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Abstract

We study various questions about the generalised Fibonacci groups, a
family of cyclically presented groups, which includes as special cases the
Fibonacci, Sieradski, and Gilbert-Howie groups.

1 Introduction

Consider the class of groups with cyclic presentation:

Gn(w) = 〈x1, . . . , xn : w = 1, θ(w) = 1, . . . , θn−1(w) = 1 〉
where w is a reduced word in the alphabet X = {x±1

1 , . . . , x±1
n } and θ is the

automorphism of the free group of rank n defined by setting θ(xi) = xi+1 mod n.
One of the motivations for the study of these groups is their connection with the
topology of closed connected orientable 3-manifolds; see, for example, [5, 12].

If w = xixi+mx−1
i+k, then we obtain the generalised Fibonacci groups introduced

in [4]:
Gn(m, k) = 〈x1, . . . , xn : xixi+m = xi+k (i = 1, . . . , n) 〉

where the subscripts are taken modulo n.
For particular choices of parameters, these groups are well-known: Gn(1, 2)

are the Fibonacci groups F (2, n) (see [7, 17]); Gn(2, 1) are the Sieradski groups

S(n) (see [16, 18]); Gn(m, 1) are the Gilbert-Howie groups H(n,m) (see [9]).
We can immediately restrict our attention to those groups Gn(m, k) whose

parameters satisfy the conditions 0 < m < k < n and (n,m, k) = 1. Such groups
are irreducible. Bardakov & Vesnin [2] prove:
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• if Gn(m, k) is not irreducible, then it is either trivial, cyclic, or a free product
of Gn′(m′, k′) for smaller values of n′,m′, k′;

• if Gn(m, k) is irreducible and either (n, k) = 1 or (n, k − m) = 1, then
Gn(m, k) is isomorphic to Gn(t, 1) = H(n, t), where tk ≡ m mod n or
t(k − m) ≡ (n − m) mod n respectively.

This motivates the following definition in [2]: Gn(m, k) is strongly irreducible if
it is irreducible and (n, k) > 1 and (n, k − m) > 1.

Bardakov & Vesnin [2] pose, and study, a number of questions about these
groups. These include:

• Under what conditions is Gn(m, k) aspherical? Finite and non-trivial?

• Determine the number of isomorphism types among Gn(m, k).

• Determine the structure of the largest abelian quotient, An(m, k), of Gn(m, k).

• Under what conditions is Gn(m, k) the fundamental group of a 3-orbifold
(in particular, a hyperbolic closed 3-manifold) of finite volume?

We summarise recent progress in answering these questions.
With a few exceptions, Gilbert & Howie [9] identify those H(n,m) which

are aspherical or finite. Williams [19] proves that a strongly irreducible group
Gn(m, k) is not aspherical if and only if (m, k) = 1 and either n = 2k, or n = 2(k−
m). He determines sufficient conditions for an irreducible group to be perfect.
If, as he conjectures, these are also necessary, then every strongly irreducible
group is not perfect; and he describes the structure of those which are finite and
non-trivial. We show that H(9, 3) is infinite, thus reducing the undecided cases
among irreducible (but not strongly irreducible) groups to 2.

Let f(n) denote the number of isomorphism types among the irreducible
groups Gn(m, k). We obtain some new isomorphisms, and demonstrate that
the known isomorphisms suffice to obtain f(n) for all but four values of n ≤ 27.
We formulate a sharp conjecture for f(pℓ) where p is a prime.

Under the hypothesis of irreducibility, Corollary 5.8 of [5] shows that An(m, k)
is infinite if and only if n ≡ 0 mod 6, m + k ≡ 3 mod 6, and m is even. An
equivalent result appears in [19, Theorem 4]. If 2k ≡ m mod n, then we obtain a
complete description of An(m, k).

Corollary 3.5 of [5] is a slight improvement on [2, Theorem 3.1]: if n is odd and
(2k−m,n) = 1, then Gn(m, k) cannot be the fundamental group of a hyperbolic
closed 3-orbifold of finite volume. If Gn(m, k) is irreducible and 2k ≡ m mod n,
then we show that Gn(m, k) ∼= S(n), the fundamental group of a closed connected
orientable 3-manifold. Finally, we prove that the split extension of an irreducible
Gn(m, k) by a cyclic group of order n has a homomorphism onto a particular
triangle group if both (n, k) = 1 and 2(2k − m) ≡ 0 mod n.
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2 The isomorphism problem

The most general result on isomorphism is the following [2, Theorem 1.1].

Theorem 1. Let Gn(m, k) and Gn(m′, k′) be irreducible groups. Assume that k′

is divisible by r = (n, k − m), (n, k′) = 1, and there exist integers i ∈ {1, . . . , r}
and j ∈ {1, . . . , n/r} such that

{

i + j(k − m) ≡ (1 − m) mod n

m′ + 1 ≡ (i + jk′) mod n.

Then Gn(m, k) ∼= Gn(m′, k′).

Observe that the extra condition, (n, k′) = 1, omitted from the original state-
ment is both necessary and a consequence of the proof: for example, Z7

∼=
G6(1, 3) 6∼= G6(3, 4) ∼= Z

3
2 ⋊ Z7.

Theorem 1 assumes both that k′ is divisible by (n, k − m) and (n, k′) = 1, so
r = 1. Hence, as was pointed out by the referee, we obtain an equivalent and
simpler formulation.

Theorem 2. Let Gn(m, k) and Gn(m′, k′) be irreducible groups and assume
(n, k′) = 1. If m′(m−k) ≡ mk′ mod n, then Gn(m, k) is isomorphic to Gn(m′, k′).

We record some obvious consequences.

Corollary 3.

(1) If n ≥ 5 is odd, then Gn(n − 3, n − 1) ∼= Gn(n − 3, n − 2).

(2) G2h+1(h, h + 1) ∼= G2h+1(h, 2h) ∼= G2h+1(1, 2) = F (2, 2h + 1).

(3) If (2h + 1, k − 1) = 1, then G2h+1(1, k) ∼= G2h+1(1, 2h + 2 − k).

Proof. We illustrate the method by proving (3). By hypothesis, (2h+1, k−1) = 1
and so (2h + 1, 2h + 2 − k) = 1. Since (1 − k) ≡ (2h + 2 − k) mod (2h + 1), the
result follows.

Corollary 4. If there exists β such that βs ≡ 1 mod n and β(1 − t) ≡ 1 mod n,
then Gn(1, t) ∼= Gn(1, s).

Proof. Since βs ≡ 1 mod n, we conclude that (n, s) = 1.

Proposition 5. If (n,m) = 1, then Gn(m, k) is isomorphic to Gn(1, t), where
tm ≡ k mod n.
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Proof. We rename the generators of Gn(m, k): c1 = x1, c2 = x1+m, . . . , cn =
x1+(n−1)m. The first relation x1x1+m = x1+k of Gn(m, k) becomes c1c2 = c1+t,
where c1+t = x1+tm = x1+k with tm ≡ k (mod n). The next relation c2c3 =
c2+t corresponds to x1+mx1+2m = x1+m+k since c2+t = x1+(1+t)m = x1+m+k.
Similarly, cjcj+1 = cj+t corresponds to x1+(j−1)mx1+jm = x1+(j+t−1)m; that is,
x1+(j−1)mx1+jm = x1+(j−1)m+k. If j runs over {1, . . . , n}, then 1 + (j − 1)m,
taken mod n, runs over the same set. Therefore Gn(m, k) ∼= Gn(1, t) where
tm ≡ k mod n.

Proposition 6.

(1) Gn(m, k) ∼= Gn(m,n + m − k) ∼= Gn(n − m,n − m + k).

(2) If (n, t) = 1, then Gn(m, k) ∼= Gn(mt, kt).

(3) G2h(2h−1, 2h−2) ∼= G2h(2h−1, 1) ∼= G2h(1, 2h−1) ∼= G2h(1, 2) = F (2, 2h).

Proof.

(1) Taking the inverse relation of xixi+m = xi+k and substituting i with −i−m,
we get x−1

−i x
−1
−(i+m) = x−1

−(i+m−k). Setting yi := x−1
−i yields the relation

yiyi+m = yi+n+m−k which defines Gn(m,n + m − k). The second isomor-
phism, which appears as [2, Lemma 1.1], can be similarly established.

(2) Set G = Gn(m, k) = 〈xi : xixi+m = xi+k〉 and H = Gn(mt, kt) = 〈yi :
yiyi+mt = yi+kt〉. Let φ : G → H be defined by setting φ(xj) = y1+t(j−1).
The map φ is onto since (n, t) = 1. Furthermore, φ sends the defining
relations of G to those of H:

φ(xixi+mx−1
i+k) = y1+t(i−1)y1+t(i+m−1)y

−1
1+t(i+k−1) = yjyj+mty

−1
j+kt

where j = 1+t(i−1). Thus φ is a homomorphism and, since it is invertible,
it is an isomorphism.

(3) This follows from (1).

We illustrate the previous results by identifying some isomorphisms among
G27(m, k). Corollary 3 implies that G27(24, 26) ∼= G27(24, 25), G27(13, 14) ∼=
G27(13, 26) ∼= G27(1, 2) ∼= F (2, 27), and G27(1, 18) ∼= G27(1, 10). Corollary 4
implies that G27(1, 11) ∼= G27(1, 17). Proposition 5 implies that G27(2, 5) ∼=
G27(1, 16). Proposition 6 implies that G27(2, 5) ∼= G27(2, 24) ∼= G27(25, 3) and
G27(2, 5) ∼= G27(4, 10) ∼= G27(8, 20) ∼= G27(10, 25) ∼= G27(14, 8).

Proposition 7. If p is an odd prime, then there are at most (p−1)/2 isomorphism
types among the irreducible groups Gp(m, k).
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Proof. If p is prime, then (p,m) = 1. Proposition 5 implies that Gp(m, k) ∼=
Gp(1, t) for some t ∈ {2, . . . , p − 1}, where tm ≡ k mod p. Since (p, t − 1) = 1,
there exists β such that β(1 − t) ≡ 1 mod p.

If 2 ≤ t ≤ (p+1)/2, then s = p+1−t satisfies (p+1)/2 ≤ s ≤ p−1. Corollary
4 now implies that Gp(1, t) ∼= Gp(1, s) since βs = β(p + 1 − t) ≡ 1 mod p.
Hence the isomorphism types arise by choosing t ∈ {2, . . . , (p + 1)/2}, and so
f(p) ≤ (p − 1)/2.

Our investigations, reported in Section 5, suggest the following stronger result.

Conjecture 8. If n = pℓ for an odd prime p and positive integer ℓ, then f(n) =

pℓ − (p−1)
2

p(ℓ−1) − 1. If ℓ > 2, then f(2ℓ) = 3(2ℓ−2).

3 The abelianisation of Gn(m, k)

We obtain a complete description of the abelianisation of Gn(m, k) when 2k ≡
m mod n, and so extend [19, Lemma 5].

Lemma 9. Assume 2k ≡ m mod n.

• Gn(m, k) is perfect if and only if n/(n, k) ≡ ±1 mod 6.

• The abelianisation of Gn(m, k) is isomorphic to Z
2(n,k), Z

(n,k)
3 , or Z

2(n,k)
2 if

and only if n/(n, k) ≡ 0, n/(n, k) ≡ ±2, or n/(n, k) ≡ ±3 mod 6 respec-
tively.

Proof. If Gn(m, k) is irreducible, then 2k ≡ m mod n implies that (n, k) = 1.
Proposition 6(2) implies that Gn(m, k) ∼= Gn(2k, k) ∼= Gn(2, 1) = S(n). Recall
from [6, Theorem 2.1] that S(n) ∼= π1(Mn), where Mn is the n-fold cyclic cover of
the 3-sphere, branched over the trefoil knot. Thus Mn is the Brieskorn manifold
of [13] and its abelianisation is well-known – see, for example, [15, p. 304].

If Gn(2k, k) is not irreducible, then [2, Lemma 1.2] shows that Gn(2k, k) is
isomorphic to a free product of (n, k) copies of Gn/(n,k)(2k/(n, k), k/(n, k)), which

is irreducible. Hence the abelianisation of Gn(2k, k) is trivial, Z
2(n,k), Z

(n,k)
3 , or

Z
2(n,k)
2 according to the stated congruence conditions.

In summary, Proposition 6(2), [6, Corollary 2.2] and [18, Theorems B-C]
imply the following: if Gn(m, k) is irreducible and 2k ≡ m mod n, then Gn(m, k)
is infinite if and only if n ≥ 6, and it has a free subgroup of rank 2 when n ≥ 7.

We now briefly discuss An(1, t) for arbitrary n. It is well-known that An(1, 2)
is finite, of order Ln − 1 − (−1)n, where Ln is the n-th Lucas number (see, for
example, [11, Chapter 6]).
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Proposition 10. The structure of An(1, t), where t ∈ {2, . . . , n − 1}, is deter-
mined by the diagonal form of the integral t × t matrix



















an+1 − 1 an+t an+t−1 . . . an+3 an+2

an+2 an+t+1 − 1 an+t . . . an+4 an+3

an+3 an+t+2 an+t+1 − 1 . . . an+5 an+4
... . . . . . . . . .

...
...

an+t−1 an+2t−2 an+2t−3 . . . an+t+1 − 1 an+t

an + 1 an+t−1 an+t−2 . . . an+2 an+1 − 1



















where ai + ai+1 = ai+t (i ≥ 1) and a1 = 1, ai = 0 (2 ≤ i ≤ t).

Proof. We sketch a proof. The generators, x1, . . . , xn, of An(1, t) commute and
satisfy the following relations:

x1x2 = xt+1

x2x3 = xt+2

x3x4 = xt+3

...

xt−1xt = x2t−1

xtxt+1 = x2t

xt+1xt+2 = x2t+1

xt+2xt+3 = x2t+2

...

xn−txn−t+1 = xn

Hence {x1, . . . , xt} generate An(1, t), and xi = xai

1 x
b2
i

2 · · ·xbt

i

t for i > t.
We use the relations xi = xi−txi−t+1 and those implied by commutativity to

deduce that

ai = ai−t + ai−t+1 i > t

bj
i = bj

i−t + bj
i−t+1 2 ≤ j ≤ t

where a1 = 1, ai = 0, bj
i = δi,j for 2 ≤ i, j ≤ t. Thus bj

i = ai+t−j+1 for all i ≥ 1.
Hence the structure of An(1, t) can be deduced from the diagonal form of the

t × t matrix:


















an−t+1 + an−t+2 − 1 b
2
n−t+1 + b

2
n−t+2 b

3
n−t+1 + b

3
n−t+2 · · · b

t
n−t+1 + b

t
n−t+2

an−t+2 + an−t+3 b
2
n−t+2 + b

2
n−t+3 − 1 b

3
n−t+2 + b

3
n−t+3 · · · b

t
n−t+2 + b

t
n−t+3

an−t+3 + an−t+4 b
2
n−t+3 + b

2
n−t+4 b

3
n−t+3 + b

3
n−t+4 − 1 · · · b

t
n−t+3 + b

t
n−t+4

...
...

... · · · ...
an−1 + an b

2
n−1 + b

2
n b

3
n−1 + b

3
n · · · b

t
n−1 + b

t
n

an + 1 b
2
n b

3
n · · · b

t
n − 1



















The result now follows readily.
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Of course, the isomorphism type of Gn(1, t) is not determined by its abelian
quotient invariants: A11(1, 3) ∼= A11(1, 4) ∼= Z23 but G11(1, 3) 6∼= G11(1, 4) (since
their derived groups have abelian quotient invariants 211 and 311 respectively).

4 Split extensions

Let En(m, k) denote the split extension of Gn(m, k) by Zn = 〈θ : θn = 1〉, where θ
is the automorphism sending each generator xi to xi+1 (subscripts taken modulo
n). The relations xixi+m = xi+k of Gn(m, k) imply

xθ−mxθm = θ−kxθk

where x := xn, and xi = θ−ixθi. Setting y = θmx−1 (and eliminating x = y−1θm)
yields

En(m, k) = 〈θ, y : θn = 1, θk−my2 = yθk〉.
Assume 2k ≡ m mod n. As we observed in Lemma 9, if Gn(m, k) is irre-

ducible, then it is isomorphic to Gn(2, 1) = S(n). Further En(m, k) is isomorphic
to the fundamental group of the 3-dimensional orbifold whose underlying space
is the 3-sphere and whose singular set is the trefoil knot with branching index n
(see for example [6, Theorem 2.1]).

Lemma 11. If n ≥ 3 is odd, then Gn(1, (n + 1)/2) ∼= S(n) is isomorphic to the
derived group of the centrally extended triangle group

Γ = 〈γ1, γ2, γ3 : γn
1 = γ2

2 = γ3
3 = γ1γ2γ3〉.

If n ≥ 7 is odd, then the centre of Gn(1, (n + 1)/2) is Z, otherwise it is Z2. If
p ≥ 5 is a prime, there is a homomorphism from Gp(1, (p + 1)/2) onto SL(2, p).
Furthermore, G5(1, 3) ∼= SL(2, 5) and G3(1, 2) ∼= Q8.

Proof. The first two assertions follow from [13, Section 3] since Gn(1, (n + 1)/2)
is isomorphic to the fundamental group of the Brieskorn manifold M(n, 2, 3). To
prove the third, we define a map from Ep(1, (p + 1)/2) → SL(2, p):

θ → A =

(

1 0
1 1

)

y → B =

(

0 −2
(p + 1)/2 1

)

.

One can easily verify that this is an epimorphism which induces an epimorphism
from Gp(1, (p + 1)/2) to SL(2, p), sending xi 7−→ AiB−1Ai+1. The last follows
from [9].

Theorem 12. Let Gn(m, k) be irreducible.

(a) If 2(2k − m) ≡ 0 mod n, then En(m, k) has a homomorphism onto the
subgroup of SL(2, C) having presentation

{A,B : An = B3 = 1, A2k−m = (BAk)2}.
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(b) If (n, k) = 1, then En(m, k) has a homomorphism onto the group defined
by the presentation {u, v : vn = 1, (uv)3 = 1, v−η(2k−m) = u2} where ηk ≡
1 mod n, for some integer η.

(c) If (n, k) = 1 and 2(2k − m) ≡ 0 mod n, then En(m, k) covers the triangle
group of type (n, 2, 3) if n is odd, and of type ((n, 2k−m), 2, 3) if n is even.
If (n, k) = 1, 2(2k − m) ≡ 0 mod n and (n, 2k − m) ≥ 6, then Gn(m, k) is
infinite.

Proof. Recall En(m, k) = 〈θ, y : θn = 1, θk−my2 = yθk〉.

(a) We will exhibit a homomorphism En(m, k) → SL(2, C) which both satisfies
the relations of En(m, k) and sends

θ → A =

(

λ 0
0 λ−1

)

y → B =

(

α β
1 γ

)

where λn = 1, β 6= 0, and αγ − β = 1. Such a homomorphism implies that

(

α β
1 γ

)2

=

(

λm−k 0
0 λk−m

)(

α β
1 γ

)(

λk 0
0 λ−k

)

.

This gives the system of equations































α2 − αλm + β = 0

β(α + γ) = βλm−2k

α + γ = λ2k−m

γ2 − γλ−m + β = 0

β = αγ − 1.

Since β 6= 0, the second and third equations imply λ2(2k−m) = 1, which
holds because n divides 2(2k − m). The system has the unique solution
given by

α =
1

λm−2k − λm
β =

λ2(m−k) − λ2m − 1

(λm−2k − λm)2
γ =

−λ2(m−k)

λm−2k − λm
.

Assume λm(λ−2k−1) = 0. Then |λm||λ−2k−1| = 0, and so 2k ≡ 0 (mod n).
But Gn(m, k) is irreducible and so 0 < m < k < n. Since 2(2k−m) ≡ 0 mod
n, we deduce that 2m ≡ 0 mod n, a contradiction. Hence λm(λ−2k−1) 6= 0.

Let τ(B) be the square of the trace of the matrix B. Then

τ(B) =
(1 − λ2(m−k))2

(λm−2k − λm)2
=

1 + λ4(m−k) − 2λ2(m−k)

1 + λ2m − 2λ2(m−k)
= 1

8



since λ2(m−2k) = 1 and λ4(m−k) = λ2m as 2(2k − m) ≡ 0 mod n. Hence B
is elliptic. By [1, p. 39], we determine the multiplier M2 of B by applying
the quadratic formula

M2 =
1

2
[τ(B) − 2 ±

√

−4τ(B) + τ 2(B)]

Since M2 = (−1± i
√

3)/2, we conclude that B has order 3. The statement
follows.

(b) If y3 = 1, then the relation θk−my2 = yθk becomes θk−m = yθky, hence
θ2k−m = (yθk)2. Thus adding the relation y3 = 1 gives a homomorphism
from En(m, k) onto 〈θ, y : θn = y3 = 1, θ2k−m = (yθk)2〉. If (n, k) = 1, then
there exist integers ξ and η such that ξn + ηk = 1. Setting u = yθk and
v = θ−k, we deduce that En(m, k) covers the group defined in (b).

(c) If n is odd, then by (b) En(m, k) covers 〈v, u : vn = u2 = (uv)3 = 1〉. If n is
even, then the relation v(n,2k−m) = 1 implies a homomorphism of En(m, k)
onto the triangle group of type ((n, 2k − m), 2, 3). The infiniteness claim
now follows from [8, §6.4].

Consider the case when (n, k) = 1 and 2(2k−m) ≡ 0 mod n. If n is also odd,
then 2k ≡ m mod n; since Gn(m, k) ∼= S(n), it is infinite for n ≥ 6. If n is even,
then (c) has new consequences: for example, it implies that G12(4, 5) is infinite.

5 Investigating Gn(m, k) for small values of n

We investigated the irreducible groups Gn(m, k) for values of n ≤ 27. We used im-
plementations in Magma [3] of algorithms to perform coset enumerations, com-
pute abelian quotient invariants and (normal) subgroups of low index, and con-
struct presentations for subgroups and p-quotients of finitely-presented groups.
We refer the interested reader to [10, Chapters 5 and 9] for details and references
to these algorithms.

5.1 Isomorphism

We sought to solve the isomorphism problem among the irreducible Gn(m, k)
for small values of n. We applied the isomorphisms identified in Theorem 2, its
corollaries, and Propositions 5-6 to obtain both an upper bound U(n) to the
value of f(n), and a potentially redundant list of isomorphism types. We then
used invariants of groups in the resulting list to obtain a lower bound L(n) to the
value of f(n). These bounds frequently coincided, so allowing us to deduce the
precise value of f(n).
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In most cases, it sufficed to compute the abelian quotient invariants of a group
and those of its derived group to distinguish it from any other on the list. We
note the exceptional cases.

• We proved that G14(1, 3) is not isomorphic to G14(1, 5) by showing that,
among their normal subgroups of index 16, the number of distinct abelian
quotient invariants is 8 and 9 respectively.

• The p-class 2 241-quotient of the derived group of G22(1, 5) has order 24122;
the corresponding quotient of the derived group of G22(1, 7) has order 24144.

• PSL(2, 5) is a homomorphic image of G25(1, 3) but not of G25(1, 6).

• G26(1, 13) is finite, G26(13, 14) is infinite.

We summarise our results in Table 1. For n ∈ {3, . . . , 27}, we record the
values of L(n) and U(n); for each of the U(n) groups, we list one defining value
of the parameters (m, k). For n ∈ {17, 19, 21, 23}, the values of L(n) and U(n)
differ by 1. The unresolved cases are listed in Table 2.

Table 1 demonstrates that Conjecture 8 is sharp. For n ∈ {28, . . . , 200}, we
computed U(n) and counted the number of distinct abelian quotient invariants
among Gn(m, k). This provided additional evidence for the correctness of Con-
jecture 8; it also suggests that there is at most one coincidence among the values
of the abelian quotient invariants of Gn(m, k) when n = pℓ.

5.2 Finiteness

We summarise the results of Gilbert & Howie [9] and Williams [19], with known
isomorphisms applied.

Theorem 13.

(i) Suppose (n,m) 6∈ {(8, 3), (9, 3), (9, 4), (9, 7)}. Then H(n,m) is finite if and
only if m = 0 or 1, or (n,m) = (2ℓ, ℓ + 1) where ℓ ≥ 1, or

(n,m) ∈ {(3, 2), (4, 2), (5, 2), (5, 3), (6, 3), (7, 4)}.

(ii) Let G = Gn(m, k) be strongly irreducible and assume G 6= 1. Then G is
finite if and only if (m, k) = 1 and n = 2k or n = 2(k − m), in which case
G ∼= Zs where s = 2n/2 − (−1)m+(n/2).

The structure of (the then known) finite irreducible groups among H(n,m) is
recorded in [9, Table 1]. Some of the exceptions from Theorem 13(i) have since
been resolved. We now know that H(8, 3) ∼= G8(3, 1) is a soluble group of order
310 ·5 and derived length 3. First established by R.M. Thomas, its order can now
be determined by a routine coset enumeration in Magma.

We now prove that H(9, 3) is infinite. Recall first Newman’s extension [14] of
the Golod-Šafarevič theorem, which we summarise for the prime 2.
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n L(n) U(n) Parameters (m, k)

3 1 1 (1, 2)

4 2 2 (1, 2), (2, 3)

5 2 2 (1, k) k ∈ {2, 3}
6 5 5 (1, k) k ∈ {2, 3}, (2, 3), (3, 4), (4, 5)

7 3 3 (1, k) k ∈ {2, 3, 4}
8 6 6 (1, k) k ∈ {2, 3, 4}, (2, 3), (2, 5), (4, 5)

9 5 5 (1, k) k ∈ {2, . . . , 5}, (3, 4)

10 8 8 (1, k) k ∈ {2, . . . , 5}, (2, k) k ∈ {3, 5}, (4, 7), (5, 6)

11 5 5 (1, k) k ∈ {2, . . . , 6}
12 12 12 (1, k) k ∈ {2, . . . , 6}, (2, k) k ∈ {3, 7}, (3, k) k ∈ {4, 5}

(4, k) k ∈ {5, 7}, (6, 7)

13 6 6 (1, k) k ∈ {2, . . . , 7}
14 11 11 (1, k) k ∈ {2, . . . , 7}, (2, k) k ∈ {3, 5, 7}, (4, 9), (7, 8)

15 12 12 (1, k) k ∈ {2, . . . , 8}, (3, k) k ∈ {4, 5, 7}, (5, 6), (5, 7)

16 12 12 (1, k) k ∈ {2, . . . , 8}, (2, k) k ∈ {3, 5, 9}, (4, 5), (8, 9)

17 7 8 (1, k) k ∈ {2, . . . , 9}
18 17 17 (1, k) k ∈ {2, . . . , 9}, (2, k) k ∈ {3, 5, 7, 9}, (3, k) k ∈ {4, 7}

(4, 11), (6, 7), (9, 10)

19 8 9 (1, k) k ∈ {2, . . . , 10}
20 18 18 (1, k) k ∈ {2, . . . , 10}, (2, k) k ∈ {3, 5, 11}

(4, k) k ∈ {5, 7, 11}, (5, 6), (5, 8), (10, 11)

21 15 16 (1, k) k ∈ {2, . . . , 11}, (3, k) k ∈ {4, 5, 7, 8}, (7, 8), (7, 9)

22 17 17 (1, k) k ∈ {2, . . . , 11}, (2, k) k ∈ {3, 5, 7, 9, 11}, (4, 13), (11, 12)

23 10 11 (1, k) k ∈ {2, . . . , 12}
24 26 26 (1, k) k ∈ {2, . . . , 12}, (2, k) k ∈ {3, 5, 7, 13}, (3, k) k ∈ {4, 5, 8, 10}

(4, k) k ∈ {5, 7}, (6, k) k ∈ {7, 13}, (8, k) k ∈ {9, 13}, (12, 13)

25 14 14 (1, k) k ∈ {2, . . . , 13}, (5, 6), (5, 7)

26 20 20 (1, k) k ∈ {2, . . . , 13}, (2, k) k ∈ {3, 5, 7, 9, 11, 13}, (4, 15), (13, 14)

27 17 17 (1, k) k ∈ {2, . . . , 14}, (3, k) k ∈ {4, 5, 10}, (9, 10)

Table 1: Lower and upper bounds for f(n) for n ≤ 27
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n Parameters (m, k)

17 (1, 3), (1, 4)

19 (1, 3), (1, 6)

21 (1, 6), (1, 9)

23 (1, 3), (1, 7)

Table 2: Possible isomorphisms

Theorem 14. Let G be a group with a finite presentation on b generators and
r relations. Let G1 := [G,G]G2 and G2 := [G1, G]G2

1, where the elementary
abelian 2-groups G/G1 and G1/G2 have rank d and e respectively. If r − b ≤
d2/2 + d/2 − d − e + (e − d/2 − d2/4)d/2, then G is infinite.

Lemma 15. The group H := H(9, 3) ∼= G9(3, 4) is infinite.

Proof. The second derived group, K, of H has index 448 in H. We obtain, using
a Reidemeister-Schreier rewriting procedure [10, §2.5], a presentation for K on
321 generators and 768 relations. Now K has abelian quotient invariants 23647.
Let Q denote its 2-quotient of p-class 2: Q has order 2604, its Frattini quotient
has rank d = 43, and so e = 561. Theorem 14 implies that K is infinite.

The other exceptions, H(9, 4) ∼= G9(1, 3) and H(9, 7) ∼= G9(1, 4), remain
unresolved.
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