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Abstract

For every prime p, we exhibit a finite p-group which cannot be generated
by a set of elements, all having the same order. This answers a long-
standing question from the Kourovka Notebook.

1 Introduction

In 1990, Czes law Bagiński posed the following problem in the Kourovka Notebook
[5, Problem 11.6]:

Let p be an odd prime. Is it true that every finite p-group possesses
a set of generators of equal orders?

Since the semidihedral group of order 16 cannot be generated by elements of
the same order, the problem is of interest only for odd primes. Clearly a necessary
and sufficient condition for a 2-generator p-group P to fail to be generated by
a set of elements, all having the same order, is that the orders of non-Frattini
elements (those outside of the Frattini subgroup Φ(P )) in each maximal subgroup
of P differ from those in the other maximal subgroups. The semidihedral group
satisfies this condition, having three maximal subgroups: namely, the cyclic,
dihedral, and quaternion groups of order 8. It is the smallest group which does
not possess such a generating set.

In 2003, E.F. Robertson and James Wiegold asked the question once more,
this time in Group Pub Forum [3], and labelled as GSO those (arbitrary finite)
groups which can be generated by elements of the same order. Such groups are
common: for example, all perfect groups are GSO. They asked for an example of
a non-GSO 3-group.
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The resulting discussion, with contributions by Isaacs, Mann and others, es-
tablished various properties of GSO groups.

Perhaps the most relevant is the following. Lubotzky & Mann [6] prove that
if P is a powerful finite p-group for odd prime p, then the set of all of its elements
of order less than the exponent of P generates a proper subgroup, and so P is
GSO.

What can we say about p-groups which are not GSO? One easy but critical
observation, originally made by Bagiński [1], is that, for an odd prime p, a non-
GSO p-group P has exponent at least pp+1.

This can be readily established by induction on order. Since P is not cyclic,
it has at least p + 1 maximal subgroups which satisfy the inductive hypothesis.
If the exponent of P is at most pp, then at least two different maximal subgroups
of P are generated by elements of the same order, and so P is generated by these
elements.

In this paper we answer the central problem in the negative, by proving the
following.

Theorem 1 Let p be a prime and let G be the finitely-presented group:

〈a, b | ap, bp2

, [bp, a], (abr)pr+2

(r = 1, 2, . . . , p− 1)〉.

Let P be the largest p-quotient of G which is both metabelian and of nilpotency
class p2 − p + 1. Then P cannot be generated by a set of elements, all having the
same order.

In Section 3 we exhibit a group of matrices which satisfies all of the required
relations, and show that the specified p-quotient is non-GSO.

Our result is optimal in the sense that P has exponent exactly pp+1, and our
proof implies that metabelian p-quotients of G having smaller class have exponent
at most pp.

Theorem 1 also applies to the prime 2. We conjecture that the order of P
is p(p3+p2−8p+14)/2. For p ≤ 11, we constructed explicitly a power-commutator
presentation [9] for the p-quotient P using our implementation of the p-quotient
algorithm [7], and so verified our conjecture for these primes.

If we factor P by a maximal subgroup of its centre, which does not contain
the last term of the lower central series of P , then we obtain a quotient Q with
the same class as P , and Q may also be non-GSO. For example, the 2-group of
order 32 has as a central quotient the semidihedral group of order 16.

Applying (recursively) this strategy to the 3-group P of order 313, we obtained
as a quotient a non-GSO group of order 310 and class 7. We have established that
all 2-generator 3-groups of order dividing 39 are GSO; to do this, we constructed
them explicitly using our implementation of the p-group generation algorithm
[8] and then constructed appropriate generating sets. We have also constructed
non-metabelian 3-groups of order 310 which are non-GSO. (We remark that the
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largest non-metabelian class 7 3-quotient of the finitely-presented group G from
Theorem 1 has order 323 and is a GSO group.)

Lemma 2 If we add relations [b, a, a, a, a] = [b, a, a, a, b]b3 and [b, a, a, a, a, a, a] =
b−3 to the finite presentation of Theorem 1, then the largest metabelian class 7
3-quotient of the resulting finitely-presented group has order 310 and is non-GSO.
No smaller 2-generator 3-group is non-GSO.

The statement and proof of Theorem 1 can be readily modified to exhibit
infinitely many examples for each prime p: we can choose a sequence (si) of
integers 3 ≤ s1 < s2 < . . . < sp−1 and modify the presentation for G by replacing
pr+2 by psr .

2 Some results on metabelian groups

We first determine explicitly the powers of the basic commutators which arise in
evaluating p-th powers of products of elements of a metabelian group. A related
result by Hall [4, Theorem 12.3.1] is not sufficiently detailed for our purposes.

Lemma 3 Let a, b ∈ K, a metabelian group, and let p be a prime. Denote by
[b,r a,s b] the commutator [b, a, a, . . . , a︸ ︷︷ ︸

r

, b, b, . . . , b︸ ︷︷ ︸
s

], where r, s ≥ 0. Then

(ab)p = apbp
∏

1≤r≤p−1,0≤s≤p−1

[b,r a,s b]cr,s

where cr,s = 0 mod p for r+s < p−1, and if r+s = p−1 then cr,s = (−1)r mod p.

Proof: We apply the Hall collection process [4, Chapter 11] to (ab)p to obtain
the following expansion:

(ab)p = apbp
∏

1≤r≤p−1,0≤s≤p−1

[b,r a,s b]cr,s

where

cr,s =

p−1∑
i=max{r,s}

(
i

r

)(
i

s

)
.

We obtain the coefficients cr,s as follows. First we write (ab)p as abab . . . ab.
Then for each b in this expression we count the number of as to the right of it. If
there are k as to the right of a particular b, then collecting the as past that b will
create

(
k
r

)
copies of the commutator [b,r a]. When all the as have been collected,

each of these instances of [b,r a] will have k bs to the right of it. When we collect
the bs past one of these instances,

(
k
s

)
copies of the commutator [b,r a,s b] will
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be created. Hence the original b in the expression abab . . . ab gives rise to
(

k
r

)(
k
s

)
copies of [b,r a,s b]. The value given for cr,s is obtained by adding the contributions
from each b in abab . . . ab.

Now consider the polynomial

p−1∑
i=0

(1 + x)i(1 + y)i,

where x and y are commuting indeterminates. Expanding, we obtain

p−1∑
r,s=0

cr,sx
rys,

which gives

(1 + x)p(1 + y)p − 1 = (x + y + xy)

p−1∑
r,s=0

cr,sx
rys.

Working modulo p we obtain

xp + yp + xpyp = (x + y + xy)

p−1∑
r,s=0

cr,sx
rys modulo p,

and hence

(x + y + xy)p−1 =

p−1∑
r,s=0

cr,sx
rys modulo p.

The claim now follows. 2

While the following lemma is well-known (for example, it can be obtained as
a corollary to [2, Theorem 3.2]), we include a direct proof for completeness.

Lemma 4 Let G be a 2-generator finite metabelian p-group, and let a ∈ G\Φ(G).
Then a and ag have the same order for all g ∈ G′.

Proof: Since G is a finite 2-generator p-group, we can find b ∈ G so that G is
generated by a and b. If g ∈ G′ then g can be expressed in the form

g = gα1
1 gα2

2 . . . gαk
k

where g1, g2, . . . , gk are commutators of the form [a, b1, b2, . . . , bm] with m ≥ 1
and b1, b2, . . . , bm ∈ {a, b}. Let a have order n. Since G is metabelian, we see
that

(ag)n = gn[g, a](
n
2)[g, a, a](

n
3) . . . [g,n−1 a]

=
k∏

i=1

(
gn

i [gi, a](
n
2)[gi, a, a](

n
3) . . . [gi,n−1 a]

)αi

.
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But if gi = [a, b1, b2, . . . , bm] then

gn
i [gi, a](

n
2)[gi, a, a](

n
3) . . . [gi,n−1 a]

= [[a, b1]
n[a, b1, a](

n
2)[a, b1, a, a](

n
3) . . . [a, b1,n−1 a], b2, . . . , bm]

= [[an, b1], b2, . . . , bm]

= 1.

Hence the order of ag divides the order of a. But the same argument shows
that the order of a = (ag)g−1 divides the order of ag. We conclude that a and
ag have the same order. 2

We now obtain an upper bound for the nilpotency class of a specific metabelian
p-group.

Theorem 5 Let m ≥ 2. Let G be the finitely-presented group

〈a, b | ap, bp2

, [bp, a], (abr)pm

(r = 1, 2, . . . , p− 1)〉.

If K is a metabelian p-quotient of G, then K is nilpotent of class at most m(p−1).

Proof: Observe that the relation ap = 1 implies that (K ′)p ≤ γp+1(K). Apply-
ing Lemma 3, we obtain

(ab)p = apbp[b,p−1 a][b,p−2 a, b]−1[b,p−3 a, b, b] . . . [b, a,p−2 b]−1 modulo γp+1(K).

Since a has order p and bp is central and of order p, the relation (ab)pm
= 1 implies

([b,p−1 a][b,p−2 a, b]−1[b,p−3 a, b, b] . . . [b, a,p−2 b]−1)pm−1 ≤ (γp+1(K))pm−1

.

Similarly, the relation (abr)pm
= 1 implies

([br,p−1 a][br,p−2 a, br]−1[br,p−3 a, br, br] . . . [br, a,p−2 br]−1)pm−1 ≤ (γp+1(K))pm−1

,

and we conclude that

([b,p−1 a]r[b,p−2 a, b]−r2

[b,p−3 a, b, b]r
3

. . . [b, a,p−2 b]−rp−1

)pm−1 ≤ (γp+1(K))pm−1

.

These relations for r = 1, 2, . . . , p− 1 give

[b,p−1 a]p
m−1

, [b,p−2 a, b]p
m−1

, [b,p−3 a, b, b]p
m−1

, . . . , [b, a,p−2 b]p
m−1 ∈ (γp+1(K))pm−1

,

which implies
(γp(K))pm−1 ≤ (γp+1(K))pm−1

,

and hence we deduce that

(γp(K))pm−1

= {1}.
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Since ap = 1,

1 = [b, ap] = [b, a]p[b,2 a](
p
2)[b,3 a](

p
3) . . . [b,p a],

and since bp is central we have

1 = [bp, a] = [b, a]p[b, a, b](
p
2)[b, a,2 b](

p
3) . . . [b, a,p−1 b].

Thus [b,p a], [b, a,p−1 b] ∈ (K ′)p. If k ≥ p then γk+p−1(K) is the normal closure of
elements

[b,p a, a1, a2, . . . , ak−2], [b, a,p−1 b, a1, a2, . . . , ak−2]

with a1, a2, . . . , ak−2 ∈ {a, b}, and these lie in

[(K ′)p, K, K, . . . , K︸ ︷︷ ︸
k−2

] ≤ (γk(K))p.

It follows that if k ≥ p then γk+p−1(K) ≤ (γk(K))p, and so (γp(K))pm−1
= {1} im-

plies that (γ2p−1(K))pm−2
= {1}, (γ3p−2(K))pm−3

= {1}, . . ., γ1+m(p−1)(K) = {1},
as claimed. 2

3 Proof of Theorem 1

We now prove Theorem 1 by exhibiting a group of matrices which satisfies all of
the required relations, and showing that the specified p-quotient is non-GSO.

Let H = 〈c, d | cp, dp2
, [d, c]〉 and let R = Zpp+1H be the group ring of H

over Zpp+1 . Let I be the ideal of R generated by dp − 1. Observe that R/I is the
group ring over Zpp+1 of an elementary abelian group of order p2.

Define a group M of matrices(
x r + I
0 1

)
x ∈ H, r ∈ R,

with multiplication(
x r + I
0 1

) (
y s + I
0 1

)
=

(
xy xs + r + I
0 1

)
.

Clearly, M is a finite metabelian p-group.
Let S be the subgroup of M generated by

A =

(
c (c− 1) + I
0 1

)
, B =

(
d I
0 1

)
.

We now investigate whether S satisfies the relations of the finite presentation
of Theorem 1. It is easy to see that

Ar =

(
cr (1 + c + c2 + . . . + cr−1)(c− 1) + I
0 1

)
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for r = 1, 2, . . ., and hence that

Ap =

(
cp (1 + c + c2 + . . . + cp−1)(c− 1) + I
0 1

)
=

(
1 (cp − 1) + I
0 1

)
=

(
1 I
0 1

)
.

It is also easy to see that Bp =

(
dp I
0 1

)
is central in S and of order p.

We now evaluate (ABr)p for 1 ≤ r < p.

(ABr)p =

(
cdr (c− 1) + I
0 1

)p

=

(
dpr (1 + cdr + c2d2r + . . . + cp−1d(p−1)r)(c− 1) + I
0 1

)
.

It follows that (ABr)pr+2
=

(
1 er + I
0 1

)
, where

er = pr+1(1 + cdr + c2d2r + . . . + cp−1d(p−1)r)(c− 1).

These observations lead to the following theorem.

Theorem 6 Let J be the ideal of R generated by dp − 1, e1, e2, . . . , ep−1. Let S
be the group generated by

A =

(
c (c− 1) + J
0 1

)
, B =

(
d J
0 1

)
.

Then S satisfies the relations of the finite presentation of Theorem 1.

Remark 7 We can deduce a stronger result which we use below: namely ABr

for 1 ≤ r < p has order exactly pr+2. Equivalently we show that

pr(1 + cdr + c2d2r + . . . + cp−1d(p−1)r)(c− 1) /∈ J.

We find a homomorphism from 〈d〉 → 〈c〉 mapping dr to c−1, and extend it to a
homomorphism from R onto Zpp+1〈c〉 (mapping c ∈ R to c ∈ Zpp+1〈c〉). Then

pr(1 + cdr + c2d2r + . . . + cp−1d(p−1)r)(c− 1) 7→ pr+1(c− 1),

and er 7→ pr+2(c− 1). If 1 ≤ t < p and t 6= r then

1 + cdt + c2d2t + . . . + cp−1d(p−1)t 7→ 1 + c + c2 + . . . + cp−1

and so et 7→ 0. It follows that the image of J is the ideal of Zpp+1〈c〉 generated
by pr+2(c− 1), and clearly this ideal does not contain pr+1(c− 1).
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We are now in a position to establish Theorem 1. Let

G = 〈a, b | ap, bp2

, [bp, a], (abr)pr+2

(r = 1, 2, . . . , p− 1)〉,
and let P be the largest metabelian p-quotient of G of class p2 − p + 1, as in the
statement of Theorem 1. We claim that P is a non-GSO group.

First note that Theorem 5 implies that any metabelian p-quotient of G has
class at most p2 − 1. Hence there exists a largest metabelian p-quotient of G,
which we call Q. Theorem 6 and Remark 7 imply that the images in Q of a, b,
ab, ab2, . . ., abp−1 have orders exactly p, p2, p3, . . ., pp+1. Now ap = 1 implies that
Gp ≤ 〈bp, γp(G)〉, and since bp is central and of order p, Gp2 ≤ γ2p−1(G). Then
Gp3 ≤ γ3p−2(G), . . ., Gpp ≤ γp2−p+1(G), and hence Qpp ≤ γp2−p+1(Q). The image
of abp−1 in Q has order pp+1 and so Qpp 6= {1}. It follows that γp2−p+1(Q) 6= {1},
and so Q has class at least p2 − p + 1. Hence P is a homomorphic image of Q,
and P has class exactly p2 − p + 1.

Let a, b denote the images of a, b in P . We show that a, b, ab, ab
2
, . . ., ab

p−1

have orders exactly p, p2, p3, . . ., pp+1.

First consider ab
p−1

. If it had order dividing pp then Theorem 5 would imply

that P had class at most p2 − p, whereas in fact P has class p2 − p + 1. So ab
p−1

has order pp+1.
Now consider ab

r
, where 0 < r < p− 1. Our argument in Remark 7 to show

that ABr has order exactly pr+2 can readily be modified to show that ab
r

also has
order pr+2. Recall that J is the ideal of R generated by dp − 1, e1, e2, . . . , ep−1.
If we replace J by the ideal J1 generated by

dp − 1, e1, e2, . . . , ep−2,
1

p
ep−1,

and if we let

A1 =

(
c (c− 1) + J1

0 1

)
, B1 =

(
d J1

0 1

)
then A1, B1 generate a finite metabelian p-group K satisfying the relations

Ap
1, B

p2

1 , [Bp
1 , A1], (A1B1)

p3

, . . . , (A1B
p−2
1 )pp

, (A1B
p−1
1 )pp

.

The argument given in Remark 7 shows that A1B
r
1 has order exactly pr+2. But,

by Theorem 5, K has class at most p2 − p. Thus K is a homomorphic image of
P , and ab

r
also has order exactly pr+2.

Clearly a and b have orders p and p2. Hence we have shown that the elements

a, b, ab, ab
2
, . . ., ab

p−1
all have different orders. Further, if c is one of these p + 1

elements, then any non-Frattini element of the maximal subgroup containing c
has the form crb

ps
x for some x ∈ P ′. Lemma 4, together with the fact that b

p

is central and of order p, implies that crb
ps

x has the same order as c. Hence P
cannot be generated by a set of elements, all having the same order.
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[1] C. Bagiński, Some remarks on finite p-groups, Demonstratio Math. 14,
(1981), 279-285.

[2] A. Caranti and C.M. Scoppola, Endomorphisms of two-generated metabelian
groups that induce the identity modulo the derived subgroup. Arch. Math.
56 (1991), 218-227.

[3] Group Pub Forum. (http://www.bath.ac.uk/~masgcs/gpf.html), 2003.

[4] Marshall Hall, Jr., The theory of groups. The Macmillan Co., New York,
1959.

[5] The Kourovka Notebook. Unsolved problems in group theory. Fifteenth aug-
mented edition, 2002. Edited by V.D. Mazurov and E.I. Khukhro.

[6] Alexander Lubotzky and Avinoam Mann, Powerful p-groups. I. Finite
groups. J. Algebra 105 (1987), 484-505.

[7] M.F. Newman and E.A. O’Brien. Application of computers to questions like
those of Burnside, II. Internat. J. Algebra Comput., 6 (1996), 593–605.

[8] E.A. O’Brien. The p-group generation algorithm. J. Symbolic Comput., 9
(1990), 677–698.

[9] Charles C. Sims. Computation with finitely presented groups. Cambridge
University Press, 1994.

E.A. O’Brien Carlo M. Scoppola
Department of Mathematics Dipartimento di Matematica Pura ed Applicata
University of Auckland Universita di L’Aquila
Auckland Coppito 67010, L’Aquila
New Zealand Italy
obrien@math.auckland.ac.nz scoppola@univaq.it

M.R. Vaughan-Lee
Christ Church
University of Oxford
OX1 1DP
United Kingdom
michael.vaughan-lee@christ-church.oxford.ac.uk

9


