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Abstract

Using the local subgroup strategy of [3] and [4], we classify the radical sub-
groups and chains of the Fischer simple group Fi22 and verify the Alperin weight
conjecture and the Uno reductive conjecture for this group; the latter is a refine-
ment of the Dade reductive and Isaacs-Navarro conjectures.

1 Introduction

Let G be a finite group, p a prime and B a p-block of G. Alperin [1] conjectured
that the number of B-weights equals the number of irreducible Brauer characters of
B. Dade [11] generalized the Knörr-Robinson version of the Alperin weight conjecture
and presented his ordinary conjecture exhibiting the number of ordinary irreducible
characters of a fixed defect in B in terms of an alternating sum of related values for
p-blocks of some p-local subgroups of G. Dade [12] presented several other forms
of his conjecture and announced that his final conjecture needs only to be verified
for finite non-abelian simple groups; in addition, if a finite group has a cyclic outer
automorphism group, then the projective invariant conjecture is equivalent to the final
conjecture. Recently, Isaacs and Navarro [16] proposed a new conjecture which is a
refinement of the Alperin-McKay conjecture, and Uno [19] raised an alternating sum
version of the Isaacs-Navarro conjecture which is a refinement of the Dade conjecture.

In [3] and [4], we presented a local subgroup strategy to decide the Alperin and
Dade conjectures for the finite simple groups and demonstrated its computational ef-
fectiveness by using it to verify the Alperin and Dade conjectures for the Conway simple
group Co2 and the Fischer simple group Fi23. In this paper, we apply the strategy to
verify the Alperin and Uno conjectures for the Fischer simple group Fi22. Although
the outlines of our computations and proofs are similar to those of the Alperin and
Dade conjectures for Co2 and Fi23, the details are significantly more complex, since
we must verify Uno’s invariant conjecture for Fi22, the projective invariant conjecture
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for the 2-covering group 2.Fi22, and the projective conjecture for the 3- and 6-covering
groups, 3.Fi22 and 6.Fi22.

The challenge in deciding the conjectures for these groups is to determine the char-
acter tables of the normalizers of the radical 2- and 3-chains. Our approach to de-
termining the character tables of the normalizers is similar to that employed in Fi23,
but the calculations are more complicated because of the large degrees, 185 328 and
370 656, of the faithful permutation representations of 3.Fi22 and 6.Fi22. If a relevant
normalizer is a maximal subgroup of a covering group, then its character table is usually
available in a character table library supplied with the computational algebra system
GAP [18]. Otherwise, we constructed a “useful” representation of the normalizer and
attempted to compute directly its character table; if this construction failed, we used
lifting of characters of quotient groups, and induction and decomposition of characters
of subgroups of the normalizer to obtain its character table. We present the details in
Section 6.

The paper is organized as follows. In Section 2, we fix notation and state the
Alperin weight conjecture, the Isaacs-Navarro conjecture, the Dade and Uno invariant,
projective, and projective invariant conjectures, and state a useful lemma. In Section
3, we recall our (modified) local subgroup strategy and explain how we applied it to
determine the radical subgroups of Fi22. In Section 4, we classify the radical subgroups
of Fi22 up to conjugacy and verify the Alperin weight conjecture. The classification
of radical 2-subgroups of Fi22 was given in [4, p. 631]; we report these in detail in
Section 4 because many subgroups there will be used in the next section to construct
radical 2-chains. In Section 5, we do some cancellations in the alternating sum of Uno’s
conjecture when p = 2 or 3, and then determine radical chains (up to conjugacy) and
their local structures. In Section 6, we verify Uno’s invariant conjecture for Fi22. In
Section 7, we verify Uno’s projective invariant conjecture for 2.Fi22, and in Sections 8
and 9, we verify Uno’s projective conjecture for 3.Fi22 and 6.Fi22, respectively.

2 The conjectures and a lemma

Let R be a p-subgroup of a finite group G. Then R is radical if Op(N(R)) = R, where
Op(N(R)) is the largest normal p-subgroup of the normalizer N(R) = NG(R). Denote
by Irr(G) the set of all irreducible ordinary characters of G, and let Blk(G) be the set
of p-blocks, B ∈ Blk(G) and ϕ ∈ Irr(N(R)/R). The pair (R,ϕ) is called a B-weight if
d(ϕ) = 0 andB(ϕ)G = B (in the sense of Brauer), where d(ϕ) = logp(|G|p)−logp(ϕ(1)p)
is the p-defect of ϕ and B(ϕ) is the block of N(R) containing ϕ. A weight is always
identified with its G-conjugates. Let W(B) be the number of B-weights, and `(B) the
number of irreducible Brauer characters of B. Alperin conjectured that W(B) = `(B)
for each B ∈ Blk(G).

Given a p-subgroup chain

C : P0 < P1 < · · · < Pn (2.1)

of G, define |C| = n, the k-th subchain Ck : P0 < P1 < · · · < Pk, and

N(C) = NG(C) = N(P0) ∩N(P1) ∩ · · · ∩N(Pn). (2.2)
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The chain C is radical if it satisfies the following two conditions:

(a) P0 = Op(G) and (b) Pk = Op(N(Ck)) for 1 ≤ k ≤ n.

Denote by R = R(G) the set of all radical p-chains of G. Let B ∈ Blk(G) and let
D(B) be a defect group of B. The p-local rank (see [2]) of B is the number

plr(B) = max{|C| : C ∈ R, C : P0 < P1 < · · · < Pn ≤ D(B)}.

Let Z be a cyclic group and Ĝ = Z.G a central extension of Z by G, and C ∈ R(G).
Denote by NĜ(C) the preimage η−1(N(C)) of N(C) in Ĝ, where η is the natural group

homomorphism from Ĝ onto G with kernel Z. Let ρ be a faithful linear character
of Z and B̂ a block of Ĝ covering the block B(ρ) of Z containing ρ. Denote by
Irr(NĜ(C), B̂, d, ρ) the set of irreducible characters ψ of NĜ(C) such that ψ lies over

ρ, d(ψ) = d and B(ψ)Ĝ = B̂ and set k(NĜ(C), B̂, d, ρ) = |Irr(NĜ(C), B̂, d, ρ)|.
Dade’s Projective Conjecture [12]. If Op(G) = 1 and B̂ is a p-block of Ĝ covering

B(ρ) with defect group D(B̂) 6= Op(Z), then∑
C∈R/G

(−1)|C|k(NĜ(C), B̂, d, ρ) = 0,

where R/G is a set of representatives for the G-orbits of R.

Let Ĥ be a subgroup of a finite group Ĝ, ϕ ∈ Irr(Ĥ) and let r(ϕ) = rp(ϕ) be the

integer 0 < r(ϕ) ≤ (p− 1) such that the p′-part (|Ĥ|/ϕ(1))p′ of |Ĥ|/ϕ(1) satisfies(
|Ĥ|
ϕ(1)

)
p′
≡ r(ϕ) (mod p).

Given 1 ≤ r ≤ (p−1)/2, let Irr(Ĥ, [r]) be the subset of Irr(Ĥ) consisting of characters ϕ
such that r(ϕ) ≡ ±r (mod p), and let Irr(Ĥ, B̂, d, ρ, [r]) = Irr(Ĥ, B̂, d, ρ)∩ Irr(Ĥ, [r])
and k(Ĥ, B̂, d, ρ, [r]) = |Irr(Ĥ, B̂, d, ρ, [r])|.

Suppose Z = 1 and let B̂ = B ∈ Blk(G) with a defect group D = D(B) and the
Brauer correspondent b ∈ Blk(NG(D)). Then k(N(D), B, d(B), [r]) is the number of
characters ϕ ∈ Irr(b) such that ϕ has height 0 and r(ϕ) ≡ ±r (mod p), where d(B)
is the defect of B.

Isaacs-Navarro Conjecture [16, Conjecture B]. In the notation above,

k(G,B, d(B), [r]) = k(N(D), B, d(B), [r]).

The following refinement of Dade’s conjecture is due to Uno.

Uno’s Projective Conjecture [19, Conjecture 3.2]. If Op(G) = 1 and if D(B̂) 6=
Op(Z), then for all integers d ≥ 0, faithful ρ ∈ Irr(Z) and 1 ≤ r ≤ (p− 1)/2,∑

C∈R/G

(−1)|C|k(NĜ(C), B̂, d, ρ, [r]) = 0. (2.3)

Similarly, if Z = 1, then the projective conjecture is the ordinary conjecture.
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Note that if p = 2 or 3, then the conjecture is equivalent to Dade’s conjecture.
If, moreover, Ê is an extension of Ĝ centralizing Z and NÊ(C,ψ) is the stabilizer

of (NĜ(C), ψ) in Ê, then NÊ/Ĝ(C,ψ) = NÊ(C,ψ)/NĜ(C) is a subgroup of Ê/Ĝ. For

a subgroup Û ≤ Ê/Ĝ, denote by k(NĜ(C), B̂, d, Û , ρ, [r]) the number of characters ψ

in Irr(NĜ(C), B̂, d, ρ, [r]) such that NÊ/Ĝ(C,ψ) = Û . In the notation above, Uno’s
projective invariant conjecture is stated as follows.

Uno’s Projective Invariant Conjecture. If Op(G) = 1 and B̂ is a p-block of Ĝ

covering B(ρ) with D(B̂) 6= Op(Z), then∑
C∈R/G

(−1)|C|k(NĜ(C), B̂, d, Û , ρ, [r]) = 0. (2.4)

In addition, if Ê/Ĝ is cyclic and u = |Û |, then we set

k(NĜ(C), B̂, d, u, ρ) = k(NĜ(C), B̂, d, Û , ρ).

In particular, if Z = 1 and ρ is the trivial character of Z, then Ĝ = G and B̂ is a block
B of G; we set U = Û and

k(N(C), B, d, U) = k(NĜ(C), B̂, Û , ρ).

Then the Projective Invariant Conjecture is equivalent to the Invariant Conjecture.

Uno’s Invariant Conjecture. If Op(G) = 1 and B is a p-block of G with defect
d(B) > 0, then ∑

C∈R/G

(−1)|C|k(N(C), B, d, U, [r]) = 0. (2.5)

Remark 2.1 Suppose p = 5 and Ĝ is a covering group of G = Fi22. Then an ele-
mentary abelian group p2 is a Sylow subgroup of G. Let B ∈ Blk(Ĝ) with D(B) ' p2,
so that B has p-local rank two (see [2]). Let R be a radical subgroup of G such that
R < D(B) and b ∈ Blk(NG(R)) with bG = B. Then b has p-local rank one or zero, and
by [2, Theorem 1.4], Uno’s projective conjecture holds for b. In particular,

k(NĜ(R), b, d, ρ, [r]) = k(NĜ(D(b)), b, d, ρ, [r]) (2.6)

for any ρ ∈ Irr(Z(Ĝ)). Thus Uno’s projective conjecture for B is equivalent to the
equation

k(Ĝ, B, d, ρ, [r]) = k(NĜ(D(B)), B, d, ρ, [r]). (2.7)

In Section 5, we will use the following lemma, whose proof is straightforward.

Lemma 2.2 Let σ : Op(G) < P1 < . . . < Pm−1 < Q = Pm < Pm+1 < . . . < P` be a
fixed radical p-chain of a finite group G, where 1 ≤ m < `. Suppose

σ′ : Op(G) < P1 < . . . < Pm−1 < Pm+1 < . . . < P`

is also a radical p-chain such that NG(σ) = NG(σ′). Let R−(σ,Q) be the subfamily of
R(G) consisting of chains C whose (` − 1)-th subchain C`−1 is conjugate to σ′ in G,
and R0(σ,Q) the subfamily of R(G) consisting of chains C whose `-th subchain C` is
conjugate to σ in G. Then the map g sending any Op(G) < P1 < . . . < Pm−1 < Pm+1 <
. . . < P` < . . . in R−(σ,Q) to Op(G) < P1 < . . . < Pm−1 < Q < Pm+1 < . . . < P` < . . .
induces a bijection, denoted again by g, from R−(σ,Q) onto R0(σ,Q). Moreover, for
any C in R−(σ,Q), we have |C| = |g(C)| − 1 and NG(C) = NG(g(C)).
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3 The modified local strategy

The maximal subgroups of Fi22 were classified by Flaass [14] and Wilson [21]. Using
this classification, we know that each radical 2- or 3-subgroup R of Fi22 is radical in
one of the nine maximal subgroups M of Fi22 and further that NFi22(R) = NM(R).

In [3] and [4], a modified local subgroup strategy was developed to classify the
radical subgroups R. We review this method here. Suppose M is a subgroup of G such
that NM(R) = NG(R).

Step (1). We first consider the case where M is a p-local subgroup. Let Q = Op(M),
so that Q ≤ R. Choose a subgroup X of M . We explicitly compute the coset action
of M on the cosets of X in M ; we obtain a group W representing this action, a group
homomorphism f from M to W , and the kernel K of f . For a suitable X, we have
K = Q and the degree of the action of W on the cosets is usually much smaller than
that of M . We can now directly classify the radical p-subgroup classes of W , and the
preimages in M of the radical subgroup classes of W are the radical subgroup classes
of M .

Step (2). Now consider the case where M is not p-local. We may be able to find
its radical p-subgroup classes directly. Alternatively, we find a (maximal) subgroup K
of M such that NK(R) = NM(R) for each radical subgroup R of M . If K is p-local,
then we apply Step (1) to K. If K is not p-local, we can replace M by K and repeat
Step (2).

Steps (1) and (2) constitute the modified local strategy. After applying the strategy,
possible fusions among the resulting list of radical subgroups can be decided readily
by testing whether the subgroups in the list are pairwise Fi22-conjugate.

In investigating the conjectures for Fi22, we used the minimal degree representation
of Fi22 as a permutation group on 3510 points. Its maximal subgroups were constructed
using the details supplied in [9] and the black-box algorithms of Wilson [20]. We also
made extensive use of the algorithm described in [10] to construct random elements,
and the procedures described in [3] and [4] for deciding the conjectures. We used the
minimal degree representation of Fi22.2 as a permutation group on 3510 points, and
that of 2.Fi22 as a permutation subgroup of Fi23 on 31 671 points. In investigating the
projective conjecture for 3.Fi22 and 6.Fi22, we constructed and used representations of
3.Fi22 (and 3.Fi22.2) and 6.Fi22 as permutation groups on 185 328 and 370 656 points,
respectively. The representation of 6.Fi22 is available from the ATLAS of Finite Group
Representations [6].

The computations reported in this paper were carried out using Magma V.2.6-2
on a Sun UltraSPARC Enterprise 4000 server.

4 Radical subgroups and weights of Fi22

Let Φ(G, p) be a set of representatives for conjugacy classes of radical subgroups of
G. For H,K ≤ G, we write H ≤G K if x−1Hx ≤ K; and write H ∈G Φ(G, p) if
x−1Hx ∈ Φ(G, p) for some x ∈ G. We shall follow the notation of [9]. In particular,
if p is odd, then p1+2γ

+ is an extra-special group of order p1+2γ with exponent p; if δ is
+ or −, then 21+2γ

δ is an extra-special group of order 21+2γ with type δ. If X and Y
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are groups, we use X.Y and X:Y to denote an extension and a split extension of X
by Y , respectively. Given a positive integer n, we use Epn or simply pn to denote the
elementary abelian group of order pn, ZZn or simply n to denote the cyclic group of
order n, and D2n to denote the dihedral group of order 2n.

Let G be the simple Fischer group Fi22 and E = Aut(G) = G.2. Then

|G| = 217 · 39 · 52 · 7 · 11 · 13,

and we may suppose p ∈ {2, 3, 5}, since both conjectures hold for a block with a cyclic
defect group by [11, Theorem 7.1] and [2, Theorem 5.1].

We denote by Irr0(H) the set of ordinary irreducible characters of p-defect 0 of a
finite group H and by d(H) the number logp(|H|). Given R ∈ Φ(G, p), let C(R) =
CG(R) and N = NG(R). If B0 = B0(G) is the principal p-block of G, then (c.f. (4.1)
of [3])

W(B0) =
∑
R

|Irr0(N/C(R)R)|, (4.1)

where the summation runs over the subgroups R in Φ(G, p) for which d(C(R)R/R) =
0. The character table of N/C(R)R can be calculated by Magma, and so we find
|Irr0(N/C(R)R)|.

Proposition 4.1 Let G = Fi22 and E = Aut(G) = G.2. Then the non-trivial radical
p-subgroups R of G (up to conjugacy) and their local structures are given in Tables 1
and 2 according as p ≥ 3 or p = 2, where S ∈ Syl3(G) is a Sylow 3-subgroup, H∗

denotes a subgroup of G such that H∗ ' H and H∗ 6=G H. If p = 3, then τ permutes
the pairs (33+3, (33+3)∗) and (31+6

+ .3, (31+6
+ .3)∗) for some τ ∈ E\G. If p = 2, then

NE(R) = N.2 for all radical subgroups R.

R C(R) NG(R) NE(R) |Irr0(N/C(R)R)|
5 5× S5 5:4× S5 2× 5:4× S5

52 52 52:4S4 2× 52:4S4 16

3 3× U4(3):2 S3 × U4(3): 2 N.2

35 35 35:U4(2):2 N.2 2

33+3 33 33+3:L3(3) N 1

(33+3)∗ 33 (33+3)∗:L3(3) N 1

31+6
+ 3 31+6

+ .23+4:32: 2 N.2 4

31+6
+ .3 3 31+6

+ .3:2S4 N 2

35.33 3 35.33.(2× S4) N.2 4

(31+6
+ .3)∗ 3 (31+6

+ .3)∗.2S4 N 2

35: 31+2
+ 32 35:31+2

+ .2S4 N.2 2

S 3 S.22 N.2 4

Table 1: Non-trivial radical p-subgroups of Fi22 with p ≥ 3
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Proof: Case (1). Suppose p = 5, so that by [9, p. 156], G = Fi22 has a unique
class of elements x of order 5 and C(x) = 5 × S5 and N(〈x〉) = 5:4 × S5 (see [21,
p. 207]). Thus S ∈ Syl5(G) is elementary abelian of order 25, N(S) = 52: 4S4 and
NN(〈x〉)(S) = 5:4× 5:4.

Case (2). Suppose p = 3, i ∈ {1, . . . , 4}, and Mi is a maximal subgroup of G where
M1 = N(3A) ' S3 × U4(3): 2, M2 = N(3B) ' 31+6

+ :23+4:32:2, M3 ' O7(3) ' M4. By
[21, p. 203], we may suppose a 3-local subgroup R of G is a subgroup of some Mi with
NG(R) = NMi

(R).
The subgroups M1 and M2 are normalizers of some 3A and 3B elements, so we can

easily construct them in G. The generators of a maximal subgroup, say M3 ' O7(3)
are identified by Wilson [6], using standard generators of Fi22. Construct a maximal
subgroup K ' 35:U4(2): 2 of M3 and then use the modified local strategy to obtain
all radical subgroups of K (see Case (2.3) below). One of the radical subgroups R
of K is isomorphic to 35: 31+2

+ with center Z(R) = 32. The group R has exactly two
conjugacy classes of subgroups, say Q1 and Q2, satisfying the following conditions:
|Q1| = |Q2| = 36, Q1 ' Q2 ' 33+3, NM3(Q1) = NG(Q1) ' 33+3:L3(3) and NM3(Q2) 6=
NG(Q2) ' 33+3:L3(3). The group NG(Q2) is a maximal subgroup of M4 ' O7(3), and
M4 can be constructed using NG(Q2) and some random element of G. We then apply
the modified local strategy to each Mi.

Case (2.1) We may take

Φ(M2, 3) = {31+6
+ , 31+6

+ .3, 35.33, (31+6
+ .3)∗, S}, (4.2)

and moreover, N(R) = NM2(R) for each R ∈ Φ(M2, 3). We may suppose Φ(M2, 3) ⊆
Φ(G, 3). Since NE(31+6

+ .3) = NG(31+6
+ .3) and NE(31+6

+ ) = NG(31+6
+ ).2, it follows that τ

permutes the pair (31+6
+ .3, (31+6

+ .3)∗).

Case (2.2) We may take

Φ(M1, 3) = {3, 35, 3× 31+4
+ , S ′}, (4.3)

and moreover, N(R) 6= NM1(R) for R ∈ Φ(M1, 3)\{3} and NE(R) = NG(R).2, where
S ′ ∈ Syl3(M1). In addition, C(35) = 35, N(35) ' S3 × 34:S6, C(3 × 31+4

+ ) = 32,
N(3× 31+4

+ ) ' S3 × 31+4
+ .2S4: 2, C(S ′) = 32, N(S ′) ' S3 × 31+4

+ .3.D8.

Case (2.3) Let L1 ' 31+6
+ :(2A4×A4).2, L2 ' 33+3:L3(3) and L3 = 35:U4(2):2 be the

maximal subgroups of M3 = O7(3) (cf. [9, p. 109]), so that by the Borel-Tits theorem
[8], we may suppose each radical subgroup of O7(3) is a subgroup of Φ(Li, 3) for some
i with N(R) = NLi

(R).

We may take
Φ(L1, 3) = {31+6

+ , 35: 33, (31+6
+ .3)∗, S}, (4.4)

and moreover, N(R) = NM3(R) = NL1(R) for R ∈ Φ(L1, 3)\{31+6
+ }.

We may take

Φ(L2, 3) = {33+3, 31+6
+ .3, 35:31+2

+ , S} ⊆G Φ(G, 3), (4.5)

and then N(R) = NM3(R) for all R ∈ Φ(L2, 3).
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We may take

Φ(L3, 3) = {35, 35: 33, 35:31+2
+ , S} ⊆G Φ(G, 3), (4.6)

and so N(R) = NM3(R) = NL3(R) for all R ∈ Φ(L3, 3).
It follows that

Φ(M3, 3) = {35, 33+3, 31+6
+ , (31+6

+ .3)∗, 35: 33, 35: 31+2
+ , S},

and N(R) = NM3(R) for R ∈ Φ(M3, 3)\{31+6
+ }.

Case (2.4) Since M3 and M4 are conjugate in E and O3(M2) =G O3(L1), it follows
that

Φ(M4, 3) = {35, (33+3)∗, 31+6
+ , 31+6

+ .3, 35: 33, 35: 31+2
+ , S}.

R C(R) N |Irr0(N/C(R)R)|
2 2.U6(2) 2.U6(2)

26 26 26:S6(2) 1

210 210 210:M22 0

2× 21+8
+ 22 (2× 21+8

+ :U4(2)):2 0

26.25 2 26.25.S6 1

210.23 23 210.23.L3(2) 1

25+8 25 25+8.(S3 × A6) 2

25+8.2 25 25+8.2.A6 2

210.24 22 210.24.S5 0

25+8.22 22 25+8.22.(S3 × S3) 1

(2× 21+8
+ ).2.24 22 (2× 21+8

+ ).2.24.(S3 × S3) 1

210.22.23 2 210.22.23.S3 1

210.22.24 22 210.22.24.S3 1

25+8.D8 2 25+8.D8.S3 1

25+8.23 22 25+8.23.S3 1

25+8.D8.2 2 25+8.D8.2 1

Table 2: Non-trivial radical 2-subgroups of Fi22

Case (3) For 1 ≤ i ≤ 5, let Mi be the maximal subgroups of G such that M1 '
2.U6(2), M2 ' 210:M22, M3 ' 26.S6(2), M4 ' (2× 21+8

+ :U4(2)):2 and M5 ' 25+8:(S3 ×
A6). If R is a non-trivial radical 2-subgroup of G, then by Wilson [21, Proposition 4.4]
or Flaass [14], we may suppose R ∈ Φ(Mi, 2) such that N(R) = NMi

(R) for some i.

Case (3.1) We may take

Φ(M4, 2) = {2×21+8
+ , 26.25, 210.24, (2×21+8

+ ).2.24, 210.22.23, 210.22.24, 25+8.D8, 2
5+8.D8.2}

and moreover, N(R) = NM4(R) for each R ∈ Φ(M4, 2).
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Case (3.2) Let K1 = (2 × 21+8
+ ):U4(2), K2 = 210:L3(4), K3 = 25+8.(3 × A5).2 be

maximal subgroups of M1 ' 2.U6(2). Then we may suppose each R ∈ Φ(M1, 2) is a
subgroup of Φ(Ki, 2) for some i such that NM1(R) = NKi

(R).
We may take

Φ(K1, 2) = {2× 21+8
+ , 210.24, (2× 21+8

+ ).2.24, 210.22.24},

and so NK1(R) = NM1(R) 6= N(R) for each R ∈ Φ(K1, 2). Moreover, C(R) ' 22 and

NM1(R) =


(2× 21+8

+ ):U4(2) if R = 2× 21+8
+ ,

210.24.A5 if R = 210.24,

(2× 21+8
+ ).2.(A4 × A4).2 if R = (2× 21+8

+ ).2.24,

210.22.24.3 if R = 210.22.24.

We may take
Φ(K2, 2) = {210, 210.24, 25+8.2, 210.22.24},

and moreover, NK2(R) = NM1(R) 6= N(R) for each R ∈ Φ(K2, 2), C(210) = 210,
C(25+8.2) = 25, C(210.24) = 22 = C(210.22.24), and NM1(2

5+8.2) = 25+8.2A5.
We may take

Φ(K3, 2) = {25+8, 25+8.2, (2× 21+8
+ )2.24, 210.22.24},

and moreover, NK3(R) = NM2(R) 6= N(R) for each R ∈ Φ(K3, 2).
It follows that

Φ(M1, 2) = {2, 2× 21+8
+ , 210, 25+8, 210.24, 25+8.2, (2× 21+8

+ ).2.24, 210.22.24},

and NM1(R) 6= N(R) for each R ∈ Φ(M1, 2)\{2}.
Case (3.3) We may take

Φ(M2, 2) = {210, 210.23, 210.24, 25+8.2, 210.22.23, 25+8.23, 210.22.24, 25+8.D8.2},

and moreover, N(R) = NM2(R) for each R ∈ Φ(M2, 2).

Case (3.4) We may take

Φ(M5, 2) = {25+8, 25+8.2, 25+8.22, (2× 21+8
+ ).2.24, 210.22.24, 25+8.23, 25+8.D8, 2

5+8.D8.2}

and moreover, for R ∈ Φ(M5, 2), N(R) = NM5(R).

Case (3.5) We may take

Φ(M3, 2) = {26, 26.25, 26.26, 26.23.24, 26.23.24.2, 26.25.23, (26.25.23)∗, S ′},

where S ′ ∈ Syl2(M3). In addition, N(R) = NM3(R) for R ∈ {26, 26.25} and N(R) 6=
NM3(R) for R ∈ Φ(M3, 2)\{26, 26.25}. Moreover,

NM3(R) =



26.26.L3(2) if R = 26.26,

26.23.24.(S3 × S3) if R = 26.23.24,

26.23.24.2.S3 if R = 26.23.24.2,

26.25.23.S3 if R = 26.25.23,

(26.25.23)∗.S3 if R = (26.25.23)∗,

S ′ if R = S ′.
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This completes the classification of radical 2-subgroups of G. The centralizers and
normalizers of R ∈ Φ(G, 2) are given by Magma. 2

Lemma 4.2 Suppose p = 2, 3 or 5, and suppose G is a covering group of Fi22, and
ρ a faithful linear character of Z(G). Let B0 = B0(G) be the principal block of G,
Irr+(G | ρ) the set of characters of Irr(G) with positive p-defect and covering ρ, and
Blk∗(G, p, ρ) the set of p-blocks of G with a non-cyclic defect group and covering the
block B(ρ). If a defect group D(B) of B ∈ Blk(G) is cyclic, then Irr(B) and `(B) are
given by [15, p. 218].

(a) If G = Fi22, then ρ is the trivial character, Blk∗(G, p, ρ) = {B0}, Irr(B0) =
Irr+(G | ρ)\(∪B′Irr(B′)) and

`(B0) =


16 if p = 5,

22 if p = 3,

14 if p = 2,

where B′ runs over the blocks of G with cyclic defect groups.

(b) Suppose G = 2.Fi22, so that Z(G) has a unique faithful linear character ξ. If
p = 3, 5, then Blk∗(G, p, ξ) = {B1} such that Irr(B1) = Irr+(G | ξ)\(∪B′Irr(B′));
if p = 2, then Blk∗(G, p, ξ) = {B0, B1} and in the notation of [9, p. 156], Irr(B1) =
{χ63, χ64, χ113, χ114}, D(B1) ' 22 and Irr(B0) = Irr+(G)\(Irr(B1)∪(∪B′Irr(B′))),
where Irr+(G) is the character in Irr(G) with positive defect and B′ runs over the
blocks of G with cyclic defect groups.

(c) Suppose G = 3.Fi22, so that Z(G) has two faithful linear characters ζ1 and ζ2.
If p = 2, 5, then Blk∗(G, p, ζi) = {Bi}, and Irr(Bi) = Irr+(G | ζi)\(∪B′Irr(B′)); if
p = 3, then Blk∗(G, p, ζi) = {B0, Bi} and in the notation of [9, p. 156], we may
suppose

Irr(Bi) =

{
{χj : j ∈ {29, 38, 49, 98, 99, 114, 115, 126, 127}} if i = 1,

{χj : j ∈ {48, 58, 65, 124, 125, 156, 157, 162, 163}} if i = 2,

and Irr(B0) = Irr+(G)\(Irr(B1)∪ Irr(B2)∪ (∪B′Irr(B′))), where B′ runs over the
blocks of G with cyclic defect groups.

(d) Suppose G = 6.Fi22, so that Z(G) has two faithful linear characters η1 and η2.
If p = 2, 5, then Blk∗(G, p, ηi) = {Bi} and Irr(Bi) = Irr+(G | ηi)\(∪B′Irr(B′)); if
p = 3, then Blk∗(G, p, ηi) = {B1} such that

(Irr+(G | ηi)\(∪B′Irr(B′))) ⊆ Irr(B1)

for i = 1, 2, where B′ runs over the blocks of G with cyclic defect groups.

Proof: If B ∈ Blk+(G, p) is non-principal with D = D(B), then Irr0(C(D)D/D)
has a non-trivial character θ andN(θ)/C(D)D is a p′-group, whereN(θ) is the stabilizer
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of θ in N(D). By Proposition 4.1, D ∈G {5, 3, 2} and D is cyclic. In particular, Irr(B)
and `(B) are given by [15, p.218].

If `p(G) is the number of p-regular G-conjugacy classes, then `(B0) can be calculated
by the following equation due to Brauer:

`p(G) =
⋃

B∈Blk+(G,p)

`(B) + |Irr0(G)|.

Suppose B ∈ Blk∗(G, p, ρ). Using central characters one can show Irr(B) has the
indicated description.

2

Theorem 4.3 Let B be a p-block of G = Fi22 with a non-cyclic defect group. Then
W(B) = `(B).

Proof: By Lemma 4.2, B = B0 and the theorem follows by Proposition 4.1, Lemma
4.2 and (4.1). 2

5 Radical chains of Fi22

Let G = Fi22, C ∈ R(G) and N(C) = NG(C). In this section, we do some cancellations
in the alternating sum of Uno’s conjecture. First we list some radical p-chains C(i)
with their normalizers, then reduce the proof of the conjecture to the subfamily R0(G)
of R(G) consisting of the union of G-orbits of all C(i). The subgroups of the p-chains
in Tables 3 and 4 are given either by Tables 1 and 2 or in the proofs of Proposition 4.1
and Lemma 5.1.

Lemma 5.1 Let G = Fi22, E = G.2 and let R0(G) be the G-invariant subfamily of
R(G) such that

R0(G)/G =

{
{C(i) : 1 ≤ i ≤ 16} with C(i) given in Table 3 if p = 3,

{C(i) : 1 ≤ i ≤ 24} with C(i) given in Table 4 if p = 2,

Then ∑
C∈R(G)/G

(−1)|C|k(N(C), B, d, [r]) =
∑

C∈R0(G)/G

(−1)|C|k(N(C), B, d, [r]) (5.1)

for all integers d, r ≥ 0. If p = 3, then an element τ ∈ E\G permutes the pairs
(C(i), C(j)) for (i, j) ∈ {(7, 9), (8, 10), (11, 15), (14, 16)}. If p = 2, then NE(C(i)) =
N(C(i)).2 for each i.

Proof: Suppose C ′ is a radical chain such that

C ′ : 1 < P ′
1 < . . . < P ′

m. (5.2)

11



C N(C) NE(C)

C(1) 1 Fi22 Fi22.2

C(2) 1 < 5 5:4× S5 N(C)× 2

C(3) 1 < 5 < 52 5:4× 5:4 N(C)× 2

C(4) 1 < 52 52:4S4 N(C)× 2

C(1) 1 Fi22 Fi22.2

C(2) 1 < 3 S3 × U4(3): 2 N(C).2

C(3) 1 < 3 < 35 S3 × 34:S6 N(C).2

C(4) 1 < 3 < 35 < S ′ S3 × 31+4
+ .3.D8 N(C).2

C(5) 1 < 3 < 3× 31+4
+ S3 × 31+4

+ .2S4: 2 N(C).2

C(6) 1 < 35 35:U4(2): 2 N(C).2

C(7) 1 < 33+3 < 35: 31+2
+ 35: 31+2

+ : 2S4 N(C)

C(8) 1 < 33+3 33+3:L3(3) N(C)

C(9) 1 < (33+3)∗ < 35: 31+2
+ 35: 31+2

+ : 2S4 N(C)

C(10) 1 < (33+3)∗ (33+3)∗:L3(3) N(C)

C(11) 1 < 31+6
+ < 31+6

+ .3 31+6
+ .3.2S4 N(C)

C(12) 1 < 31+6
+ 31+6

+ .23+4: 32: 2 N(C).2

C(13) 1 < 31+6
+ < 35: 33 35.33: (2× S4) N(C).2

C(14) 1 < 31+6
+ < 31+6

+ .3 < S S.22 N(C)

C(15) 1 < 31+6
+ < (31+6

+ : 3)∗ (31+6
+ : 3)∗: 2S4 N(C)

C(16) 1 < 31+6
+ < (31+6

+ .3)∗ < S S.22 N(C)

Table 3: Some radical p-chains of Fi22 with p odd

Let C ∈ R(G) be given by (2.1) with P1 ∈ Φ(G, 3).
Case (1) Suppose p = 3, and R ∈ Φ(L3, 3)\{35} given by (4.6). Let σ(R) : 1 < Q =

35 < R, so that σ(R)′ : 1 < R. Then σ(R) and σ(R)′ satisfy the conditions of Lemma
2.2, so there is a bijection g from R−(σ(R), 35) onto R0(σ(R)′, 35) such that N(C ′) =
N(g(C ′)), NE(C ′) = NE(g(C ′)) and |C ′| = |g(C ′)| − 1 for each C ′ ∈ R−(σ(R), 35).
Thus

k(N(C ′), B, d, u, [r]) = k(N(g(C ′)), B, d, u, [r]), (5.3)

and we may suppose

C 6∈
⋃

R∈Φ(L3,3)\{35}
(R−(σ(R), 35) ∪R0(σ(R), 35)).

Thus P1 6∈ {35: 33, 35: 31+2
+ , S}, and if P1 = 35 then C =G C(6). We may suppose

P1 ∈ {3, 33+3, (33+3)∗, 31+6
+ , 31+6

+ .3, (31+6
+ .3)∗} ⊆ Φ(G, 3).

Let C ′ : 1 < 3 < S ′ and g(C ′) : 1 < 3 < 3×31+4
+ < S ′, where S ′, 3×31+4

+ ∈ Φ(M1, 3).
Then N(C ′) = N(g(C ′)) and NE(C ′) = NE(g(C ′)) = S ′.2 and we may suppose C 6=G
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C ′, g(C ′). Since Φ(S3×34:S6, 3) = {35, S ′} ⊆G Φ(M1, 3), it follows that if P1 = 3, then
C ∈G {C(2), C(3), C(4), C(5)}.

By (4.5), Φ((33+3)∗:L3(3), 3) = {(33+3)∗, 31+6
+ .3, 35: 31+2

+ , S}. Let σ : 1 < Q =
(33+3)∗ < 31+6

+ .3, so that σ′ : 1 < 31+6
+ .3. A similar proof to above shows that there

is a bijection g from R−(σ, (33+3)∗) onto R0(σ, (33+3)∗) such that NE(C ′) = N(C ′) =
N(g(C ′)) = NE(g(C ′)) and |C ′| = |g(C ′)|−1 for each C ′ ∈ R−(σ, (33+3)∗), so that (5.3)
holds. We may suppose P1 6=G 31+6

+ .3 and if P1 =G (33+3)∗, then P2 ∈G {35: 31+2
+ , S}.

Let C ′ : 1 < (33+3)∗ < S and g(C ′) : 1 < (33+3)∗ < 35:31+2
+ < S. Then N(C ′) =

N(g(C ′)), NE(C ′) = NE(g(C ′)) and we may suppose C 6=G C ′, g(C ′). Thus if P1 =
(33+3)∗, then C ∈G {C(9), C(10)}.

Let σ : 1 < Q = 33+3 < (31+6
+ .3)∗, so that σ′ : 1 < (31+6

+ .3)∗. A similar proof to
above shows that we may suppose

C 6∈ (R−(σ, 33+3) ∪R0(σ, 33+3)).

In particular, we may suppose P1 6=G (31+6
+ .3)∗ and moreover, if P1 = 33+3, then

P2 6=G (31+6
+ .3)∗.

Let C ′ : 1 < 33+3 < S and g(C ′) : 1 < 33+3 < 35:31+2
+ < S. Then we may suppose

C 6=G C ′, g(C ′). So if P1 = 33+3, then C ∈G {C(7), C(8)}.
Let C ′ : 1 < 31+6

+ < S and g(C ′) : 1 < 31+6
+ < 35: 33 < S. Then N(C ′) = N(g(C ′))

and NE(C) = NE(g(C ′)) = N(C ′).2, so that (5.3) holds. Thus if P1 = 31+6
+ , then

C ∈G {C(i) : 11 ≤ i ≤ 16}.
Case (2) Let R ∈ Φ(M2, 2)\{210}, and σ(R) : 1 < Q = 210 < R, so that σ(R) : 1 <

R. A similar proof to that of Case (1) shows that we may suppose

C 6∈
⋃

R∈Φ(M2,2)\{210}
(R−(σ(R), 210) ∪R0(σ(R), 210)). (5.4)

Thus if P1 = 210, then C =G C(14). We may assume

P1 ∈ {2, 26, 2× 21+8, 26.25, 25+8, 25+8.22, (2× 21+8
+ ).2.24, 25+8.D8}.

Case (2.1) Let

Ω = Φ(K1, 2)\{2× 21+8
+ } = {210.24, (2× 21+8

+ ).2.24, 210.22.24} ⊆ Φ(M1, 2),

R ∈ Ω, and let σ(R) : 1 < 2 < Q = 2× 21+8
+ < R, so that σ(R)′ : 1 < 2 < R. A similar

proof to Case (1) shows that we may suppose (5.4) holds with 210 replaced by 2× 21+8
+

and Φ(M2, 2)\{210} by Ω.
Let 25+8.2 ∈ Φ(K2, 2) and let σ : 1 < 2 < Q = 210 < 25+8.2, so that σ′ : 1 <

2 < 25+8.2. Since NNE(2)(2
5+8.2) ≤ NNE(2)(2

10), it follows that we may suppose C 6∈
R−(σ, 210) ∪R0(σ, 210).

Let C ′ : 1 < 2 < 210 < 210.22.24, g(C ′) : 1 < 2 < 210 < 210.24 < 210.22.24,
C ′′ : 1 < 2 < 25+8 < 210.22.24 and g(C ′′) : 1 < 2 < 25+8 < (2 × 21+8

+ ).2.24 < 210.22.24.
Then N(C ′) = N(g(C ′)), NE(C ′) = NE(g(C ′)) = N(C ′).2, N(C ′′) = N(g(C ′′)) and
NE(C ′′) = NE(g(C ′′)) = N(C ′′).2, so that we may suppose C 6∈ {C ′, g(C ′), C ′′, g(C ′′)}.
It follows that if P1 = 2, then C ∈G {C(j) : 2 ≤ j ≤ 9}.
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C N(C)

C(1) 1 Fi22

C(2) 1 < 2 2.U6(2)

C(3) 1 < 2 < 2× 21+8
+ (2× 21+8

+ ):U4(2)

C(4) 1 < 2 < 210 < 210.24 210.24.A5

C(5) 1 < 2 < 210 210:L3(4)

C(6) 1 < 2 < 25+8 < 25+8.2 25+8.2.A5

C(7) 1 < 2 < 25+8 25+8.(3× A5).2

C(8) 1 < 2 < 25+8 < (2× 21+8
+ ).2.24 (2× 21+8

+ ).2.(A4 × A4).2

C(9) 1 < 2 < 25+8 < 25+8.2 < 210.22.24 210.22.24.3

C(10) 1 < 26 26.S6(2)

C(11) 1 < 26 < 26.26 26.26.L3(2)

C(12) 1 < 26 < 26.23.24 < 26.23.24.2 26.23.24.2.S3

C(13) 1 < 26 < 26.23.24 26.23.24(S3 × S3)

C(14) 1 < 210 210:M22

C(15) 1 < 2× 21+8
+ < 26.25 26.25.S6

C(16) 1 < 2× 21+8
+ (2× 21+8

+ :U4(2)): 2

C(17) 1 < 2× 21+8
+ < 210.24 210.24.S5

C(18) 1 < 2× 21+8
+ < 26.25 < 26.25.23 26.25.23.S3

C(19) 1 < 2× 21+8
+ < 26.25 < 26.25.23 < 26.25.23.2 26.25.23.2

C(20) 1 < 2× 21+8
+ < 26.25 < (26.25.23)∗ (26.25.23)∗.S3

C(21) 1 < 25+8 < 25+8.2 25+8.2A6

C(22) 1 < 25+8 25+8.(S3 × A6)

C(23) 1 < 25+8 < (2× 21+8
+ ).2.24 (2× 21+8

+ ).2.24.(S3 × S3)

C(24) 1 < 25+8 < (2× 21+8
+ ).2.24 < 210.22.24 210.22.24.S3

Table 4: Some radical 2-chains of Fi22

Case (2.2) If 26.26 ∈ Φ(M3, 2), then NM3(2
6.26) = 26.26.L3(2) and NM3.2(2

6.26) =
NE(26.26) = N(26.26).2. We may take

Φ(26.26.L3(2), 2) = {26.26, 26.23.34.2, 26.25.23, S ′} ⊆ Φ(M3, 2),

and N26.26.L3(2)(R) = NM3(R), NM3.2(R) = NM3(R).2 ≤ NM3.2(2
6.26) for each R ∈

Φ(26.26.L3(2), 2).
Let 26.25 ∈ Φ(M3, 2), and σ : 1 < Q = 26 < 26.25, so that σ′ : 1 < 26.25. A

similar proof to Case (1) shows that we may suppose C 6∈ R−(σ, 26) ∪R0(σ, 26), since
N(26.25) = NM3(2

6.25) = 26.25.S6 and NE(26.25) = NM3.2(2
6.25) = N(26.25).2. In

particular, we may suppose P1 6=G 26.25.
Let R ∈ Φ(26.26.L3(2), 2)\{26.26}, and σ(R) : 1 < 26 < Q = 26.26 < R, so that

σ(R)′ : 1 < 26 < R. Then we may suppose C 6∈ R−(σ(R), 26.26) ∪R0(σ(R), 26.26).
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Similarly, for 26.23.24 ∈ Φ(M3, 2), NM3(2
6.23.24) = 26.23.24.(S3 × S3) and we may

take

Φ(26.23.24.(S3 × S3), 2) = {26.23.24, 26.23.24.2, (26.25.23)∗, S ′} ⊆ Φ(M3, 2);

in addition, N26.23.24.(S3×S3)(R) = NM3(R) and

NM3.2(R) = NM3(R).2 ≤ NM3.2(2
6.23.24)

for each R ∈ Φ(26.23.24.(S3 × S3), 2).
Let σ : 1 < 26 < Q = 26.23.24 < (26.25.23)∗, so that σ′ : 1 < 26 < (26.25.23)∗. Then

we may suppose C 6∈ R−(σ, 26.23.24) ∪R0(σ, 26.23.24).
Let C ′ : 1 < 26 < 26.23.24 < S ′ and g(C ′) : 1 < 26 < 26.23.24 < 26.23.24.2 < S ′.

Then N(C ′) = N(g(C ′)), NE(C ′) = NE(g(C ′)) = S ′.2 and we may suppose C 6∈G

{C ′, g(C ′)}. It follows that if P1 = 26, then C ∈G {C(10), C(11), C(12), C(13)}.
Case (2.3) Let R ∈ {(2 × 21+8

+ ).2.24, 25+8.D8} ⊆ Φ(M4, 2), and σ(R) : 1 < Q =
2× 21+8

+ < R, so that σ(R)′ : 1 < R. Since N(R) = NM4(R) and NE(R) = NM4.2(R) =
N(R).2, it follows that we may suppose C 6∈ R−(σ(R), 2× 21+8

+ )∪R0(σ(R), 2× 21+8
+ ).

In particular, P1 6=G {(2× 21+8
+ ).2.24, 25+8.D8} and if P1 = 2× 21+8

+ with |C| ≥ 2, then
P2 ∈ Φ((2× 21+8

+ :U4(2)): 2, 2)\{2× 21+8
+ , (2× 21+8

+ ).2.24, 25+8.D8}.
Let 210.24 ∈ Φ(M4, 2), so thatNM4(2

10.24) = N(210.24) = 210.24.S5 andNE(210.24) =
NM4.2(2

10.24) = N(210.24).2. We may take

Φ(210.24.S5, 2) = {210.24, 210.22.23, 210.22.24, S}

and in addition, N210.24.S5
(R) = NM4(R) and

NM4.2(R) = NM4(R).2 ≤ NM4.2(2
10.24)

for each R ∈ Φ(210.24.S5, 2).
Let R ∈ Φ(210.24.S5, 2)\{210.24}, and σ(R) : 1 < 2 × 21+8

+ < Q = 210.24 <
R, so that σ(R)′ : 1 < 2 × 21+8

+ < R. A similar proof to above shows that we
may suppose C 6∈ R−(σ(R), 210.24) ∪ R0(σ(R), 210.24). Thus we may suppose P2 6∈
Φ(210.24.S5, 2)\{210.24} and if P2 = 210.24, then |C| = 2 and C =G C(17).

Let 26.25 ∈ Φ(M4, 2), so that NM4(2
6.25) = N(26.25) = 26.25.S6 and NE(26.25) =

NM4.2(2
6.25) = 26.25.(S6 × 2). We may take

Φ(26.25.S6, 2) = {26.25, 26.25.23, (26.25.23)∗, 26.25.23.2}

and in addition, N26.25.S6
(R) = R.S3 or R according as R ∈ {26.25.23, (26.25.23)∗} or

R = 26.25.23.2 and NNE(26.25)(R) = N26.25.S6
(R).2 for each R ∈ Φ(26.25.S6, 2).

Let C ′ : 1 < 2 × 21+8
+ < 26.25 < 26.25.23.2 and g(C ′) : 1 < 2 × 21+8

+ < 26.25 <
(26.25.23)∗ < 26.25.23.2. Then N(C ′) = N(g(C ′)), NE(C ′) = NE(g(C ′)) = N(C ′).2 and
we may suppose C 6∈G {C ′, g(C ′)}. It follows that if P1 = 2× 21+8

+ , then

C ∈G {C(j) : 15 ≤ j ≤ 20}.

Case (2.4) Let 25+8.22 ∈ Φ(M5, 2), and σ : 1 < Q = 25+8 < 25+8.22. Since
NE(25+8.22) = NM5.2(2

5+8.22), it follows that we may suppose C 6∈ R−(σ, 25+8) ∪
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R0(σ, 25+8), so we may suppose P1 6=G 25+8.2 and if P1 = 25+8 with |C| ≥ 2, then
P2 6=G 25+8.22.

If 25+8.2 ∈ Φ(M5, 2), then N(25+8.2) = NM5(2
5+8.2) = 25+8.2.A6, NE(25+8.2) =

NM5.2(2
5+8.2) = N(25+8.2).2 and we may take

Φ(25+8.2.A6, 2) = {25+8.2, 210.22.24, 25+8.23, S}.

In addition, N25+8.2.A6
(R) = NM5(R) and NM5.2(R) = NM5(R).2 ≤ NM5.2(2

5+8.2) for
each R ∈ Φ(25+8.2.A6, 2).

Let R ∈ {210.22.24, 25+8.23}, and let σ(R) : 1 < 25+8 < Q = 25+8.2 < R. Then we
may suppose C 6∈ R−(σ(R), 25+8.2) ∪R0(σ(R), 25+8.2).

If (2× 21+8
+ ).2.24 ∈ Φ(M5, 2), then

NE((2× 21+8
+ ).2.24) = NM5.2((2× 21+8

+ ).2.24) = N((2× 21+8
+ ).2.24).2,

N((2× 21+8
+ ).2.24) = NM5((2× 21+8

+ ).2.24) = (2× 21+8
+ ).2.24.(S3×S3) and we may take

Φ((2× 21+8
+ ).2.24.(S3 × S3), 2) = {(2× 21+8

+ ).2.24, 210.22.24, 25+8.D8, S}.

In addition, N(2×21+8
+ ).2.24.(S3×S3)(R) = NM5(R) and

NM5.2(R) = NM5(R).2 ≤ NM5.2((2× 21+8
+ ).2.24)

for each R ∈ Φ((2× 21+8
+ ).2.24.(S3 × S3), 2).

Let R ∈ {25+8.D8, S}, and σ(R) : 1 < 25+8 < Q = (2 × 21+8
+ ).2.24 < R. Then we

may suppose C 6∈ R−(σ(R), (2× 21+8
+ ).2.24) ∪R0(σ(R), (2× 21+8

+ ).2.24).
Let C ′ : 1 < 25+8 < 25+8.2 < S and g(C ′) : 1 < 25+8 < (2× 21+8

+ ).2.24 < 210.22.24 <
S. Then (5.3) holds, and we may suppose C 6∈G {C ′, g(C ′)}. It follows that if P1 = 25+8,
then C ∈G {C(i) : 21 ≤ i ≤ 24}. 2

Remark 5.2 Let Ĝ be a covering group of G = Fi22, ρ a faithful linear character of
Z(Ĝ) and B̂ a block of Ĝ covering the block B(ρ) containing ρ. If D(B̂) 6= Op(Z(Ĝ))
and p = 2, 3, then∑

C∈R(G)/G

(−1)|C|k(NĜ(C), B̂, d, ρ, [r]) =
∑

C∈R0(G)/G

(−1)|C|k(NĜ(C), B̂, d, ρ, [r])

for all integers d, u ≥ 0.

The proof of the Remark is the same as that of Lemma 5.1, since N(C ′) = N(g(C ′))
implies NĜ(C ′) = NĜ(g(C ′)).

6 Uno’s invariant conjecture for Fi22

Let N(C) be the normalizer of a radical p-chain C. If N(C) is a maximal subgroup of
Fi22, then the character table of N(C) can be found in the library of character tables
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distributed with GAP. If this is not the case, we construct a “useful” description of
N(C) and attempt to compute directly its character table using Magma.

If N(C) is soluble, we construct a power-conjugate presentation for N(C) and use
this presentation to obtain the character table.

If N(C) is insoluble, we construct faithful permutation representations for N(C)
and use these as input to the character table construction function. We employ two
strategies to obtain faithful representations of N(C).

1. Construct the actions of N(C) on the cosets of soluble subgroups of N(C).

2. Construct the orbits of N(C) on the underlying set of Fi22; for the stabilizer of
an orbit representative, construct the action of N(C) on its cosets.

In several cases, however, none of the representations constructed was of sufficiently
small degree to allow us to construct the required character table.

In these cases, we directly calculate the character table of N(C) as follows: first
calculate the character tables of some subgroups and quotient groups of N(C); next
induce or lift these characters to N(C), so the liftings and the irreducible characters
from the induction form a partial character table T of N(C); finally decompose the
remaining inductions or the tensor products of the inductions using the table T .

The tables listing degrees of irreducible characters referenced in the proof of Theo-
rem 6.1 are available electronically [5].

Theorem 6.1 Let B be a p-block of G = Fi22 with positive defect. Then B satisfies
the Uno’s invariant conjecture.

Proof: Let E = Aut(G) = Fi22.2 and we may suppose D(B) is non-cyclic, so that
B = B0 by Lemma 4.2.

Case (1) Suppose p = 5 and let C = C(2), C ′ = C(3), so that N(C) ' 5:4 × S5,
NE(C) = N(C) × 2, N(C ′) ' 5:4 × 5:4 and NE(C ′) = N(C ′) × 2. It follows by (2.6)
that for all integers u, d

k(N(C), B0, d, u, [r]) = k(N(C ′), B0, d, u, [r]).

Now N(D(B)) = N(C(4)) ' 52:4S4, NE(D(B)) = 52:4S4 × 2, and so

k(G,B0, d, u, [r]) = k(N(B(D)), B0, d, u, [r]) =


10 if d = 2, u = 2 and r = 1,

10 if d = 2, u = 2 and r = 2,

0 otherwise.

This proves the theorem when p = 5.

Case (2) Suppose p = 3, so that Dade’s invariant conjecture is equivalent to Uno’s
invariant conjecture. We set k(i, d, u) = k(N(C(i)), B0, d, u) for integers i, d, u.

First, we consider the radical 3-chains C(j) with d(N(C(j))) = 7, so that 2 ≤ j ≤ 5.
The values k(i, d, u) are given in Table 5.
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Defect d 7 7 6 6 5 5 4 otherwise
Value u 2 1 2 1 2 1 2 otherwise

k(2, d, u) 36 18 18 0 18 0 6 0

k(3, d, u) 36 18 15 12 18 0 0 0

k(4, d, u) 36 18 15 12 18 18 0 0

k(5, d, u) 36 18 18 0 18 18 6 0

Table 5: Values of k(i, d, u) when p = 3 and d(N(C(i))) = 7

It follows that
5∑

i=2

(−1)|C(i)|k(N(C(i)), B0, d, u) = 0. (6.1)

Next we consider the chain C(j) with d(N(C(j))) = 9, so that j = 1 or 6 ≤ j ≤ 16.
The values k(i, d, u) are given in Table 6.

Defect d 9 9 8 8 7 7 6 6 5 5 4 otherwise
Value u 2 1 2 1 2 1 2 1 2 1 2 otherwise

k(1, d, u) 12 6 19 2 6 2 1 2 6 0 2 0

k(6, d, u) 12 6 19 2 16 12 1 2 6 0 0 0

k(7, d, u) = k(9, d, u) 0 18 0 12 0 46 0 3 0 0 0 0

k(8, d, u) = k(10, d, u) 0 18 0 12 0 13 0 3 0 0 0 0

k(11, d, u) = k(15, d, u) 0 18 0 21 0 13 0 18 0 3 0 0

k(12, d, u) 12 6 22 8 6 2 6 12 6 6 2 0

k(13, d, u) 12 6 22 8 16 12 6 12 6 0 0 0

k(16, d, u) = k(14, d, u) 0 18 0 21 0 46 0 18 0 0 0 0

Table 6: Values of k(i, d, u) when p = 3 and d(N(C(i))) = 9

It follows that ∑
i=1,6≤i≤16

(−1)|C(i)|k(N(C(i)), B0, d, u) = 0 (6.2)

and the theorem follows.

Case (3) First, we consider the 2-chains C(j) such that the defect d(N(C(j))) = 15,
so that j ∈ {10, 11, 12, 13, 15, 18, 19, 20}. In this case, each element of NE(C)\N(C)
stabilizes each character of Irr(N(C)). The values k(i, d, u) are given in Table 7.

It follows that∑
i∈{11,13,15,19}

k(N(C(i)), B0, d, u) =
∑

i∈{10,12,18,20}
k(N(C(i)), B0, d, u). (6.3)

Next we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 17, so
that j ∈ {1, 14, 16, 17, 21, 22, 23, 24}. The non-zero values k(i, d, u) are given in Table
8.
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Defect d 15 14 13 12 11 10 9 6 otherwise
Value u 2 2 2 2 2 2 2 2 otherwise

k(10, d, u) 32 16 4 12 2 0 0 1 0

k(11, d, u) 32 16 12 20 4 0 0 0 0

k(12, d, u) 32 32 60 28 20 4 0 0 0

k(13, d, u) 32 32 52 20 18 4 0 0 0

k(15, d, u) 32 56 12 20 6 8 2 1 0

k(18, d, u) 32 56 44 28 12 8 2 0 0

k(19, d, u) 32 72 92 52 28 12 2 0 0

k(20, d, u) 32 72 60 44 22 12 2 0 0

Table 7: Values of k(i, d, u) when p = 2 and d(N(C(i))) = 15

Defect d 17 16 15 14 14 13 13 12 12 11 11 10 10 9 9 6
Value u 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2

k(1, d, u) 16 12 2 4 4 3 6 9 0 2 0 1 0 0 2 1

k(14, d, u) 16 12 2 4 4 2 2 0 0 0 0 1 0 0 0 0

k(16, d, u) 16 12 10 20 4 10 6 14 4 8 4 3 0 1 2 1

k(17 d, u) 16 12 10 24 4 11 2 9 4 2 0 3 0 0 0 0

k(21, d, u) 16 12 18 10 4 18 2 4 0 0 0 0 4 0 0 0

k(22, d, u) 16 12 18 10 4 19 6 13 0 2 0 0 4 0 2 0

k(23, d, u) 16 12 26 26 4 26 6 26 4 8 4 2 4 1 2 0

k(24, d, u) 16 12 26 30 4 27 2 21 4 2 0 2 4 0 0 0

Table 8: Values of k(i, d, u) when p = 2 and d(N(C(i))) = 17

It follows that∑
i∈{1,17,21,23}

k(N(C(i)), B0, d, u) =
∑

i∈{14,16,22,24}
k(N(C(i)), B0, d, u). (6.4)

Now we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 16,
so that 2 ≤ j ≤ 9. The non-zero values k(i, d, u) are given in Table 9.

It follows that∑
i∈{3,5,7,9}

k(N(C(i)), B0, d, u) =
∑

i∈{2,4,6,8}
k(N(C(i)), B0, d, u). (6.5)

Thus the theorem follows by (6.3), (6.4) and (6.5). This completes the proof. 2
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Defect d 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 6
Value u 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

k(2, d, u) 8 8 4 4 4 0 12 4 5 4 6 4 6 2 2 0 2

k(3, d, u) 8 8 4 4 4 0 12 12 13 12 8 12 6 2 2 4 2

k(4, d, u) 8 8 4 4 4 0 14 6 13 10 6 0 4 2 0 0 0

k(5, d, u) 8 8 4 4 4 0 10 2 5 2 0 0 4 2 0 0 0

k(6, d, u) 8 8 4 4 12 12 10 2 13 10 4 0 4 0 0 0 0

k(7, d, u) 8 8 4 4 12 12 12 4 13 12 10 4 6 0 2 0 0

k(8, d, u) 8 8 4 4 12 12 12 12 21 20 12 12 6 8 2 4 0

k(9, d, u) 8 8 4 4 12 12 14 6 21 18 10 0 4 8 0 0 0

Table 9: Values of k(i, d, u) when p = 2 and d(N(C(i))) = 16

7 Uno’s projective invariant conjecture for 2.Fi22

Let C be a radical p-chain of Fi22. The character tables of N2.Fi22(C) and N2.Fi22.2(C)
can either be found in the library of character tables distributed with GAP or computed
directly using Magma as in Section 6.

Let H = N2.Fi22(C) or N2.Fi22.2(C) and let ξ be the faithful linear character of
Z(2.Fi22). Denote by Irr(H | ξ) the subset of Irr(H) consisting of characters covering
ξ. The tables listing degrees of irreducible characters referenced in the proof of Theorem
7.1 are available electronically [5].

Theorem 7.1 Let B be a p-block of G = 2.Fi22 with D(B) 6= Op(G). Then B satisfies
Uno’s projective invariant conjecture.

Proof: We may suppose B has a non-cyclic defect group. Let N(C) = NG(C) for
each C ∈ R(Fi22) and let E = G.2 = 2.Fi22.2.

Case (1) Suppose p = 5, so that B = B1 given by Lemma 4.2. Thus

k(G,B1, d, u, ξ) = k(N(C(4)), B1, d, u, ξ) =



2 if d = 2, u = 2 and r = 2,

2 if d = 2, u = 2 and r = 1,

8 if d = 2, u = 1 and r = 2,

8 if d = 2, u = 1 and r = 1,

0 otherwise,

and when j = 1 or 2,

k(N(C(j)), B1, d, u, ξ, [r]) =


1 if d = 2, u = 2 and r = 1,

24 if d = 2, u = 1 and r = 1,

0 otherwise.

This implies the theorem when p = 5.
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Case (2) Suppose p = 3, so that the projective invariant conjecture of Uno
is equivalent to that of Dade. By Lemma 4.2, B = B1 and we set k(j, d, u) =
k(N(C(j)), B, d, u, ξ).

We first consider the radical 3-chains C(j) with d(N(C(j))) = 7, so that 2 ≤ j ≤ 5.
The values k(j, d, u) are given in Table 10.

Defect d 7 7 6 6 5 5 4 4 otherwise
Value u 2 1 2 1 2 1 2 1 otherwise

k(2, d, u) 4 50 3 6 0 18 2 4 0

k(3, d, u) 4 50 1 26 0 18 0 0 0

k(4, d, u) 4 50 1 26 6 30 0 0 0

k(5, d, u) 4 50 3 6 6 30 2 4 0

Table 10: Values of k(N(C(i)), B1, d, u, ξ) when p = 3 and d(N(C(i))) = 7

It follows that
5∑

i=2

(−1)|C(i)|k(N(C(i)), B1, d, u, ξ) = 0.

Next we consider the chain C(j) with d(N(C(j))) = 9, so that j = 1 or 6 ≤ j ≤ 16.
The values k(i, d, u) are given in Table 11.

Defect d 9 9 8 8 7 7 6 6 5 otherwise
Value u 2 1 2 1 2 1 2 1 1 otherwise

k(1, d, u) 4 14 3 18 1 0 1 2 6 0

k(6, d, u) 4 14 3 18 4 24 1 2 6 0

k(7, d, u) = k(9, d, u) 0 18 0 12 0 46 0 3 0 0

k(8, d, u) = k(10, d, u) 0 18 0 12 0 13 0 3 0 0

k(11, d, u) = k(15, d, u) 0 18 0 21 0 13 0 18 3 0

k(12, d, u) 4 14 4 26 1 0 0 18 12 0

k(13, d, u) 4 14 4 26 4 24 0 18 6 0

k(16, d, u) = k(14, d, u) 0 18 0 21 0 46 0 18 0 0

Table 11: Values of k(N(C(i)), B1, d, u, ξ) when p = 3 and d(N(C(i))) = 9

It follows that ∑
i=1,6≤i≤16

(−1)|C(i)|k(N(C(i)), B1, d, u, ξ) = 0

and the theorem follows.

Case (3) Suppose p = 2, so that by Lemma 4.2, B = B0 or B1. If B = B1, then

k(G,B1, d, u, ξ) = k(N(C(2)), B1, d, u, ξ) =
{

2 if d = 2 and u = 1,

0 otherwise
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and the theorem follows when B = B1.
Set k(j, d, u) = k(N(C(j)), B0, d, u, ξ). We first consider the radical 2-chains C(j)

such that the defect d(N(C(j))) = 16, so that j ∈ {10, 11, 12, 13, 15, 18, 19, 20}. The
values k(i, d, u) are given in Table 12.

Defect d 14 13 13 12 12 11 11 10 8 otherwise
Value u 1 2 1 2 1 2 1 2 1 otherwise

k(10, d, u) 16 4 8 2 8 0 4 1 4 0

k(11, d, u) 16 12 8 2 8 0 4 1 0 0

k(12, d, u) 16 12 40 2 24 4 4 1 0 0

k(13, d, u) 16 4 40 2 24 4 4 1 0 0

k(15, d, u) 16 4 8 2 40 0 8 0 4 0

k(18, d, u) 16 12 8 10 40 0 8 0 0 0

k(19, d, u) 16 12 40 10 56 4 8 0 0 0

k(20, d, u) 16 4 40 2 56 4 8 0 0 0

Table 12: Values of k(N(C(j)), B0, d, u, ξ) when p = 2 and d(N(C(i))) = 16

It follows that∑
i∈{11,13,15,19}

k(N(C(i)), B0, d, u, ξ) =
∑

i∈{10,12,18,20}
k(N(C(i)), B0, d, u, ξ). (7.1)

Next we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 18,
so that j ∈ {1, 14, 16, 17, 21, 22, 23, 24}. The values k(i, d, u) are given in Table 13.

Defect d 14 13 13 12 12 11 11 10 8 otherwise
Value u 2 2 1 2 1 2 1 1 1 otherwise

k(1, d, u) 8 2 12 4 12 2 0 2 4 0

k(14, d, u) 8 2 12 2 0 2 0 0 0 0

k(16, d, u) 24 2 16 0 20 2 4 2 4 0

k(17 d, u) 24 2 16 2 8 2 0 0 0 0

k(21, d, u) 8 2 28 2 0 0 4 0 0 0

k(22, d, u) 8 2 28 4 12 0 4 2 0 0

k(23, d, u) 24 2 32 0 20 0 8 2 0 0

k(24, d, u) 24 2 32 2 8 0 4 0 0 0

Table 13: Values of k(N(C(i)), B0, d, u, ξ) when p = 2 and d(N(C(i))) = 18

It follows that∑
i∈{1,17,21,23}

k(N(C(i)), B0, d, u, ξ) =
∑

i∈{14,16,22,24}
k(N(C(i)), B0, d, u, ξ).
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Now we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 17,
so that 2 ≤ j ≤ 9. The values k(i, d, u) are given in Table 14.

Defect d 14 13 12 11 10 7 otherwise
Value u 1 1 1 1 1 1 otherwise

k(2, d, u) 16 12 20 8 2 2 0

k(3, d, u) 16 28 28 8 6 2 0

k(4, d, u) 16 28 8 8 0 0 0

k(5, d, u) 16 12 0 8 0 0 0

k(6, d, u) 16 44 0 4 0 0 0

k(7, d, u) 16 44 20 4 2 0 0

k(8, d, u) 16 60 28 12 6 0 0

k(9, d, u) 16 60 8 12 0 0 0

Table 14: Values of k(N(C(i)), B0, d, u, ξ) when p = 2 and d(N(C(i))) = 17

It follows that∑
i∈{3,5,7,9}

k(N(C(i)), B0, d, u, ξ) =
∑

i∈{2,4,6,8}
k(N(C(i)), B0, d, u, ξ).

The theorem follows. 2

8 Uno’s projective conjecture for 3.Fi22

Let C be a radical p-chain of Fi22 and N3.Fi22(C) = 3.NFi22(C). The character table of
N3.Fi22(C) can either be found in the library of character tables distributed with GAP
or computed directly using Magma as in Section 6.

LetH = N3.Fi22(C) and let ζ1 and let ζ2 be the faithful linear characters of Z(3.Fi22).
Denote by Irr(H | ζi) the subset of Irr(H) consisting of characters covering ζi. The
tables listing degrees of irreducible characters referenced in the proof of Theorem 8.1
are available electronically [5].

Theorem 8.1 Let B be a p-block of G = 3.Fi22 with D(B) 6= Op(G). Then B satisfies
Uno’s projective conjecture.

Proof: We may suppose B has a non-cyclic defect group and let N(C) = NG(C)
for each C ∈ R(Fi22).

Case (1) Suppose p = 5, so that B = B1 or B2. By [9, pp. 156-159], k(G,B`, d, ζ`) =∑
u≥0 k(G,B0(Fi22), d, u) for each `.
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If R is a non-trivial radical p-subgroup of G, then R = 5 or R = 52 ∈ Syl5(G), and
NG(R) = 3 × NFi22(R), so that for i ≥ 2, N(C(i)) = 3 × NFi22(C(i)), where C(i) is a
radical chain of Fi22 given by Table 3. Thus

k(N(C(i)), B`, d, ζ`) =
∑
u≥0

k(NFi22(C), B0(Fi22), d, u)

and the proof (1) of Theorem 6.1 can be applied here for blocks B = B1 and B2. This
proves the theorem when p = 5.

Case (2) Suppose p = 3, so that B = B0, B1 or B2 given by Lemma 4.2 (c).
Suppose B = B1 or B2. Then D(B) ' 32, N(D(B)) = N(C(2)) and the theorem

follows by Remark 2.1 and

k(G,B, d, ζ`) = k(NG(C(2)), B, d, ζ`) =
{

6 if d = 2,

0 otherwise

for ` = 1, 2.
Suppose B = B0 and set k(j, d) = k(N(C(j)), B0, d, ζ`). We first consider the

radical 3-chains C(j) with d(N(C(j))) = 8, so that 2 ≤ j ≤ 5. The values k(j, d) are
given in Table 15.

Defect d 7 6 5 otherwise

k(2, d) 54 15 12 0

k(3, d) 54 15 0 0

k(4, d) 54 33 0 0

k(5, d) 54 33 12 0

Table 15: Values of k(N(C(i)), B0, d, ζ`) when p = 3 and d(N(C(i))) = 8

It follows that
5∑

i=2

(−1)|C(i)|k(N(C(i)), B0, d, ζ`) = 0.

Next we consider the chain C(j) with d(N(C(j))) = 10, so that j = 1 or 6 ≤ j ≤ 16.
The values k(i, d) are given in Table 16.

It follows that ∑
i=1,6≤i≤16

(−1)|C(i)|k(N(C(i)), B0, d, ζ`) = 0

and the theorem follows.

Case (3) Suppose p = 2, so that B = B1 or B2.
Let M ∈ {25+8.(3× A5).2, 2

6.S6(2), (2× 21+8
+ ):U4(2): 2} be a subgroup of Fi22 and

H = 3.M the preimage of M in G. Let S be a Sylow 2-subgroup of H, H1 = O3(Z(H))
and H2 = 〈[H,H], S〉, where [H,H] is the commutator subgroup of H. Then H =
H1 ×H2 and H2 'M , so that H ' 3×M . Let

Ω = {3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 23, 24}
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Defect d 7 6 4 otherwise

k(1, d) 27 14 2 0

k(6, d) = k(13, d) 27 5 0 0

k(7, d) = k(9, d) = k(14, d) = k(16, d) 9 2 0 0

k(8, d) = k(10, d) 9 2 1 0

k(11, d) = k(15, d) 9 2 0 0

k(12, d, u) 27 14 0 0

Table 16: Values of k(N(C(i)), B0, d, ζ`) when p = 3 and d(N(C(i))) = 10

and i ∈ Ω. Then NG(C(i)) is a subgroup of some H = 3.M with NFi22(C(i)) ≤ M , so
that we may suppose

NG(C(i)) = 3×NFi22(C(i)).

It follows that for any i ∈ Ω, j, ` ∈ {1, 2},

k(NG(C(i)), Bj, d, ζ`) =
∑
u≥0

k(NFi22(C(i)), B0(Fi22), d, u) (8.1)

and k(NG(C(i)), Bj, d, ζ`) can be obtained by knowing k(NFi22(C(i)), B0(Fi22), d, u),
which is given in the proof of Theorem 6.1. Since k(N(C(i)), Bj, d, ζ`) is independent
of the choices of j and `, we set k(i, d) = k(N(C(i)), B, d, ζ`) for integers i, d.

Now we consider the 2-chains C(j) such that the defect d(N(C(j)) = 15, so that
j ∈ {10, 11, 12, 13, 15, 18, 19, 20} ⊆ Ω. Thus if C = C(j), then N(C) ' 3 × NFi22(C)
and k(j, d) is given by (8.1). It follows by (6.3) that∑

j∈{11,13,15,19}
k(N(C(j)), B, d, ζ`) =

∑
j∈{10,12,18,20}

k(N(C(j)), B, d, ζ`) (8.2)

for each `.
Next we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 17,

so that j ∈ {1, 14, 16, 17, 21, 22, 23, 24}. The values k(i, d) are given in Table 17.
It follows that∑

i∈{1,17,21,23}
k(N(C(i)), B, d, ζ`) =

∑
i∈{14,16,22,24}

k(N(C(i)), B, d, ζ`).

Now we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 16,
so that 2 ≤ j ≤ 9. The values k(i, d) are given in Table 18.

It follows that∑
i∈{3,5,7,9}

k(N(C(i)), B, d, ζ`) =
∑

i∈{2,4,6,8}
k(N(C(i)), B, d, ζ`).

The theorem follows. 2
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Defect d 17 16 15 14 13 12 11 10 9 6 otherwise

k(1, d) 16 12 2 4 3 9 2 1 0 1 0

k(14, d) 16 12 2 4 4 0 0 1 0 0 0

k(16, d) 16 12 10 24 16 18 12 3 3 1 0

k(17 d) 16 12 10 28 13 13 2 3 0 0 0

k(21, d) 16 12 18 10 20 4 0 0 0 0 0

k(22, d) 16 12 18 10 19 13 2 0 0 0 0

k(23, d) 16 12 26 30 32 30 12 6 3 0 0

k(24, d) 16 12 26 34 29 25 2 6 0 0 0

Table 17: Values of k(N(C(i)), B, d, ζ`) when p = 2 and d(N(C(i))) = 17

Defect d 16 15 14 13 12 11 10 9 6 otherwise

k(2, d) 16 8 4 16 9 10 4 2 2 0

k(3, d) 16 8 4 24 25 20 8 6 2 0

k(4, d) 16 8 4 20 23 6 6 0 0 0

k(5, d) 16 8 4 12 7 0 2 0 0 0

k(6, d) 16 8 24 12 23 4 4 0 0 0

k(7, d) 16 8 24 16 25 14 6 2 0 0

k(8, d) 16 8 24 24 41 24 14 6 0 0

k(9, d) 16 8 24 20 39 10 12 0 0 0

Table 18: Values of k(N(C(i)), B, d, ζ`) when p = 2 and d(N(C(i))) = 16

9 Uno’s projective conjecture for 6.Fi22

Let C be a radical p-chain of Fi22 and N6.Fi22(C) = 6.NFi22(C). The character table of
N6.Fi22(C) can either be found in the library of character tables distributed with GAP
or computed directly using Magma or GAP as in Section 6.

Let H = N6.Fi22(C) and let η1 and η2 be the faithful linear characters of Z(6.Fi22).
Denote by Irr(H | ηi) the subset of Irr(H) consisting of characters covering ηi. The
tables listing degrees of irreducible characters referenced in the proof of Theorem 9.1
are available electronically [5].

Theorem 9.1 Let B be a p-block of G = 6.Fi22 with D(B) 6= Op(G). Then B satisfies
Uno’s projective conjecture.

Proof: We may suppose B has a non-cyclic defect group. Let N(C) = NG(C) for
each C ∈ R(Fi22).

Case (1) Suppose p = 5, so that B = B1 or B2. Then

k(N(C(4)), B, d, η`, [r]) =
∑
u≥0

k(NFi22(C), B1(2.Fi22), d, u, ξ, [r])
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and the theorem follows by

k(G,B, d, η`, [r]) = k(N(C(4)), B, d, η`, [r]) =


10 if d = 2 and r = 1,

10 if d = 2 and r = 2,

0 otherwise.

Case (2) Suppose p = 3, so that B = B1. Then for each `, j ∈ {1, 2}, the degrees of
characters in Irr(N(C(i)) | η`) are the same as that of characters in Irr(N3.Fi22(C(i)) |
ζj) and so

k(N(C(i)), B1, d, η`) = k(N3.Fi22(C(i)), B0(3.Fi22), d, ζj),

except when i ∈ {1, 2, 5, 12}, in which case the values k(i, d) = k(N(C(i)), B1, d, η`)
are given in Table 19.

Defect d 7 6 5 4 otherwise

k(1, d) 27 5 0 2 0

k(2, d) 54 15 3 0 0

k(5, d) 54 33 3 0 0

k(12, d) 54 5 0 0 0

Table 19: Values of k(N(C(i)), B1, d, ζ`) when p = 3

It follows by Tables 15, 16 and 19 that

14∑
i=1

(−1)|C(i)|k(N(C(i)), B0, d, ζ`) = 0.

Case (3) Suppose p = 2, so that B = B1 or B2. The proof is similar to that of
Theorem 8.1.

Let M ∈ {25+8.(3× A5).2, 2
6.S6(2), (2× 21+8

+ ):U4(2): 2} be a subgroup of Fi22 and
H = 6.M the preimage of M in G. If H1 = O3(Z(H)) and H2 is the subgroup of
H generated by both the commutator subgroup [H,H] and a Sylow 2-subgroup of H,
then H = H1 ×H2 and H2 ' 2.M ≤ 2.Fi22, so that H ' 3× 2.M . Let

Ω = {3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 23, 24}

and i ∈ Ω. Then NG(C(i)) is a subgroup of H = 6.M for some M , and NFi22(C(i)) ≤
M , so that NG(C(i)) = 3×N2.Fi22(C(i)) and for any i ∈ Ω, j, ` ∈ {1, 2},

k(NG(C(i)), Bj, d, η`) =
∑
u≥0

k(N2.Fi22(C(i)), B0(2.Fi22), d, u, ξ), (9.1)

where ξ is the restriction of η` to O2(Z(G)). Thus k(NG(C(i)), Bj, d, η`) can be obtained
by knowing k(N2.Fi22(C(i)), B0(2.Fi22), d, u, ξ), which is given in the proof of Theorem
7.1.

Since k(N(C(i)), Bj, d, η`) is independent of the choices of j and `, we set k(i, d) =
k(N(C(i)), B, d, η`) for integers i, d.
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Consider the 2-chains C(j) such that the defect d(N(C(j)) = 16, so that j ∈
{10, 11, 12, 13, 15, 18, 19, 20} ⊆ Ω. Thus if C = C(j), then N(C) ' 3×N2.Fi22(C) and
k(j, d) is given by (9.1). It follows by (7.1) that∑

j∈{11,13,15,19}
k(N(C(j)), B, d, η`) =

∑
j∈{10,12,18,20}

k(N(C(j)), B, d, η`)

for each `.
Next we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 18,

so that j ∈ {1, 14, 16, 17, 21, 22, 23, 24}. The values k(i, d) are given in Table 20.

Defect d 14 13 12 11 10 8 otherwise

k(1, d) 8 6 8 6 2 4 0

k(14, d) 8 6 2 6 0 0 0

k(16, d) 24 18 20 6 2 4 0

k(17 d) 24 18 10 2 0 0 0

k(21, d) 8 22 2 4 0 0 0

k(22, d) 8 22 8 4 2 0 0

k(23, d) 24 34 20 8 2 0 0

k(24, d) 24 34 10 4 0 0 0

Table 20: Values of k(N(C(i)), B, d, η`) when p = 2 and d(N(C(i))) = 18

It follows that∑
i∈{1,17,21,23}

k(N(C(i)), B, d, η`) =
∑

i∈{14,16,22,24}
k(N(C(i)), B, d, η`).

Now we consider the radical 2-chains C(j) such that the defect d(N(C(j))) = 17,
so that 2 ≤ j ≤ 9. The values k(i, d) are given in Table 21.

Defect d 14 13 12 11 10 7 otherwise

k(2, d) 16 12 20 4 2 2 0

k(3, d) 16 28 28 8 6 2 0

k(4, d) 16 28 8 8 0 0 0

k(5, d) 16 12 4 0 0 0 0

k(6, d) 16 44 4 0 0 0 0

k(7, d) 16 44 20 4 2 0 0

k(8, d) 16 60 28 12 6 0 0

k(9, d) 16 60 8 12 0 0 0

Table 21: Values of k(N(C(i)), B, d, η`) when p = 2 and d(N(C(i))) = 17
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It follows that∑
i∈{3,5,7,9}

k(N(C(i)), B, d, η`) =
∑

i∈{2,4,6,8}
k(N(C(i)), B, d, η`).

The theorem follows. 2
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