d#ase and
strong generating s€dBSGS), a concept introduced by Sims [31]. For an analysieeftgo-
rithm, see [18] or [30, p. 64]. For a discussion of practidgbathms to decide constructive
membership in a soluble group described by a polycyclicgregion, see [32, Chapter 8].

Of course, the use of involution centralisers to obtainghsinto group structure is not a new
concept. As is well known, they played a fundamental rolehadlassification of finite simple
groups. They were used extensively in early computatiotis spporadic groups; see [25] for a
survey. Altseimer & Borovik [1] used them as a central compioéan algorithm to distinguish
betweenPSp,, (¢) ands,.1(q). Both Borovik [10] and Parker & Wilson [29] consider them in
the general context of black-box groups.

The structure of the paper is as follows. In Section 2 we prieseonstructive membership
algorithm which incorporates our reduction algorithm. kc&on 3 we present and analyse an
algorithm to construct the centraliser of an involution Sections 4 and 5 we prove Theorems 1
and 2. In Section 6 we report on a practical implementatiod AGMA [11] of the constructive
membership algorithm for quasisimple linear groups.



2 Theconstructive membership algorithm

Our Monte Carlo constructive membership algoritt8bPVi aCent r al i ser s, solves a slightly
more general problem than that stated in the introductioiakes as input a black-box groap
equipped with an order oracle, a subgrddpf G, andg € G. If the algorithm concludes that
g € H, then itreturns an SLP fagrin the generators aofl, else it returng al se. The algorithm
is the following.

Findh € H with |gh| = 2¢. Now definez = (gh)*.

Find an involution: € H with |zz| = 2m. Now definey = (zz)™.
ConstructX = Cy(x).

Solve the constructive membership problemyfan X.
Construct” = Cy(y).

Solve the constructive membership problem:fan Y.
ConstrucZ = Cy(z).

Solve the constructive membership problemdgiiin 7.

© © N o g bk~ w NP

Compute and return an SLP fer

In practice, we may wish to seleatandx carefully, so that the involutions have the property
identified in Theorem 2; we consider this in Section 5.

We now more precisely specifgeduct i on: it constructs the involutions, y, z and their
centralisers irf.

We make the following observations.

(a) Each instance of the constructive membership problerarfonvolution centraliser could
be solved by a recursive call 8LPVi aCentr al i ser s or to a different algorithm. If
any one of the constructive membership tests refpats e, thenSLPVi aCentral i sers
terminates, returninfjal se. If SLPVi aCentr al i sers is called recursively, then it
must also handlbase caseghose groups wherReduct i on is not effective.

(b) Observe thatz, z) is D, having central involutiory = (zz)™. Hencey is in the cen-
traliser ofz andz is in the centraliser of.

(c) Itis easy to deduce that the method is constructive.r/Atep 1, we know an SLB,, for
h in the generators ofl. After Step 2 we similarly know an SL®, for z. In Step 3 we
record SLPs for the generators &f, and so the call in Step 4 will return an SLP far
Similarly, in Step 5, we record SLPs for the generator§’adnd so in Step 6 obtain an
SLPw, for z. Finally in Step 7 we record SLPs for the generatorg pto in Step 8 we
find an SLPw,, for gh and hence an SLR, = w,,w;, " for g.
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(d) If g is aninvolution, then we can chook&o bely so that: = g and hence we avoid Steps
1, 7 and 8. Bothy andz are involutions; ifSLPVi aCent r al i ser s is called recursively,
then this remark applies to the subproblems solved at Staps 4.

The costs of botRReduct i on andSLPVi aCent r al i ser s depend on three central tasks:

e choose a suitable involution;
e given an involution, construct its centraliser;

e solve the constructive membership problem in this ceseali

We consider these in detail in the remainder of the paper.

3 Constructing an involution centraliser

The centraliser of an involution in a black-box group havamgorder oracle can be constructed
using an algorithm of Bray [12].

Theorem 3 [12] If = is an involution in a groupH, andw is an arbitrary element of{, then
[z, w] either has odd orde2k + 1, in which casew|z, w]* commutes with:, or has even order
2k, in which case botl, w]* and [z, w!]* commute withr.

Proof. In the first caserw(z, w]* = wzlz, w*' = wzlz,w]™* = wlz,w]*z sincex is an
involution; in the second casér, w*'* = x|z, wt] ™% = [z, w*]*x. 0

This theorem is used to convert a supply of independentyaadormly distributed random
elements ofH into a supply of elements af'y(z). While these are not, in general, nearly
uniformly distributed, we have the following result (dueRachard Parker).

Theorem 4 [12] With the above notation, ib is uniformly distributed among the elements of the
group for which[z, w] has odd order, them |z, w]* is uniformly distributed among the elements
of the centraliser of:.

Proof. If w' = yw, wherey € Cg(z), then[z, w'] = [z,w] so thatw'[x, w']* = yw[z,w]"; so
each element of ' () occurs exactly once as runs through any coset 6ty (z) in H. O

Thus if the odd order case occurs sufficiently often (withyaaility at least a positive rational
function of the input size), then we can construct nearlyarmly distributed random elements
of the involution centraliser in Monte Carlo polynomial tim@f course, in practice, we can also
use the output of the even-order case to obtain a generairigrghe centraliser more rapidly.

We now restrict our attention to groups of Lie type over fi@fledd characteristic. Here, the
structure of the involution centralisers is well-knowne stor example, [19, Table 4.5.1].

Parker & Wilson [29] prove the following for classical graip
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Theorem 5 There is an absolute constant> 0 such that ifH is a finite simple classical group
of Lie rankr defined over a field of odd characteristic, ands an involution inH, then([z, h]
has odd order for at least a proportiatyr of the elements € H.

They also prove the following result for the exceptionalups.

Theorem 6 There is an absolute constant> 0 such that ifH is a finite simple exceptional
group, defined over a field of odd characteristic, anid an involution inH, then[z, h] has odd
order for at least a proportior of the elements € H.

We now analyse the cost of constructing an involution céeaC' by generating elements
of C' using Theorem 3.

Theorem 7 Let H be a simple group of Lie type defined over a field of odd charistits having
a black-box encoding of lengthand equipped with an order oracle. The centraliserHrof an
involution can be computed in tint@(\/n(£ + p) log(1/¢) + un) with probability of success at
leastl — ¢, for positives.

Proof. By Theorems 5 and 6, we neé&#(/n) random elements to find a commutator of odd
order. The probability that two random elements of a cyatmup G generates is

1 6

[1a- ]?) >

where the product is over all primesdividing the order ofG. The structure of the involution

centralisers [19, Table 4.5.1] and the work of Liebeck & &dR3, Theorem] now imply that
a constant number of elements generates the centraliser iok@lution with arbitrarily high
probability. These generators are obtained as powers ofegits, each in tim&(n) group
operations, using the standard doubling algorithm. O

w2’

4 Finding theinvolutions

Let G be a simple group of Lie type in odd characteristic and Liekran Our analysis of
Reduct i on assumes tha¥' and its subgrougf coincide. Recall thaReduct i on constructs
three involutions irG by powering up elements of even order. We need to estimatszbef the
random samples required to obtain these elements. ObsatvésinceG = H) the involutions
z andz are powers of random elements of even orderybst (x2)™ is obtained as a power of
their product and sg is not a random element.

Parker & Wilson [29] prove the following.

Theorem 8 There exists a constant> 0 such that for every simple group of Lie type in odd
characteristic, of Lie rank, and every conjugacy clags of involutions ofGG, the proportion of
elements ofy having a power irC' is at leastc/r®.
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Indeed, they show that for the symplectic and orthogonalggothis proportion is at leastr?.

Theorem 9 LetG be a simple group of Lie type defined over a field of odd charistits having
at least two conjugacy classes of involutions, and a black4dxcoding of length. In time
O(n®?(¢ + p)log(1/¢) + nu) we can construct the three involutionsy, z, with probability of
success at leadt— ¢, for positives.

Proof. Theorem 5.2 of [20] implies that at leaist4 of the elements off have even order. Hence
we obtainz with probability at least — ¢ by selecting at mosD(log(1/¢)) elements.. Now we
need to obtain an involution such thatcz has even order. A sufficient condition for this is that
x andz are in different conjugacy classes. Singéas at least two classes of involutions, and
by Theorem 8 the proportion of elements®@ifwhich power into any given class of involutions
is at least/n*/?, it follows that, with probability at least/n3/2, the involutionsr andz are in
different conjugacy classes. Thus we need at niyst*’?log(1/¢)) random elements before
we find one whererz has even order. Powering up to construct the involutiongddakee at
mostO(un). 0

We now prove a similar result for groups having a unique adigsvolutions.

Theorem 10 Let G be a simple group of Lie type defined over a field of odd charistie
having a unique class of involutions, and a black-box enmugdif lengthn. In time O((§ +
p)log(1/e) + nu) we can construct the three involutionsy, z, with probability of success at
leastl — ¢, for positives.

Proof. We deduce from [19, Table 4.5.1] that the relevant group®8ate(q), PSLs(q), PSU3(q),
PSU,(q) for ¢ = 3 mod 8, PSL4(q) for ¢ = 5 mod 8, G»(q), 2G2(q), and®Dy(q).

The Baer—Suzuki theorem [3, 39.6] implies that there exist¢tanjugates of an involution
whose product has even order. We show that the proportioaicf pf involutions whose product
has even order is at least a positive constant.

We illustrate the method of proof with the example®df= 2G5 (q). Observe thatG| = (¢ +
1)(¢ — 1)¢® and the involution centraliser has ordgy® — 1). Hence the number of involutions
isa = ¢*(¢> — q + 1). We want to count the number of pairs of involutions whosedpob has
even order greater than 2 and dividipg- 1. Since the dihedral group they generate lies in the
centraliseR x PSLy(¢) of another involution, its normaliser is containedidn= 2 x D,,. The
number of conjugates dff isb = ¢*(¢ — 1)(¢*> — ¢ + 1)/2. The number of such pairs i is
c = (g + 1)(q — 3)/4. Moreover, no pair is in two distinct conjugates&f Hence the desired
proportion is

be/a® = (¢ —3)(¢* —1)/8q(¢* —q+1) > (1—-3/q)/8>1/9

sinceq > 27.



The other cases are similar. Since we need only an asympgstidt, we may assume that
is large and consider only the leading terms of the variolggeonials ing which arise.

In the case oPSL;(q) we look inD,_; or D, according ag = 1 or 3 mod 4. The number
of such subgroups is of the ordergf/2, and in each subgroup the number of pairs of involutions
generating a suitable subgroup is at least of the ordet/sf But the total number of involutions
is of the order of;? /2, so the proportion of pairs whose product has even orderésaat of the
order of(¢*/2)(¢*/8)/(¢?/2)* = 1/4.

In PSL3(¢q) our two involutions negate a commarspace, and we can work {®L,(q) in-
stead. Similarly inPSUs(q), we may work inGUz(g). In G3(q) the involution centraliser is
2-(PSLy(q) x PSLy(q)).2, and there is a dihedral group,,2_,) which has index in its nor-
maliser. Therefore there are approximatglyinvolutions and;*? /4 such dihedral groups, each
containing at least of the order gf/2 pairs of involutions whose product is regular semisimple
of even order. Thus the desired proportion is at least of tberaf1/8 in this case.

Both PSL4(¢) and PSU4(¢) are most easily treated as orthogonal groups, so we work in
SO¢ (¢) or SOg (¢) and use the embedding 6f.,(¢) into SO (¢), as in Theorem 14. Indeed,
Theorem 14 proves a more precise version of the result iretbases. The case ©D,(q) is
similar to G5 (q): we take the involution centralis@r(PSL,(q) x PSLs(¢?)).2 and the dihedral
group Dy (g—1y(g3+1) INSide it. O

Theorems 7, 9 and 10 now imply Theorem 1.

5 Prescribing the conjugacy classes of the involutions

Let G be a simple group of Lie type in odd characteristic and Li&kranhaving a black-box
encoding of lengtm. In Reducti on we construct three involutions i& by powering up
elements of even order. If we simply choose the involuticpa@wers of random elements of
even order, then each centraliser may have a composititor fafc_ie rankr — 1. We now prove
Theorem 2: we cashooseour involutions so that the non-abelian composition fexctafrtheir
centralisers have Lie rank at most a proper fraction. of

Theorem 8 implies that at a cost of at m@Xt-*) random selections we can choose precisely
the conjugacy class of bothandz. In the proof of Theorem 2, we discuss how to identify the
class. We now consider the choiceyt= (zz)™ in more detail. In particular, we consider the
case wherg lies in a conjugacy class of involutions whose eigenspaondgb® natural module
have a prescribed dimension.

We first prove a preliminary lemma.

Lemma 1l Letp be an odd primek > 2, and letC be the (unique) subgroup of ordgf + 1 in
the multiplicative group of the field of orderp?*. Then the proportion of elements@fwhich
lie in a proper subfield of" is at mostl /(2p — 1).



Proof. We need only consider subfields of orgéf/¢ where/ is prime, so that the number of
elements of” lying in the subfield ish := ged(p* + 1, p**/¢ —1). If £ = 2, clearlyh = 2. If (s
odd, therp?/* — 1 = (p*/* + 1)(p*/* — 1), and

Pt = G
= (P DY - DET P )

soh = p¥/* + 1. Therefore (counting-1 only once) the number of elementsdhwhich lie in
proper subfields is at most
2+ (" - 1)

ok
where/ is an odd prime. If there are at least two odd primes dividinthen

S < S = (P - 1)/ (p—1) < (P - 1),

m=0

and so the stated proportion is at most

-1 1

< .
pF+1 2p

DN |

If there is a unique odd prime dividing then the stated proportion is at most

< .
pk+1 2p

If £ is a power of 2, then the stated proportion is

2 1
< .
pF+1 7" 2p—1

In fact the same argument shows more.

Lemma 12 If ¢ is an odd prime power ankl > 2, then the proportion of elements ., that
are regular semisimple it Lok (¢) is atleastl — 1/(2¢g — 1) > 4/5.

We also need the following order estimates for classicalgsaextracted from [29].
Lemma 13 If ¢ > 3 is a prime power, then

() 3¢ <|GLa(q) < ¢%;

(i) Lg% <|GUa(q)| < 2¢%;



(iii) qd(d+1)/2 < ISpd(q)I < qd(d+1)/2;
(iv)

An involution g € GL4(q) hastype —1°1° if its —1-eigenspace in the natural module has
dimensionz anda + b = d. We now prove the main result of this section.

1
2
%qd(d—l)/Q < |SOd(q)| < 2qd(d—1)/2_

Theorem 14 Let G be a quasisimple classical group in its natural representabf degreed,
defined over a field of odd characteristic. Suppose that 4k for positivek. Letx be an
involution in G of type —12¥19-2*_ There exists a constant > 0 such that, with probability

at leastc/k, the product of two random conjugates :ofpowers up to an involution of type
_{4kqd—4k

Proof. We prove this result fo¥L,(q) by looking inside the normaliser of a Singer cycle (namely,
a cyclic subgroup of ordey** — 1) in GL4x(q). In SU,4(q) we look at the normaliser of a Singer
cycle in GLax(¢%), and in the symplectic groups we look at a Singer cyclé&iny,.(¢). The
orthogonal groups, as usual, are a little more complicated.

The normaliser of a Singer cycle {BL,;(q) contains a subgrou@'2:_,:C>, whose centre
has order/* — 1. There are involutions of type 1¥1* inverting the subgroup of ordef + 1. (All
this can be seen already in the subgréip.(¢*).) By Lemma 12, there are at leg$t?¢* pairs
of involutions whose product is a regular semisimple elermethis C . ;, and in at least half of
these cases the product has even order. For brevity callgichof involutionggood There are

4

at Ieast%(g)QqQ’f > iqz’“ good pairs of involutions in the normaliser of a particulgcle group

of orderg® + 1.

Now we estimate the numbers of these tori, and the numberaif of involutions in the
given conjugacy class, in order to estimate the proportfdhese pairs which are good: namely
those whose product powers up into the desired conjugasyg ofanvolutions.

First look at the cas€L,(q). We embedGLy4;(g) naturally inSLy(q), for d > 4k, and
observe that the normaliser 6%« ; in SLq(q) iS SLg—4x(q).Cyar_1.Cuai, SO the number of such
tori is

[SLa(q)| > iq4k(2d—4k—1)
SLa-a(q)[(¢** — 1).4k — 8k 7
and the number of good pairs of involutions is at legst®~2*). Similarly an involution of
type —12¥14-2k has centraliseBLy;(q).GLg_21(¢) SO the total number of involutions from this
conjugacy class is

|SLa(q)| 4k(d—2k)
< 4q .
SLak (¢)[|GLa—2k(q)|
Hence the proportion of good pairs of involutions is at lda$2%k).

Next consider the unitary groups. In this case we enmbegl.(¢?) into GUy(¢q) and thence
intoSU,(q), ford > 4k. The centraliser of an involution of typel?*19-2* is SU4.(q).GUqg_a1(q).
Hence there are at most

1SUa(q)| < 8q4k(d—2k)
[SU2(0)||GUa—2r ()]
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such involutions. The order of the normaliser@g. ; is (¢** — 1).|SUq4—41(q)|.4k so there are
at least

1SUa(q)] > 1 q4k(2d74k71)
ISUae()].(¢% — 1).4k = 16k

such groups, each with at leaét /4 good pairs of involutions. Thus the proportion of good pairs
of involutions from this class is at leabt(2'2k).

Next consider the symplectic groups. We emiied,;(¢) into Sp,,(¢) and thence into
Spy(q), for d > 4k. The centraliser of an involution of type12*19-2* is Sp,,.(¢) X Spy_91(q)
so the number of such involutions is at most

1Spa(q)] 2k (d—2k)
< 4q .
1S9k (@) |1SPy—21(q)]

The normaliser o ,; is GUz(¢*).Car, x Sp,_4x(q), SO the number of such cyclic groups is

[Spa(q)] > 1 2k(2d—4k—1)

2k|GUs(q%)|[Spg_s(0)] = Sk

Thus the proportion of good pairs of involutions from thiass is at least/(2°k).

Finally consider the orthogonal groups. The number of agatjeis of an involution of type
—12k19-2F is at most
104(q)| < 4q2k(d—2k)‘
024(9)[|Oa-2x(q)]|

Now considerO,(¢*) < O4(q). Independent of the sign of this orthogonal group, it corgai
dihedral groupD, 2+ _1). The normaliser of the corresponding cyclic group of orgtér— 1 in
O4(q) i Dy(ger_1).Cr x Oq4_41(q). Hence the number of conjugates of this dihedral group is at
least

[0a(g)| > iq4k(d—2k—1)‘
2k.(¢** = 1)|O0g-4x(q)| — 8k

To complete the argument, we must estimate the number okelisnm the cyclic group of order
C,2r—1 Which are regular semisimple 04,(¢). Again, this is bounded below by a positive
constant timeg?* and so the powers @gfcancel as required. O

Corollary 15 The same result holds for simple classical groups.

Proof. Working modulo scalars has no effect on the above argument. O

Theorem 8 implies that in Step 1 of the algorithm we need attrgs?) trials to find an
involution in a particular conjugacy class. We now show, lbgveing a range of dimensions for
the eigenspace, that we can reduce the cost of this stept9.
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Lemmal6 Let0 < k < A < 1 and letG be a simple classical group with natural module
of dimensiond > 2/(\ — k) defined over a field of odd characteristic. Then the propartd
elements of7 which power to an involution whosel-eigenspace on the natural module has
dimension in the ranged to \d is at leastc/d* for some constantdepending om: and \.

Proof. If r is the Lie rank ofz, thend isr + 1 or 2r or 2r 4 1. Therefore by Theorem 8, for each
eigenspace dimension the proportion is at least a constaesd 3. Since(\ — k)d > 2, there
exists at least one even integer in the rafigé A\d). Hence there is at least one conjugacy class
of involutions with—1-eigenspace dimension in this range, and indeed the nunfilperssible
dimensions is at least a constant tindes O

Proof of Theorem 2. We may assume > 8, so exceptional groups of Lie type do not arise. Let
d denote the dimension of the natural moduledrWe choosé’ in the rangg2/3, §) and now
definex = 1—4¢"and\ = §'/2. Sinced’ > 2/3we havex < A\. If d > 2/(A— k) =4/(36' — 2),
then Lemma 16 implies that if(n) attempts we can choose the involutioand (its conjugate)

z to have—1-eigenspace of dimensid@t where(1 — ¢')d < 2k < ¢’d/2. Theoreml4 implies
that among a sample 6f(,/n) random conjugates af, we find two whose product powers up
to an involutiony of type —1414-4k,

It is easy to deduce that
(1-0)d<d—4k < dd

(1-4"d < 2k < d'd.
Hence both eigenspaces for each of the three involutions thiavension less thaiid.

Recall that the non-abelian composition factors of a cas@abf such an involution in a
classical group are of the same classical type (linearannisymplectic or orthogonal) in smaller
Lie rank. Further isd—1 (linear, unitary), od—1) /2 or d/2 (orthogonal, symplectic). Hence,
for sufficiently larger, the Lie ranks of the non-abelian composition factors araatdr.

For each involution in the sample, we must also identify dejugacy class. We construct
its centraliserC' using Theorem 7; using the algorithm of [6], we construct e term of
the derived series af’, which is a product of at most two semisimple groups; we coocsits
composition factors using the algorithm of [7, Claim 5.3]; mentify the defining characteristic
using the algorithm of [24]; finally, we name the compositfaators using the algorithm of [8].
All of these steps can be performed using a sample of at @pst elements. O

One might hope that Theorem 2 would allow us to boundoly- the depth of the recursion
tree arising in a recursive application®fPVi aCent r al i ser s to a simple group of Lie rank
r. However, Theorem 2 doe®t apply to the centralisers, since they need not be simpleh Suc
a result appears to require the ability to construct the asitipn factors of the centralisers:
then both the number of recursive calls and the number of bases could be bounded by a
polynomial inr.
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6 A practical realisation for matrix groups

We now consider how the constructive membership algoritm lee realised in practice for
quasisimple linear groups.

We implemented a version 8LPVi aCent r al i ser s which solves the constructive mem-
bership problem in each centraliser, by constructing itsasition factors using thmmposition
treealgorithm (see [27]). If the Lie rank of a composition faci®too large for a direct solution
of the membership problem, then we recursively agilyVi aCent r al i ser s to this factor.

Recall that a necessary componenRefduct i on is an order oracle. Celler & Leedham-
Green [16] present an algorithm to determine the order ef GL(d, ¢). While it requires the
factorisation of certain large integers, a variation cangdigcussed in [27], in polynomial time
determine a multiple of the order. From this multiple, we datermine if the element haven
order and if so, construct an involution. Knowledge of a multipfetlee order also suffices for
Theorem 3. In practice, we use projective orders so that wevoak in the simple group.

If the input group is classical in its natural representgtiben we can determine the type of
an involution directly.

6.1 Applicationsto sporadic groups

The original application oReduct i on was as one step in the classification of conjugacy classes
of subgroups of2;(5) isomorphic to the Rudvalis sporadic simple group (see [22]).

As we earlier observed, its performance depends criticallthe proportions of elemengs
(respectivelyxrz) which power up to involutions of each class. For the spargdoups, these
proportions are constants which can be calculated fromtiagacter tables. In some cases, these
proportions are zero: for certain choices of involutiorsskee’;, C,, C3, there are no elements
x € Cy, z € Cy, With zz powering to an element i;. Hence we do not have a completely free
choice of these three classes. In practice, we chopgeand:z all to be elements of the largest
class of involutions, in which case it turns out that the ptalities are all positive. Indeed, as
can be deduced from the character tables, the probabibtyythpowers to an element in this
class is at least/64 = 0.078125, while the probability that >z powers to an element in this class
is at least181967/148341375 ~ 0.041674.

For each sporadic group, we can calculate explicitly the@grion of [z, g| which have odd
order. For every class of involutionsthis proportion is always greater than 17%, and therefore
Bray’s algorithm to construct an involution centraligércompletes rapidly. We now construct
its composition tree and solve the membership problendfdirectly.

Table 1 records some data supporting our claim that theitigoworks well for the sporadic
groups.

13



6.2 Implementation and performance

SLPVi aCentral i ser s isimplemented in MGMA. One motivation for its development s to
solve the constructive membership problem for compositators of matrix groups. The input
to our implementation is an irreducible representation gf@up of Lie type in odd defining

characteristic, or a sporadic group.

Reduct i on constructs (at most) three involution centralisers. A cosion tree is con-
structed for each centraliser, whose leaves are its como$actors. For each factor, we may
generate further calls 8LPVi aCent r al i ser s until we construct a base case. Alternatively,
if the factor is sufficiently small, we invoke the SchreieimS algorithm [31] (or its variations)
to solve the problem.

Our implementation uses the following components:

e the product replacement algorithm [15] to generate randements;
e the algorithm of Celler & Leedham-Green [16] to determinedider of an element;

¢ the algorithm of Liebeck & O'Brien [24] to determine the defigicharacteristic of a group
of Lie type;

¢ the algorithms of Babagt al. [8] to identify a simple group of Lie type in known defining
characteristic;

¢ the algorithm of Niemeyer & Praeger [26] to identify a clasdigroup in its natural repre-
sentation.

e the algorithm of Condeet al. [17] to solve the constructive membership problem for
SLa(q) = SUs(q) = Spy(q); Qs(g) = PSLa(q); Qi(q) = PSLy(¢?); andQy(q) =

A variation of Theorem 3 allows us to decide constructivélyo involutionsz andy are
conjugate in a groupg/. We construct random conjugatesof z, until we find z;y with odd
order2k + 1, say. In the dihedral groupy.» = (z;,%), we can see thdtyx;)* conjugatesr;
to y. If two random conjugates af have a high enough probability of having a product of odd
order, this provides an effective method. Moreover, it isstauctive in the sense that it provides
h € H such that:" = y, and henc&'y (z)" = Cy(y).

We exploit this observation in our implementation. If weeafedly test for membership in
the same group, then we store the chosen involutions andab®bciated composition trees; as
a preliminary step in a new membership test, we decide if #8ve involutions are conjugate to
the known ones; if so, we do not need to construct a new composiee.

Our constructive membership algorithm is competitive with standard BSGS machinery
for matrix groups of “moderate” dimension. If the matrix ggphas no subgroup of reasonable
index, then our algorithm is currently the only practicgbegach. For example, the largest proper

14



Name d| q | Time
Jy 112 | 2 8.5
SLyp(5) | 20| 5| 10.0
G2(3%) 713° 0.9
Ly 112 5| 85.0
Th 248 | 3| 2210
Sp10(9) 10| 9 3.1
Q5L(7) 12| 7 2.1

Table 1: Performance of implementation for a sample of gsoup

subgroup of.J, has index about0®; our algorithm readily succeeds in thé2-dimensional
representation ovesF (2).

In Table 1, we report on the application 8t PVi aCent r al i ser s to some of the larger
sporadic groups and to groups of Lie type. The strategy ofoiidma 2 to direct the choice
of involution works well. For example, i8L2(5), the three involutions chosen have types
—18112 —1'218 'and—1'°11°, A further recursion then reducesdo< 6, and an invocation of a
Schreier—Sims algorithm now completes the task. None aietlegamples completed using the
existing machinery in MGMA V2.12 on a Pentium IV 2.8 GHz processor with 2GB of RAM.
The input to the algorithm is an irreducible subgrougsdf,(¢). In the column entitled “Time”,
we list the CPU time in seconds (averaged over three runs)edetedsolve the constructive
membership problem for a random element of the group.
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