
CLASSIFYING 2-GROUPS BY COCLASS

M.F. NEWMAN AND E.A. O’BRIEN

Abstract. Now that the conjectures of Leedham-Green and Newman have

been proved, we probe deeper into the classification of p-groups using coclass.

We determine the pro-2-groups of coclass at most 3 and use these to classify
the 2-groups of coclass at most 3 into families. Using extensive computational

evidence, we make some detailed conjectures about the structure of these fam-
ilies. We also conjecture that the 2-groups of arbitrary fixed coclass exhibit
similar behaviour.

1. Introduction

The idea of classifying groups of prime-power order by coclass has proved to be
very fruitful. Recall that the coclass of a group of order pn and class c is n− c.

Leedham-Green & Newman (1980) made a detailed series of conjectures about
groups of prime-power order (p-groups) using coclass as the primary invariant.
Leedham-Green (1994) and Shalev (1994) have proved a number of important the-
orems as the culmination of the program of studying and confirming these conjec-
tures.

A feature of this program is to study pro-p-groups of finite coclass. A pro-
p-group of coclass r is an inverse limit of (an infinite chain of) finite p-groups of
coclass r. Leedham-Green, McKay & Plesken (1986a, b) proved that, given a prime
p and a positive integer r, there are finitely many soluble pro-p-groups of coclass r
(Theorem E); a strengthened version of their result was proved by McKay (1994).
Shalev & Zel’manov (1992) proved that pro-p-groups of finite coclass are soluble
(Theorem C). Hence there are finitely many pro-p-groups of coclass r.

Recall, from Leedham-Green & Newman (1980), that we can define a directed
graph Gp on p-groups. Its vertices are all p-groups for a fixed prime p, one for
each isomorphism type, and its edges are the pairs (P,Q), with P isomorphic to
the quotient Q/γc(Q) where γc(Q) is the last non-trivial term of the lower central
series of Q. If (P,Q) is an edge in Gp, then Q is an immediate descendant of P . We
say that R is a descendant of P if there is a (possibly empty) path from P to R
in Gp. A group is capable if it has immediate descendants; otherwise it is terminal.
The descendant tree of P is the subgraph of its descendants. A group of class c is
infinitely capable if it has descendants of all classes greater than c.
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A finite p-group is coclass settled if all its descendants have the same coclass.
Shalev (1994, Corollary 4.4) has shown that the 2-groups of coclass r are coclass
settled by class 2r+3 and that, for p odd, the p-groups of coclass r are coclass settled
by class 2pr.

We can associate with each pro-p-group G of coclass r a family of finite p-groups
of coclass r in the following way. All the finite quotients of G have coclass at most
r. All but finitely many of these are coclass settled and have coclass r. Since there
are only finitely many pro-p-groups of coclass r, all but finitely many of the coclass
settled finite quotients are quotients of only one pro-p-group. These finite quotients
form an infinite chain. The family FG associated with G is the tree of descendants
of the smallest group RG in the chain. We call RG the root of the family. An
infinitely capable descendant of a root is mainline. It follows from Leedham-Green
(1994, Proposition 2.2) that all but finitely many p-groups of coclass r belong to
some family.

Descriptions are known for a small number of families. The unique family of
2-groups of coclass 1 is well-known: for n ≥ 4, the number of isomorphism types
of order 2n is 3. In fact, there is exactly one family of p-groups of coclass 1 for
every prime p. Blackburn (1958) described this family for the prime 3: for n ≥ 3,
the number of 3-groups of order 32n−1 is 6 and of order 32n is 7. The family
of 5-groups of coclass 1 is conjecturally described by Newman (1990). It is clear
from Leedham-Green & McKay (1984) that the descriptions are more complex as
the prime increases. The 2-groups of coclass 2 have been studied by James (1975,
1983). His results – with corrections presented here – can be summarised as follows:
for n ≥ 4, the number of 2-groups of coclass 2 and order 22n−1 is 29 and of order
22n is 38. There is also unpublished work of Leedham-Green and Newman on the
structure of the families of 3-groups of coclass 2.

The results of Leedham-Green (1994) and Shalev (1994) suggest that the fam-
ilies of 2-groups of finite coclass will be easier to describe than the families for
odd primes. One formulation of Theorem A is the following: there exists a func-
tion f(p, r) such that every p-group P of coclass r has a normal subgroup A of
order bounded by f(p, r) and P/A is constructible. The constructible 2-groups are
mainline (from space groups).

Leedham-Green (1994, Definition 1.3) produced an internal criterion for a p-
group to be coclass settled. He introduced the notion of a finite p-group being settled
and proved that every settled group is coclass settled and that all descendants of a
settled group are settled.

For practical computational reasons, we use a variation of the lower central series
known as the lower exponent-p central series. This is the descending sequence of
subgroups

G = P0(G) ≥ . . . ≥ Pi−1(G) ≥ Pi(G) ≥ . . .

where Pi(G) = [Pi−1(G), G]Pi−1(G)p for i ≥ 1. By direct analogy, we define
the lower exponent-p class and lower exponent-p coclass of G. A group of lower
exponent-p class c has nilpotency class at most c. If both the nilpotency coclass
and lower exponent-p coclass of a p-group G are finite and G has sufficiently large
order, then the two coclasses are the same; see Theorem 6.1. We use the lower
exponent-p coclass of a p-group as a classification invariant and in the remainder
of the paper refer to lower exponent-p coclass simply as coclass.
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We now present a modification of settled which applies for lower exponent-p
coclass.

Definition 1.1. A p-group P of class c is settled with respect to a normal subgroup
P1 of order pt if

(a) all the P -invariant subgroups P2, P3, . . . of P1 are totally ordered by inclu-
sion where

P1 > P2 > · · · > Pt > Pt+1 = E = Pt+2 = . . . ;

(b) 〈xp : x ∈ Pi〉 = Pi+s for some fixed positive s and for all i ≥ 1;
(c) Pt = Pc−1(P );
(d) (p− 1)t > ps.

Our next result generalises Theorem 1.6 of Leedham-Green (1994); a proof is
given in Section 6.

Theorem 1.2. All the descendants of a settled group are settled and have the same
coclass.

There are examples of coclass settled groups which are not settled.
Armed with Theorem 1.2, we can now adapt the various notions introduced

earlier in the nilpotency context to the exponent-p coclass context. In particular,
we define the graph Gp and its related concepts in terms of the lower exponent-p
central series. There are finitely many families of coclass r and all but finitely many
p-groups of coclass r belong to some family. We call the exceptions sporadic.

We illustrate these concepts by reference to the 2-groups of coclass 1. There
are two families of these groups. The first has root C2 × C4 and two groups of
order 2n for every n ≥ 4. The second, already mentioned above, has root D8, the
dihedral group of order 8; we consider this family in Section 5.1. The only sporadic
2-generator 2-groups of coclass 1 are C2×C2 and Q8, the quaternion group of order
8. The first of these is not coclass settled, the other has finitely many descendants.
There are sporadic groups which are both coclass settled and have infinitely many
descendants; they have more than one root as a descendant. The quotient of order
25 of the pro-2-group considered in Section 5.2 is such a group.

We report here on an extensive investigation of the 2-groups of coclass 3 and
prove that there are 70 such families; in Table 2 we identify 54 families which have
nilpotency coclass 3. (Unpublished work of James agrees with this.) We also include
results for the 2-groups of coclass 2. The computations which underpinned our
investigation were first carried out in 1986; our interpretation of them is influenced
by the recent results of Leedham-Green (1994) and Shalev (1994).

For each of the pro-2-groups, we have established that their 2-quotients of order
215 are settled. Theorem 1.2 now implies that all groups in the descendant tree
of each mainline group of order 215 are coclass settled. Using our implementation
of the p-group generation algorithm, we have determined the tree of 2-groups of
coclass 3 as far as all groups of order 223 and in places well beyond that. Combining
this information, we obtain that all 2-groups of coclass 3 and order at least 210 are
coclass settled; there are groups of order 29 which are not coclass settled.

The descendant tree TP of a p-group P is periodic if P has a proper descendant
Q such that TQ is isomorphic to TP . The period of a periodic TP is the least value
of logp(|Q|/|P |) and the descendant pattern of TP is TP − TQ.
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Our study suggests that each of the 70 families of 2-groups of coclass 3 has a
periodic tree structure. In 59 cases we conjecture that the descendant tree of the
root of the family is already periodic. For the remaining families, the conjectured
periodic behaviour is observable in the descendant tree of a mainline group of order
at most 23 greater than that of the root. For each family we define its periodic
root as the smallest infinitely capable descendant of the root whose descendant tree
is periodic. The roots of the families have order at most 211 and the conjectured
periodic roots have order at most 214. We conjecture that the period for each family
divides 4. There are 1782 sporadic 2-groups of coclass 3 and these have order at
most 214. Similar periodic behaviour is already known for the 2-groups of coclass
at most 2.

The (conjectured) descendant patterns for the families are presented in Appen-
dix B. In Section 5 we show how to verify these conjectures in two cases. It should
be possible to use similar arguments to deal with the remaining cases, although
the conjectured patterns make this a daunting prospect. Our proofs are effec-
tively applications of the p-group generation algorithm to groups of order 2n, for
arbitrary n. For details of the algorithm and terminology, we refer the reader to
O’Brien (1990). In an attempt to reduce some of the tedium inherent in such cal-
culations, we introduce the concept of a universal group for a family; this group
has all the groups in the family as quotients and is minimal with respect to this
property. Our conjectured descendant patterns imply the existence of a universal
group for each family.

We now formulate some more general conjectures arising from these observations.

Conjecture P. Each family of 2-groups of coclass r has a periodic root R and R
has a descendant Q of order dividing 2r−1|R| such that the descendant tree of Q is
isomorphic to the descendant tree of R.

A corollary to Conjecture P is that, for sufficiently large n, the number of iso-
morphism types of 2-groups of coclass at most r with order 2n is the same as the
number with order 2n+2r−1

(See Problem 27 of Shalev, 1995).

Conjecture Q. All 2-groups of coclass r and order 22r+1
are (coclass) settled.

Conjecture R. The periodic roots of the families of 2-groups of coclass r have
order at most 22r+1

.

Conjecture S. All sporadic 2-groups of coclass r have order at most 22r+2
.

We do not expect that the conjectures hold in this form for odd primes. A
more complex notion of periodicity is conjectured for the 5-groups of coclass 1 by
Newman (1990); detailed conjectures for odd primes are formulated by Schneider
(1997).

Leedham-Green (1994) proved that all but a finite number of 2-groups P of
coclass r have a normal subgroup A of order at most 22r−1(2r−1+r+3) such that P/A
is mainline. Shalev (1995, Problem 26) asked for explicit bounds on the order of A.
It is easy to construct examples of 2-groups of coclass r where A has order 22r−1

.
For the 2-groups of coclass 1 and 2, the precise bounds are 2 and 4 respectively. The
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conjectures presented in Appendix B imply that an upper bound for the 2-groups
of coclass 3 is 64; Family #19 has groups where A has order 64.

In order to provide access to our classification of the 2-groups of coclass at most
3, we have prepared an electronic file containing the presentations for the pro-2-
groups. These presentations may be used in GAP (Schönert et al., 1997) or Magma
(Bosma & Cannon, 1997) to obtain power-commutator presentations for the root
of each family or for larger (mainline) 2-quotients. Our implementation of the p-
group generation algorithm can be used in either system to generate parts of the
associated trees.

The structure of the paper is as follows. In Section 2 we show that there are 82
pro-2-groups of coclass at most 3 and in Appendix A list explicit pro-2 presentations
for these. In Section 3 we summarise results for the 2-groups of coclass 2. In Section
4 we conjecture that there is a periodic tree description for each coclass 3 family.
The (conjectured) descendant patterns are presented in Appendix B. In Section
5 we show how to verify these patterns in two cases. Finally we provide a brief
description and references for the computational tools used in our investigation.

2. The pro-2-groups of coclass at most 3

We know there are finitely many pro-p-groups of coclass r and they are soluble.
On the basis of this we can, in theory, determine (write down pro-p presentations
for) all the pro-p-groups of coclass r. We will show how to do this for pro-2-groups
of coclass at most 3 and hence prove the following result.

Theorem 2.1. There are 82 pro-2-groups of coclass at most 3.

The statement and proof of the following lemma are modelled on Leedham-Green
& Newman (1980, (6) and (9)).

Lemma 2.2. A finitely generated pro-p-group of coclass r is either a central exten-
sion of a cyclic subgroup of order p by a pro-p-group of coclass r− 1 or a uniserial
p-adic space group.

Proof. Let G be a pro-p-group of coclass r and let

G = P0(G) ≥ . . . ≥ Pi−1(G) ≥ Pi(G) ≥ . . .

be its lower exponent-p central series. Let u be the least positive integer such
that |G/Pu(G)| = pu+r and let K be a non-trivial normal subgroup of G which
lies in Pu(G). Then K ≤ Pv(G) and K 6≤ Pv+1(G) for some v ≥ u. Hence
KPj(G) = Pv(G) for all j ≥ v. It follows that a finite normal subgroup of G avoids
Pu(G), has p-power order and contains a normal subgroup L of order p. Moreover
G/L is a pro-p-group of coclass r − 1. If G has no non-trivial normal subgroup
of finite order, then an argument of Leedham-Green & Newman (1980, (9)), with
minor changes, applies to show that G is a uniserial p-adic space group. �

Using Lemma 2.2, we can now determine the pro-2-groups of coclass at most 3
up to isomorphism. Such a group is either a 2-adic space group of coclass at most
3 or a central extension of a cyclic group of order 2 by a pro-2-group of coclass at
most 2.

McKay (1994) shows that the coclass of a uniserial p-adic space group of dimen-
sion p(r−1)(p − 1) is at least r. Hence we only need to consider uniserial 2-adic
space groups of ranks 1, 2 and 4.
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Brown et al. (1978) described the space groups of dimensions 2, 3 and 4. Finken
(1979) determined the 2-uniserial space groups among these. Another description
of the space groups of rank 2 can be found in Lyndon (1985, Chapter 4).

The group of 2-adic integers Z2 is the unique uniserial 2-adic group of coclass 0.
The direct product of a cyclic group of order 2 with Z2 is the only pro-2-group

of coclass 1 which arises as a central extension of a cyclic group of order 2. The
only uniserial 2-adic space group of coclass 1 is the pro-2 completion of the infinite
dihedral group and has pro-2 presentation

{t, a : a2 = 1, ata−1 = t−1}.

Finken (1979) determined the two 2-uniserial space groups of coclass 2 and rank
2. The other pro-2-groups of coclass 2 are extensions of a cyclic group of order 2
by a pro-2-group of coclass 1. In total, there are 9 pro-2-groups of coclass 2.

It follows from Leedham-Green & Plesken (1986, Theorem IV.4 and IV.5(iv))
that the uniserial 2-adic space groups of rank 4 are completions of 2-uniserial space
groups, or have point group Q16. Finken (1979) determined the 20 2-uniserial space
groups of rank 4 and coclass 3 and the one 2-uniserial space group of rank 2 and
coclass 3. It can be deduced from McKay (1994) that there is exactly one uniserial
2-adic space group of rank 4 and coclass 3 whose point group is Q16; this group is
non-split and can be obtained as a subgroup of index 2 in the corresponding split
extension which has coclass 4. A 4-dimensional matrix representation for Q16 over
the 2-adic integers was provided by Leedham-Green, McKay & Plesken (1986b).
Using the matrices, we can write down a pro-2 presentation for the split group.
Successive 2-adic approximations to

√
−39 can now be used to obtain presentations

for arbitrarily large mainline 2-quotients of the coclass 3 space group.
For each of the 9 pro-2-groups of coclass 2, it is easy to write down pro-2 presen-

tations for the relevant extensions. As one example, we consider the case of central
extensions G of a cyclic group L of order 2 by the group having pro-2 presentation

{a, t, u : [u, t] = 1, [u, a] = 1, u2 = 1, a2 = 1, ata−1 = t−1}.

The largest finite normal subgroup M of G is either C2×C2 or C4. The centraliser
C of M in G has index 1 or 2. In the case when M is C2 × C2 and C has index
2 and C/L is the translation subgroup of G/L, it suffices to consider the pro-2
presentations

{a, t, u, v : u2 = v2 = [u, v] = 1, [u, t] = [v, t] = 1,

[v, a] = 1, [u, a] = v, ata−1 = t−1uβvγ , a2 = vα}

where each of α, β and γ is 0 or 1. Considering a2ta−2 shows that β = 0. Replacing
t by tuγ and a by auα shows that we can take α = γ = 0. Hence one presentation
suffices in this case.

In this way, it is straight-forward to reduce the resulting list to 82 presentations.
The pairwise non-isomorphism of these 82 groups has been checked by showing the
class 11 2-quotients are all different.

Table 1 provides a summary of the numbers of pro-2-groups by coclass and rank.
Those which are extensions by Z2 are nilpotent; the others have nilpotency coclass
as shown (see Theorem 6.1). To distinguish between these, we say that the pro-2-
groups obtained as extensions by Z2 have rank 1−.

In Table 2 we summarise some properties of the 82 pro-2-groups. For each pro-
2-group G, we record its coclass and rank; d is its minimal number of generators;



CLASSIFYING 2-GROUPS BY COCLASS 7

Table 1. Pro-2-groups by rank and coclass

Coclass Rank 1− Rank 1 Rank 2 Rank 4 Total
0 1 1
1 1 1 2
2 4 3 2 9
3 16 18 15 21 70

|RG| is the order of the root for its associated family. We partially identify G by
naming its associated uniserial 2-adic space group and the isomorphism type of the
largest finite normal subgroup M of G. Note that G is just infinite if and only if M ,
its hyper-centre, is trivial. The uniserial 2-adic space group of coclass 1 and rank
1 is labelled D; the uniserial 2-adic space group of coclass 3 with point group Q16

is labelled Q; the others are labelled following the notation of Brown et al. (1978).
Our numbering of the pro-2-groups has no special significance and reflects the

sequence in which portions of the descendant trees were generated using our imple-
mentation of the p-group generation algorithm.

3. The 2-groups of coclass 2

The 2-groups of nilpotency coclass 2 were studied by James (1975, 1983). We
have found an additional problem with one family of his revised list and present a
new determination of this family in Section 5.2.

We now summarise our results for the 2-groups of coclass 2. The associated trees
for the 9 pro-2-groups of coclass 2 have roots of order dividing 26. The descendant
trees of the roots are periodic and have periods dividing 2. The class 4 2-quotients
are coclass settled and there are 23 sporadic groups. The number of isomorphism
types for the 2-groups of coclass 2 and order at least 2n for n ≥ 7 is given in Table 3.

4. The 2-groups of coclass 3

We now state precise conjectures for the 2-groups of coclass 3 and in Appendix
B provide evidence for these.

Conjecture 4.1. Each of the 70 families of 2-groups of coclass 3 has a periodic
root of order at most 214 and each period divides 4.

Conjecture 4.2. For n ≥ 17, the number of isomorphism types of 2-groups of
coclass 3 and order 2n+4 is the same as the number of order 2n.

Conjecture 4.3. The number of isomorphism types for the 2-groups of coclass 3
and order at least 2n for n ≥ 17 is given in Table 4.

Since we have constructed the tree of all 2-groups of coclass 3 up to 223, Con-
jectures 4.2 and 4.3 are theorems for n ≤ 19. We also have the following result.

Theorem 4.4. There are 1782 sporadic 2-groups of coclass 3 and these have order
at most 214.
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Table 2. Summary information for the pro-2-groups

Family Coclass Rank d log2 |RG| 2-adic space group M

0 0 1− 1 1 Z2 C1

1 1 1− 2 3 Z2 C2

2 1 1 2 3 D C1

3 2 1− 2 5 Z2 C4

4 3 1− 2 7 Z2 C8

5 3 1− 2 7 Z2 C8

6 2 1− 2 5 Z2 C2 × C2

7 2 2 2 6 3/2/1/2 C1

8 2 2 2 6 3/1/1/1 C1

9 2 1 2 5 D C2

10 3 1− 2 7 Z2 C2 × C2 × C2

11 3 4 2 11 32/13/3/2 C1

12 3 4 2 11 32/7/2/3 C1

13 3 4 2 10 32/2/2/2 C1

14 3 4 2 10 26/1/1/1 C1

15 3 4 2 10 32/13/3/4 C1

16 3 4 2 10 32/13/3/5 C1

17 3 4 2 10 32/7/1/3 C1

18 3 2 2 8 3/2/1/2 C2

19 3 4 2 9 32/2/1/2 C1

20 3 4 2 9 32/7/2/4 C1

21 3 2 2 7 3/1/1/1 C2

22 3 1− 2 7 Z2 C2 × C4

23 3 2 2 7 3/1/1/1 C2

24 3 2 2 7 3/2/1/2 C2

25 3 1− 2 7 Z2 D8

26 3 1 2 7 D C4

27 3 1− 2 6 Z2 Q8

28 3 4 2 9 32/13/2/5 C1

29 3 4 2 11 32/15/2/3 C1

30 3 4 2 11 32/13/4/4 C1

31 3 4 2 11 32/8/2/4 C1

32 3 4 2 10 32/3/2/2 C1

33 3 4 2 10 26/2/1/2 C1

34 3 4 2 11 32/15/2/2 C1

35 3 4 2 11 32/13/4/3 C1

36 3 2 2 8 3/1/1/1 C2

37 3 2 2 8 3/2/1/2 C2

38 3 2 2 7 3/2/1/2 C2

39 3 1 2 7 D C2 × C2

40 3 4 2 9 32/13/2/2 C1

41 3 4 2 10 32/8/2/3 C1

42 3 4 2 10 Q C1

43 3 4 2 9 32/3/1/2 C1

44 3 2 2 8 3/2/1/2 C2
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Family Coclass Rank d log2 |RG| 2-adic space group M

45 3 2 2 8 3/1/1/1 C2

46 3 2 2 7 3/2/1/2 C2

47 3 1 2 7 D C4

48 3 1 2 6 D C4

49 2 1− 2 5 Z2 C4

50 2 1 2 5 D C2

51 3 1− 2 7 Z2 C8

52 3 1− 2 7 Z2 C8

53 3 1 2 7 D C4

54 3 1− 2 6 Z2 C2 × C4

55 3 1 2 6 D C2 × C2

56 3 2 2 7 3/2/1/2 C2

57 3 2 2 7 3/1/1/1 C2

58 2 1− 3 4 Z2 C2 × C2

59 2 1 3 4 D C2

60 3 1− 3 6 Z2 C2 × C4

61 3 1− 3 6 Z2 C2 × C2 × C2

62 3 2 3 7 3/2/1/2 C2

63 3 2 3 7 3/1/1/1 C2

64 3 1 3 6 D C2 × C2

65 3 1− 3 6 Z2 C2 × C4

66 3 1 3 6 D C2 × C2

67 3 1− 3 5 Z2 C2 × C4

68 3 1− 3 6 Z2 D8

69 3 1 3 6 D C4

70 3 1− 3 5 Z2 Q8

71 3 1 3 6 D C2 × C2

72 3 2 3 6 3/2/1/1 C1

73 3 1 3 6 D C4

74 3 1 3 6 D C2 × C2

75 3 1 3 5 D C4

76 3 1 3 5 D C2 × C2

77 3 1 3 5 D C4

78 3 1 3 6 D C4

79 3 1 3 5 D C4

80 3 1− 4 5 Z2 C2 × C2 × C2

81 3 1 4 5 D C2 × C2

Table 3. Number of isomorphism types for m ≥ 4

Order Number
22m−1 40
22m 49

5. Three families

In Appendix B we present conjectured descendant patterns for each of the 70
families of 2-groups of coclass 3; we also list the descendant patterns for the 12 fam-
ilies of 2-groups of coclass at most 2. We present three examples here to illustrate
how these tables are interpreted and for two of these verify their correctness.
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Table 4. Conjectured number of isomorphism types for m ≥ 4

Order Number
24m+1 2504
24m+2 2568
24m+3 8632
24m+4 1532

5.1. A coclass 1 family. Here, we consider the family of 2-groups of nilpotency
coclass 1. The groups are, of course, well-known: the dihedral, quaternion, and
semi-dihedral groups. (Our determination is intended to illustrate the general ap-
proach, not to replace existing treatments.) The corresponding limit group is the
pro-2 completion D of the infinite dihedral group and has pro-2 presentation

{t, a : a2 = 1, ata−1 = t−1}.

i•
�

�
�

�
�

�

•
S
S
S
S
S
St

2

Figure 1. The descendant pattern for Family #2

Table 5. Family #2 with root order 23

Order Structure
2n+1 3/1

The root, RG, is the dihedral group of order 8 and the structure of FG can be
visualised from Figure 1. This picture can be summarised by Table 5. In this case,
the mainline group of order 2n, for n ≥ 3, has three immediate descendants of order
2n+1, one of which is capable and is the mainline group of order 2n+1.

Our proof for this descendant tree is inductive on n ≥ 3. We assume that the
mainline group M of order 2n has power-commutator presentation

{a1, . . . , an : [a2, a1] = a3, [ak, a1] = [ak, a2] = ak+1,

a2
k = ak+1ak+2, 3 ≤ k ≤ n− 1, a2

n−1 = an}
where all relations whose right-hand sides are trivial are not shown. We verify this
claim for n = 3 by inspecting the power-commutator presentation computed using
the p-quotient algorithm for the class 2 2-quotient of the limit group.

We also assume that a generating set for a supplement to the inner automorphism
group of M in the full automorphism group is the following:

α1 : a1 7−→ a2 , αk : a1 7−→ a1

a2 7−→ a1 a2 7−→ a2ak+2
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where k = 2, . . . , n− 2. Again, this hypothesis for n = 3 is readily verified.
We now determine the immediate descendants of M . Its 2-covering group has

power-commutator presentation

{a1, . . . , an, an+1, an+2, an+3 : [a2, a1] = a3, a
2
1 = an+2, a

2
2 = an+3,

[ak, a1] = [ak, a2] = ak+1,

a2
k = ak+1a

εk+2
k+2 , 3 ≤ k ≤ n}

where

εi =
{

1 if i ≤ n+ 1
0 otherwise.

The consistency of this presentation can be proved using the algorithm described
in Sims (1994, Chapter 9).

We now compute the extensions of the automorphisms of M to its 2-covering
group. The action of each αk on aj , where 3 ≤ j ≤ n, is:

aj 7−→ aja
εj+k

j+k .

Their extensions act trivially on the 2-multiplicator of M and play no further role
in the computation. The action of α1 on aj , where 3 ≤ j ≤ n, is:

aj 7−→ ajaj+1.

Hence the matrix representing the action of α1 on the 2-multiplicator of M is: 1 0 0
0 0 1
0 1 0

 .

The four allowable subgroups have generating sets

{aδn+1an+2, a
γ
n+1an+3}

where each of δ and γ is 0 or 1. We label these subgroups from 1 to 4 as usual.
The extension of α1 permutes these subgroups as (2, 3). The resulting 3 orbits,
which correspond to distinct isomorphism types, have representatives 1, 2 and 4.
We can show that the first of these determines a capable group which has power-
commutator presentation and automorphism description like that presented above;
hence this group is the mainline group of order 2n+1. We can also show that the
other two descendants are terminal. Hence M has 3/1 descendants.

5.2. A coclass 2 family. Here we present a new determination of the family which
was incorrectly determined by James (1983). The limit group is Z2 × Z2 split by
C4 acting uniserially and has pro-2 presentation

{t, a : a4 = 1, (ta2)2 = 1, [t, ta] = 1}.

Table 6. Family #8 with root order 26

Order Structure
22m+1 6/2
22m+2 6/2 4 •
22m+3 3
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Figure 2. The descendant pattern for Family #8

The root, RG, has order 64 and the structure of FG can be visualised from
Figure 2. This picture can be summarised by Table 6. In this case, the mainline
group of order 2n, for n even and at least 6, has six immediate descendants of
order 2n+1, two of which are capable. One of the two capable groups has six
immediate descendants of order 2n+2, of which two are capable, and the other
has four immediate descendants which are terminal. Of the two capable groups
of order 2n+2, one has the same descendant structure as the root; the other has
three immediate descendants which are terminal. The • at level 22m+2 in Table 6
indicates that the period is 2.

Our proof for this descendant tree is inductive on n for n = 2m, wherem ≥ 3. We
assume that the mainline group M of order 2n has power-commutator presentation

{a1, . . . , an : a3 = [a2, a1], a4 = a2
1, a5 = [a3, a1],

[a3, a2] = a6a7a8, [a4, a2] = a5a6, [a4, a3] = a6a7,

ak+1 = [ak, a1], 5 ≤ k ≤ n− 1,
a2
3 = a6a7, a

2
k = ak+2a

εk+3
k+3 , 5 ≤ k ≤ n− 2,

[ak, a2] = [ak, a4] = ak+2a
εk+3
k+3 a

εk+4
k+4 , 5 ≤ k ≤ n− 2}

where an+1 and an+2 are read as the identity, and

εi =
{

1 if i ≤ n
0 otherwise.

We verify this claim for n = 6 by inspecting the power-commutator presentation
computed using the p-quotient algorithm for the class 4 2-quotient of the limit
group.

We also assume that a generating set for a supplement to the inner automorphism
group of M in the full automorphism group is the following:

α1 : a1 7−→ a1a4 , α2 : a1 7−→ a1a2a3 , αk : a1 7−→ a1

a2 7−→ a2 a2 7−→ a2a5 a2 7−→ a2ak+3

where k = 3, . . . , n− 3. Again, this hypothesis for n = 6 can be readily verified.
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We now determine the immediate descendants of M . The 2-covering group of
M has power-commutator presentation

{a1, . . . , an, an+1, . . . , an+4 : a3 = [a2, a1], a4 = a2
1, a5 = [a3, a1], [a4, a3] = a6a7,

a2
2 = an+4, a

2
3 = a6a7an+2, a

2
4 = an+3,

[a3, a2] = a6a7a8an+2, [a4, a2] = a5a6an+2,

ak+1 = [ak, a1], 5 ≤ k ≤ n,

a2
k = ak+2a

εk+3
k+3 , 5 ≤ k ≤ n− 1,

[ak, a2] = [ak, a4] = ak+2a
εk+3
k+3 a

εk+4
k+4 , 5 ≤ k ≤ n− 1}

where

εi =
{

1 if i ≤ n+ 1
0 otherwise.

The consistency of this presentation can be proved using the algorithm described
in Sims (1994, Chapter 9).

An alternative approach to proving that the above presentation is consistent is
to write down a universal group for this family. Since we make no use here of the
defining property of the universal group – namely, that all groups in the family are
quotients of it – we do not establish this claim. This group can be used to simplify
other details of our proof. It is obtained as the direct product of the limit group
with

{t, a : a8 = 1, (ta2)4 = 1, [(ta2)2, a, t] = 1, t4 = 1, [t, a, a] = 1},

amalgamating the common quotient defined by

{t, a : a4 = 1, (ta2)2 = 1, [t, ta] = 1, t4 = 1}.

See Huppert (1967, p. 50) for details of such constructions; they are labelled diag-
onal products by Conway et al. (1985).

We now compute the extensions of the automorphisms of M to its 2-covering
group. The extensions of α3 to αn−3 act trivially on the 2-multiplicator of M and
play no further role in the computation. Under the action of α1,

a3 7−→ a3a5an+2

a4 7−→ a4an+3.

The action of α1 on the generators a5, . . . , an is:

a4k+1 7−→ a4k+1a4k+3a4k+4a4k+5

a4k+2 7−→ a4k+2a4k+3a4k+4

a4k+3 7−→ a4k+3

a4k+4 7−→ a4k+4a4k+5

where k ≥ 1 and ai occurs in the image only if i ≤ n + 1. Hence the extended
automorphism again induces the identity on the 2-multiplicator of M . Finally,
consider the action of α2:

a3 7−→ a3a6a7

a4 7−→ a3a4a5a7a8a9an+2an+4

a5 7−→ a5a6a7a9a10a11an+2.
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Its action on the generators a6, . . . , an is:

a4k−2 7−→ a4k−2a4k+2

a4k−1 7−→ a4k−1a4ka4k+3a4k+4

a4k 7−→ a4ka4k+2a4k+3

a4k+1 7−→ a4k+1a4k+2a4k+3a4k+5a4k+6a4k+7

where k ≥ 2 and again ai occurs in the image of a generator only if i ≤ n+ 1. The
matrix representing the action of α2 on the 2-multiplicator of M is:

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

 .

The eight allowable subgroups have generating sets

{aδn+1an+2, a
γ
n+1an+3, a

ψ
n+1an+4}

where each of δ, γ, ψ is 0 or 1. We label these subgroups from 1 to 8 as usual. The
extension of α2 permutes these subgroups as (2, 4)(6, 8). The resulting 6 orbits,
which correspond to distinct isomorphism types, have representatives 1, 2, 3, 5, 6
and 7. It can be shown, using the universal group, that the first and fourth of these
determine capable groups. All of the others can be shown to be terminal. Thus the
mainline group has 6/2 immediate descendants.

The first of these capable groups is the mainline group of order 2n+1 – it has
power-commutator presentation and automorphism description like that presented
above.

We factor the allowable subgroup

〈an+2, an+3, an+1an+4〉

from the 2-covering group of M to give the second group, Q say, of order 2n+1.
The power-commutator presentation for the 2-covering group ofQ has generating

set {a1, . . . , an+1, an+2, . . . , an+5} and its relations coincide with those for the 2-
covering group of the mainline group of order 2n+1 except for the following:

[a4, a2] = a5a6an+2an+3

a2
2 = an+1an+5

a2
3 = a6a7an+2an+3.

It can also be shown that a generating set for a supplement to the inner automor-
phism group of Q is the same as that for the mainline group.

We now determine the immediate descendants of Q. Again, the automorphisms,
α3, . . . , αn−2, act trivially on the 2-multiplicator of Q. The extension of α1 acts as:

a3 7−→ a3a5an+2an+3

a4 7−→ a4an+4;

its action on the generators a5, . . . , an+1 is the same as that described for the
mainline group. Therefore,

an+1 7−→
{
an+1an+2 if n+ 1 even
an+1 n+ 1 odd.
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Hence, if n+ 1 is even, the automorphism matrix is
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1


and it permutes the allowable subgroups as (1, 5)(2, 6)(3, 7)(4, 8). If n + 1 is odd,
the extended automorphism induces the identity.

The extension of α2 acts as:

a3 7−→ a3a6a7

a4 7−→ a3a4a5a7a8a9an+1an+2an+3an+5

a5 7−→ a5a6a7a9a10a11an+3;

its action on the generators a6, . . . , an+1 is the same as that described for the
mainline group. Therefore,

an+1 7−→
{
an+1 if n+ 1 even
an+1an+2 n+ 1 odd.

Hence, if n+ 1 is even, the automorphism matrix is
1 0 0 0
0 1 0 0
1 1 1 0
0 0 0 1


and it permutes the allowable subgroups as (1, 3)(5, 7). If n + 1 is odd, the auto-
morphism matrix is 

1 0 0 0
0 1 0 0
1 1 1 0
1 0 0 1


and it permutes the allowable subgroups as (1, 7)(2, 6)(3, 5)(4, 8).

If n + 1 is even, the allowable subgroups are permuted by (1, 5)(2, 6)(3, 7)(4, 8)
and (1, 3)(5, 7); hence there are three orbits with representatives 1, 2 and 4. If
n+ 1 is odd, the allowable subgroups are permuted as (1, 7)(2, 6)(3, 5)(4, 8); hence
there are four orbits with representatives 1, 2, 3 and 4. It can be shown that all
resulting groups are terminal. Thus the non-mainline capable group has 4/0 or 3/0
immediate descendants.

5.3. A coclass 3 family. Here is a pro-2 presentation for the limit group associated
with Family #43.

{t1, t2, t3, t4, a, b : [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = t4, a
−1b−1aba6 = t−1

1 t2t
−1
3 ,

at1a
−1 = t4, at2a

−1 = t−1
3 , at3a

−1 = t1, at4a
−1 = t2,

bt1b
−1 = t−1

2 , bt2b
−1 = t−1

1 , bt3b
−1 = t−1

3 , bt4b
−1 = t4}

The root, RG, has order 29. We conjecture that the periodic root has order 212,
that the period is 2, and that the structure of FG can be summarised by Table 7.
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Table 7. Family #43 with periodic root order 212

Order Structure
2n+1 6/4
2n+2 4 4/4 4/4 4 •
2n+3 3/2 6 3 6/4 3 3/2 6
2n+4 2 2 2 2 2 2 2 2

6. Proofs

Theorem 6.1. A p-group G with nilpotency coclass r and order at least p8pr+r has
lower exponent-p coclass r.

Proof. Let γm denote the m-th term of the lower central series of G and let Pm
denote the m-th term of the lower exponent-p central series of G. So, G = γ1 = P0.
Recall that Pm = γm+1γ

p
m . . . γ

pm

1 (Huppert & Blackburn, 1982, VIII.1.5). From
Shalev (1994, Proposition 4.5), there is a normal subgroup T of G with index at
most p8pr+r−1 so that all of the non-trivial factors of the series

T > [T,G] ≥ . . . ≥ [T, iG] ≥ [T, (i+ 1)G] ≥ . . .

have order p. There is an n ≤ p8pr

such that γn, γ
p
n−1, . . . all lie in T . We prove that

Pn−1 = γn by showing that γp
k

n−k ≤ γn for k in {1, . . . , n− 1}. Clearly γpn ≤ γn+1.
So [γpn−1, G] ≤ [γn, G] and hence γpn−1 ≤ γn. An easy induction on k gives the rest.
It follows that G has lower exponent-p coclass r. �

Theorem 1.2. All the descendants of a settled group are settled and have the same
coclass.

Proof. Let P be a settled p-group as in Definition 1.1. It follows from the definition
that s < t < p(t− s).

Let Q be an immediate descendant of P , let α be the natural projection of Q
onto P , and let Qi be the complete inverse image of Pi for 1 ≤ i ≤ t+1 and Qi = E
otherwise. We show that Q is settled with respect to Q1.

We prove by induction on u in {1, . . . , s} that Qt−u+2 has exponent p. If u = 1,
this is obvious. For u > 1, we have [Pt−u+1, P ] = Pt−u+2 since [Pt−u+1, P ]P pt−u+1

equals Pt−u+2 by uniseriality, and P pt−u+1 = E. It follows that [Qt−u+1, Q]Qt+1

equals Qt−u+2. For h ∈ Qt−u+1 and x ∈ Q we get [h, x]p = [hp, x] by the usual
expansion because p(t− s) > t, and the result follows.

Second, we prove that Qt−s+1 has exponent p2. Clearly Qt−s+1 has exponent
dividing p2; we prove that its exponent is not p. By definition, Qt+1 = [Qt, Q]Qpt .
If Qpt 6= E, the result follows. Otherwise, Qt+1 = [Qt, Q]. There exists h ∈ Qt−s
with hp ∈ Qt −Qt+1. Hence there exists x ∈ Q with [hp, x] 6= 1, so [h, x]p 6= 1 and
[h, x] ∈ Qt−s+1.

Finally, we prove that Qt+1 has order p. The argument above shows that Qpt−s+1

has order p. This holds for every immediate descendant of P . So Qt−s+1 does not
lie in any proper normal subgroup of Qt+1. Therefore Qt+1 has order p. �
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7. Computational tools

As already indicated, our conjectures rely on extensive computations. Here we
summarise the computational tools used and provide appropriate references.

Central to our investigation was the ANU p-Quotient Program, which offers
access to implementations of the following:

• The p-quotient algorithm: it computes power-commutator presentations for
p-quotients of finitely-presented groups. For further details, see Newman
& O’Brien (1996).

• The p-group generation algorithm: it generates the descendants of a p-
group. For further details, see Newman (1977) and O’Brien (1990).

• The standard presentation algorithm: it computes a canonical or standard
presentation for a p-group, thereby providing a practical solution to the
isomorphism problem for p-groups. For further details, see O’Brien (1994).

For a detailed description of the program, see Newman & O’Brien (1996). Our
implementations of these algorithms are also available in GAP and Magma. The
calculations reported here can be performed using completely routine resources.
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Appendix A. Presentations for the pro-2-groups

We list pro-2 presentations for the 82 pro-2-groups of coclass at most 3. Our
presentations for the uniserial 2-adic space groups of rank dividing 4 are taken from
Finken (1979). Much of the work in writing down the presentations for the remain-
ing pro-2-groups was done by Michael Burns while holding a Vacation Scholarship
at the Australian National University.
0. { t | }

1. { t, u | u2 = 1, t−1ut = u }

2. { t, a | a2 = 1, ata−1 = t−1 }

3. { t, u | u4 = 1, t−1ut = u }

4. { t, u | u8 = 1, t−1ut = u }

5. { t, u | u8 = 1, t−1ut = u5 }

6. { t, u, v | u2 = 1, v2 = 1,

[u, v] = 1, t−1ut = u,
t−1vt = uv}

7. { t1, t2, a, b, c | [t1, t2] = 1,

a2 = 1, b2 = a,
a2 = 1, b2 = a,

c2 = t1, b−1c−1bca−1 = t2,

at1a−1 = t−1
1 , at2a−1 = t−1

2 ,

bt1b−1 = t2, bt2b−1 = t−1
1 ,

ct1c−1 = t1, ct2c−1 = t−1
2 }

8. { t1, t2, a, b | [t1, t2] = 1,

a2 = 1, b2 = a,

at1a−1 = t−1
1 , at2a−1 = t−1

2 ,

bt1b−1 = t2, bt2b−1 = t−1
1 }

9. { t, a, u | [u, t] = 1, [u, a] = 1,

u2 = 1, a2 = 1,
ata−1 = t−1u }

10. { t, u, v, w | u2 = 1, v2 = 1,
w2 = 1, [u, v] = 1,

[v, w] = 1, [w, u] = 1,

t−1ut = u, t−1vt = w,
t−1wt = uv }
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11. { t1, t2, t3, t4, a, b, c, d | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,
a8 = 1, b2 = 1,

c2 = t1t3t4, d2 = 1,

a−1b−1aba−4 = t3t4, a−1c−1aca−4b−1 = t−1
1 t−1

2 t−1
4 ,

a−1d−1ada−2b−1c−1 = t−1
2 t−1

3 t−1
4 , b−1c−1bc = t−1

2 t3,

b−1d−1bd = 1, c−1d−1cdb−1 = 1,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t1t4, ct2c−1 = t−1
2 ,

ct3c−1 = t3t4, ct4c−1 = t−1
4 ,

dt1d−1 = t1, dt2d−1 = t3
dt3d−1 = t2, dt4d−1 = t4 }

12. { t1, t2, t3, t4, a, b, c | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = t4,
c2 = t1t3t4, a−1b−1aba−4 = t2,

a−1c−1aca−4b−1 = t−1
1 t2t3t−1

4 , b−1c−1bc = t−1
2 t3t−1

4 ,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t1t4, ct2c−1 = t−1
2

ct3c−1 = t3t4, ct4c−1 = t−1
4 }

13. { t1, t2, t3, t4, a, b | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = 1,
a−1b−1aba−4 = t3t4,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4 }

14. { t1, t2, t3, t4, a | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,
a8 = 1,

at1a−1 = t−1
4 , at2a−1 = t1,

at3a−1 = t2, at4a−1 = t3 }

15. { t1, t2, t3, t4, a, b, c, d | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = 1,
c2 = t1t3t4, d2 = t4,

a−1b−1aba−4 = t3t4, a−1c−1aca−4b−1 = t−1
1 t−1

2 t−1
4 ,

a−1d−1ada−2b−1c−1 = t−1
1 t−1

3 t−1
4 , b−1c−1bc = t−1

2 t3,

b−1d−1bd = 1, c−1d−1cdb−1 = t4,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t1t4, ct2c−1 = t−1
2 ,

ct3c−1 = t3t4, ct4c−1 = t−1
4 ,

dt1d−1 = t1, dt2d−1 = t3,

dt3d−1 = t2, dt4d−1 = t4 }
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16. { t1, t2, t3, t4, a, b, c, d | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,
a8 = 1, b2 = t4,

c2 = t1t3t4, d2 = t1,

a−1b−1aba−4 = t2, a−1c−1aca−4b−1 = t−1
1 t3t−1

4 ,

a−1d−1ada−2b−1c−1 = t−1
2 , b−1c−1bc = t−1

2 t3t−1
4 ,

b−1d−1bd = 1, c−1d−1cdb−1 = t−1
4 ,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t1t4, ct2c−1 = t−1
2 ,

ct3c−1 = t3t4, ct4c−1 = t−1
4 ,

dt1d−1 = t1, dt2d−1 = t3
dt3d−1 = t2, dt4d−1 = t4 }

17. { t1, t2, t3, t4, a, b, c | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = t1t2,

c2 = 1, a−1b−1aba−4 = t−1
1 t−1

2 t4,

a−1c−1aca−4b−1 = t−1
1 t−1

2 t3t−1
4 , b−1c−1bc = 1,

at1a−1 = t−1
4 , at2a−1 = t3,

at3a−1 = t−1
1 , at4a−1 = t−1

2 ,
bt1b−1 = t1, bt2b−1 = t2,

bt3b−1 = t−1
3 , bt4b−1 = t−1

4 ,
ct1c−1 = t2, ct2c−1 = t1
ct3c−1 = t4, ct4c−1 = t3 }

18. { t1, t2, b, c, u | u2 = 1, bt1b−1 = t2
[t1, u] = 1, [t2, u] = 1,

[b, u] = 1, [c, u] = 1,

c2 = t1, ct1c−1 = t1,
b4 = u, b−1c−1bcb−2 = t2,

bt2b−1 = t−1
1 u, ct2c−1 = t−1

2 u }

19. { t1, t2, t3, t4, a, b | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = t1t2,

a−1b−1aba−4 = t−1
1 t−1

2 t3,

at1a−1 = t−1
3 , at2a−1 = t−1

4 ,

at3a−1 = t−1
2 , at4a−1 = t1,

bt1b−1 = t1, bt2b−1 = t2,

bt3b−1 = t−1
3 , bt4b−1 = t−1

4 }

20. { t1, t2, t3, t4, a, b, c | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = 1,
c2 = t1t3t4, a−1b−1aba−4 = t3t4,

a−1c−1aca−4b−1 = t−1
1 t−1

4 , b−1c−1bc = t−1
2 t3,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t1t4, ct2c−1 = t−1
2

ct3c−1 = t3t4, ct4c−1 = t−1
4 }

21. { t1, t2, b, u | u2 = 1, [b, u] = 1

[t1, u] = 1, [t2, u] = 1,

b−1t1b = t2, [t1, t2] = 1,

b4 = u, b−1t2b = t−1
1 u }
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22. { t, u, v | u4 = 1, v2 = 1,
[u, v] = 1, t−1ut = uv,

t−1vt = u2v}

23. { t1, t2, b, u | u2 = 1, [b, u] = 1

[t1, u] = 1, [t2, u] = 1,
b−1t1b = t2, [t1, t2] = 1,

b4 = u, b−1t2b = t−1
1 }

24. { t1, t2, b, c, u | u2 = 1, bt1b−1 = t2
[t1, u] = 1, [t2, u] = 1,
[b, u] = 1, [c, u] = 1,
c2 = t1, ct1c−1 = t1,

b4 = u, b−1c−1bcb−2 = t2u,

bt2b−1 = t−1
1 u, ct2c−1 = t−1

2 u }

25. { t, u, v | u4 = 1, v2 = 1,
[u, v] = u2, t−1ut = u,

t−1vt = uv}

26. { t, a, u | u4 = 1, a−1ta = t−1u,
t−1ut = u, a−1ua = u,

a2 = 1 }

27. { t, u, v | u4 = 1, v2 = u2,

[u, v] = u2, t−1ut = u,
t−1vt = uv}

28. { t1, t2, t3, t4, a, b, c, d | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = t3t4,
c2 = 1, d2 = t1t4,

a−1b−1aba−4 = t−1
1 t2t−2

3 t−1
4 , a−1c−1aca−4b−1 = t1t−2

2 t−2
3 t−1

4 ,

a−1d−1ada−2b−1c−1 = t−1
3 t−1

4 , b−1c−1bc = 1,

b−1d−1bd = t1t2, c−1d−1cdb−1 = t−1
1 t−1

2 t−1
3 ,

at1a−1 = t3, at2a−1 = t4,

at3a−1 = t−1
2 , at4a−1 = t1,

bt1b−1 = t−1
1 , bt2b−1 = t−1

2 ,

bt3b−1 = t3, bt4b−1 = t4,

ct1c−1 = t2, ct2c−1 = t1,
ct3c−1 = t4, ct4c−1 = t3,

dt1d−1 = t1, dt2d−1 = t−1
2

dt3d−1 = t3, dt4d−1 = t4 }

29. { t1, t2, t3, t4, a, b, c | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a4 = 1, b4 = t21t24,

c4 = t1t2t4, a−1b−1ab = t−1
2 ,

a−1c−1aca−2b−2 = t−1
2 t−1

4 , b−1c−1bca−3 = t−1
1 t−2

3 t−2
4 ,

at1a−1 = t−1
2 t3, at2a−1 = t1t3t4,

at3a−1 = t3t4, at4a−1 = t−2
3 t−1

4 ,

bt1b−1 = t−1
2 t3, bt2b−1 = t3,

bt3b−1 = t−1
1 t3, bt4b−1 = t1t2t−1

3 t4,
ct1c−1 = t1t4, ct2c−1 = t1t3t4,

ct3c−1 = t1t−1
2 , ct4c−1 = t−1

1 t2t−1
3 t−1

4 }
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30. { t1, t2, t3, t4, a, b, c, d | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,
a8 = 1, b2 = t4,

c2 = t21, d2 = t1,

a−1b−1aba−4 = t1t−1
3 t−1

4 , a−1c−1aca−4b−1 = t−1
1 t2t33t4,

a−1d−1ada−2b−1c−1 = t1t−2
2 , b−1c−1bc = t−1

1 t−1
2 t−1

3 t−2
4 ,

b−1d−1bd = 1, c−1d−1cdb−1 = t3,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t1, ct2c−1 = t1t−1
3 ,

ct3c−1 = t1t−1
2 , ct4c−1 = t−2

1 t−1
4 ,

dt1d−1 = t1, dt2d−1 = t−1
2 t−1

4
dt3d−1 = t3, dt4d−1 = t4 }

31. { t1, t2, t3, t4, a, b, c | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = t4,
c2 = t22, a−1b−1aba−4 = t2,

a−1c−1aca−6b−1 = t1t−1
2 t−2

3 t−1
4 , b−1c−1bca−4 = t1t2t4,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t2t−1
3 , ct2c−1 = t2

ct3c−1 = t−1
1 t2, ct4c−1 = t−2

2 t−1
4 }

32. { t1, t2, t3, t4, a, b | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = 1,

a−1b−1aba6 = t22t−1
3 ,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1t4, bt2b−1 = t−1
3 ,

bt3b−1 = t−1
2 , bt4b−1 = t−1

4 }

33. { t1, t2, t3, t4, a, b | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = 1,
a−1b−1aba2 = t3,

at1a−1 = t−1
4 , at2a−1 = t1,

at3a−1 = t2, at4a−1 = t3,
bt1b−1 = t2, bt2b−1 = t1,

bt3b−1 = t−1
4 , bt4b−1 = t−1

3 }

34. { t1, t2, t3, t4, a, b, c | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a4 = 1, b4 = t21t24,

c4 = t1t2t4, a−1b−1ab = t1t−1
3 ,

a−1c−1aca−2b−2 = t−1
1 t2t−2

3 t−1
4 , b−1c−1bca−3 = t−1

1 t−1
4 ,

at1a−1 = t−1
2 t3, at2a−1 = t1t3t4,

at3a−1 = t3t4, at4a−1 = t−2
3 t−1

4 ,

bt1b−1 = t−1
2 t3, bt2b−1 = t3,

bt3b−1 = t−1
1 t3, bt4b−1 = t1t2t−1

3 t4,
ct1c−1 = t1t4, ct2c−1 = t1t3t4,

ct3c−1 = t1t−1
2 , ct4c−1 = t−1

1 t2t−1
3 t−1

4 }
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35. { t1, t2, t3, t4, a, b, c, d | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,
a8 = 1, b2 = t4,

c2 = t21, d2 = t1,

a−1b−1aba−4 = t2, a−1c−1aca−4b−1 = t−2
1 t−1

2 t3t−1
4 ,

a−1d−1ada−2b−1c−1 = t−1
2 , b−1c−1bc = t−1

1 t−1
2 t−1

3 t−2
4 ,

b−1d−1bd = 1, c−1d−1cdb−1 = t3,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t1, ct2c−1 = t1t−1
3 ,

ct3c−1 = t1t−1
2 , ct4c−1 = t−2

1 t−1
4 ,

dt1d−1 = t1, dt2d−1 = t−1
2 t−1

4
dt3d−1 = t3, dt4d−1 = t4}

36. { t1, t2, b, u | u2 = 1, [b, u] = 1

[t1, u] = 1, [t2, u] = 1,
b−1t1b = t2, [t1, t2] = u,

b4 = 1, b−1t2b = t−1
1 }

37. { t1, t2, b, c, u | u2 = 1, bt1b−1 = t2
[t1, u] = 1, [t2, u] = 1,

[b, u] = 1, [c, u] = 1,
c2 = t1, ct1c−1 = t1,

b4 = 1, b−1c−1bcb−2 = t2u,

bt2b−1 = t−1
1 u, ct2c−1 = t−1

2 u }

38. { t1, t2, b, c, u | u2 = 1, bt1b−1 = t2
[t1, u] = 1, [t2, u] = 1,

[b, u] = 1, [c, u] = 1,

c2 = t1, ct1c−1 = t1,
b4 = u, b−1c−1bcb−2 = t2u,

bt2b−1 = t−1
1 , ct2c−1 = t−1

2 }

39. { t, a, u, v | u2 = 1, v2 = 1,

[u, v] = 1, a−1ta = t−1u,

a−1ua = u, a−1va = v,
t−1ut = v, t−1vt = u,

a2 = u }

40. { t1, t2, t3, t4, a, b, c, d | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = t3t4,
c2 = 1, d2 = t4,

a−1b−1aba−4 = t−1
1 t−1

3 t−1
4 , a−1c−1aca−4b−1 = t1t−1

2 t−1
3 t−1

4 ,

a−1d−1ada−2b−1c−1 = t−1
3 , b−1c−1bc = 1,

b−1d−1bd = 1, c−1d−1cdb−1 = t−1
3 ,

at1a−1 = t3, at2a−1 = t4,

at3a−1 = t−1
2 , at4a−1 = t1,

bt1b−1 = t−1
1 , bt2b−1 = t−1

2 ,

bt3b−1 = t3, bt4b−1 = t4,

ct1c−1 = t2, ct2c−1 = t1,
ct3c−1 = t4, ct4c−1 = t3,

dt1d−1 = t1, dt2d−1 = t−1
2

dt3d−1 = t3, dt4d−1 = t4 }
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41. { t1, t2, t3, t4, a, b, c | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,
a8 = 1, b2 = t4,

c2 = t2, a−1b−1aba−4 = t2,

a−1c−1aca−6b−1 = t−1
2 t−1

3 t−1
4 , b−1c−1bca−4 = t1t2t4,

at1a−1 = t−1
2 t−1

3 t−1
4 , at2a−1 = t−1

3 t−1
4 ,

at3a−1 = t−1
1 t−1

3 t−1
4 , at4a−1 = t23t4,

bt1b−1 = t1, bt2b−1 = t−1
2 t−1

4 ,

bt3b−1 = t−1
3 t−1

4 , bt4b−1 = t4,

ct1c−1 = t2t−1
3 , ct2c−1 = t2,

ct3c−1 = t−1
1 t2, ct4c−1 = t−2

2 t−1
4 }

42. The pro-2-group for this family has point group Q16. See discussion in Section 2.

43. { t1, t2, t3, t4, a, b | [t1, t2] = [t1, t3] = [t1, t4] = [t2, t3] = [t2, t4] = [t3, t4] = 1,

a8 = 1, b2 = t4,

a−1b−1aba6 = t−1
1 t2t−1

3 ,

at1a−1 = t4, at2a−1 = t−1
3 ,

at3a−1 = t1, at4a−1 = t2,

bt1b−1 = t−1
2 , bt2b−1 = t−1

1 ,

bt3b−1 = t−1
3 , bt4b−1 = t4 }

44. { t1, t2, b, c, u | u2 = 1, bt1b−1 = t2
[t1, u] = 1, [t2, u] = 1,

[b, u] = 1, [c, u] = 1,
c2 = t1, ct1c−1 = t1,
b4 = 1, b−1c−1bcb−2 = t2,

bt2b−1 = t−1
1 u, ct2c−1 = t−1

2 u }

45. { t1, t2, b, u | u2 = 1, [b, u] = 1

[t1, u] = 1, [t2, u] = 1,
b−1t1b = t2, [t1, t2] = u,

b4 = u, b−1t2b = t−1
1 }

46. { t1, t2, b, c, u | u2 = 1, bt1b−1 = t2
[t1, u] = 1, [t2, u] = 1,
[b, u] = 1, [c, u] = 1,

c2 = t1, ct1c−1 = t1,

b4 = u, b−1c−1bcb−2 = t2,

bt2b−1 = t−1
1 , ct2c−1 = t−1

2 }

47. { t, a, u | u4 = 1, a−1ta = t−1u,

t−1ut = u−1, a−1ua = u,

a2 = u }

48. { t, a, u | u4 = 1, a−1ta = t−1u,

t−1ut = u−1, a−1ua = u,
a2 = u−1 }

49. { t, u | u4 = 1, t−1ut = u−1 }

50. { t, a, u | [u, t] = 1, [u, a] = 1,

u2 = 1, a2 = u,
ata−1 = t−1 }

51. { t, u | u8 = 1, t−1ut = u3 }
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52. { t, u | u8 = 1, t−1ut = u−1 }

53. { t, a, u | u4 = 1, a−1ta = t−1,
t−1ut = u, a−1ua = u,

a2 = u }

54. { t, u, v | u4 = 1, v2 = 1,
[u, v] = 1, t−1ut = uv,

t−1vt = v}

55. { t, a, u, v | u2 = 1, v2 = 1,

[u, v] = 1, a−1ta = t−1u,
a−1ua = u, a−1va = v,

t−1ut = u, t−1vt = v,
a2 = v }

56. { t1, t2, b, c, u | u2 = 1, bt1b−1 = t2
[t1, u] = 1, [t2, u] = 1,

[b, u] = 1, [c, u] = 1,
c2 = t1, ct1c−1 = t1,
b4 = 1, b−1c−1bcb−2 = t2u,

bt2b−1 = t−1
1 , ct2c−1 = t−1

2 }

57. { t1, t2, b, u | u2 = 1, [b, u] = 1

[t1, u] = 1, [t2, u] = 1,
b−1t1b = t2, [t1, t2] = 1,

b4 = 1, b−1t2b = t−1
1 u }

58. { t, u, v | u2 = 1, v2 = 1,
[u, v] = 1, t−1ut = u,

t−1vt = v}

59. { t, a, u | [u, t] = 1, [u, a] = 1,

u2 = 1, a2 = 1,
ata−1 = t−1 }

60. { t, u, v | u4 = 1, v2 = 1,

[u, v] = 1, t−1ut = u,
t−1vt = v}

61. { t, u, v, w | u2 = 1, v2 = 1,

w2 = 1, [u, v] = 1,
[v, w] = 1, [w, u] = 1,

t−1ut = u, t−1vt = v,

t−1wt = uw }

62. { t1, t2, b, c, u | u2 = 1, bt1b−1 = t2
[t1, u] = 1, [t2, u] = 1,

[b, u] = 1, [c, u] = 1,

c2 = t1, ct1c−1 = t1,
b4 = 1, b−1c−1bcb−2 = t2,

bt2b−1 = t−1
1 , ct2c−1 = t−1

2 }

63. { t1, t2, b, u | u2 = 1, [b, u] = 1
[t1, u] = 1, [t2, u] = 1,
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b−1t1b = t2, [t1, t2] = 1,

b4 = 1, b−1t2b = t−1
1 }

64. { t, a, u, v | u2 = 1, v2 = 1,
[u, v] = 1, a−1ta = t−1u,

a−1ua = u, a−1va = v,

t−1ut = u, t−1vt = v,
a2 = 1 }

65. { t, u, v | u4 = 1, v2 = 1,

[u, v] = 1, t−1ut = u−1,
t−1vt = v}

66. { t, a, u, v | u2 = 1, v2 = 1,
[u, v] = 1, a−1ta = t−1,

a−1ua = u, a−1va = v,

t−1ut = u, t−1vt = v,
a2 = u }

67. { t, u, v | u4 = 1, v2 = 1,
[u, v] = 1, t−1ut = u,
t−1vt = u2v}

68. { t, u, v | u4 = 1, v2 = 1,

[u, v] = u2, t−1ut = u,
t−1vt = v}

69. { t, a, u | u4 = 1, a−1ta = t−1,
t−1ut = u, a−1ua = u,

a2 = 1 }

70. { t, u, v | u4 = 1, v2 = u2,
[u, v] = u2, t−1ut = u,

t−1vt = v}

71. { t, a, u, v | u2 = 1, v2 = 1,
[u, v] = 1, a−1ta = t−1,

a−1ua = u, a−1va = v,

t−1ut = v, t−1vt = u,
a2 = 1 }

72. { t1, t2, a, b, c | [t1, t2] = 1,

a2 = 1, b2 = a,
c2 = 1, [b, c] = a,

at1a−1 = t−1
1 , at2a−1 = t−1

2 ,

bt1b−1 = t2, bt2b−1 = t−1
1 ,

ct1c−1 = t1, ct2c−1 = t−1
2 }

73. { t, a, u | u4 = 1, a−1ta = t−1,

t−1ut = u−1, a−1ua = u,

a2 = 1 }

74. { t, a, u, v | u2 = 1, v2 = 1,

[u, v] = 1, a−1ta = t−1,
a−1ua = v, a−1va = u,
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t−1ut = u, t−1vt = v,
a2 = 1 }

75. { t, a, u | u4 = 1, a−1ta = t−1,
t−1ut = u−1, a−1ua = u,

a2 = u2 }

76. { t, a, u, v | u2 = 1, v2 = 1,
[u, v] = 1, a−1ta = t−1,

a−1ua = u, a−1va = v,
t−1ut = v, t−1vt = u,

a2 = uv }

77. { t, a, u | u4 = 1, a−1ta = t−1u2,

t−1ut = u, a−1ua = u−1,

a2 = 1 }

78. { t, a, u | u4 = 1, a−1ta = t−1,

t−1ut = u, a−1ua = u−1,
a2 = 1 }

79. { t, a, u | u4 = 1, a−1ta = t−1,
t−1ut = u, a−1ua = u−1,
a2 = u2 }

80. { t, u, v, w | u2 = 1, v2 = 1,

w2 = 1, [u, v] = 1,

[v, w] = 1, [w, u] = 1,
t−1ut = u, t−1vt = v,

t−1wt = w }

81. { t, a, u, v | u2 = 1, v2 = 1,

[u, v] = 1, a−1ta = t−1,

a−1ua = u, a−1va = v,
t−1ut = u, t−1vt = v,

a2 = 1 }
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Appendix B. The families of 2-groups of coclass at most 3

We now summarise the descendant patterns for the 12 families of 2-groups of coclass at most
2 and the conjectured patterns for the 70 families of 2-groups of coclass 3. The summary tables

follow the conventions introduced in Section 5. The tables are taken to begin at the periodic root.

A • at level 2n+k indicates that the (conjectured) period is k; otherwise it is the number of levels
in the table. If the shortest path in FG between a terminal group G and a mainline group has

length t, then FG has a twig of length t. We record the (conjectured) largest twig length for each

family.

Order Structure

2n+1 2/1

Table 0. Family #0 with periodic root of order 21 & twig length 1

Order Structure

2n+1 2/1

Table 1. Family #1 with periodic root of order 23 & twig length 1

Order Structure

2n+1 3/1

Table 2. Family #2 with periodic root of order 23 & twig length 1

Order Structure

2n+1 2/2 •
2n+2 1

Table 3. Family #3 with periodic root of order 25 & twig length 2

Order Structure

2n+1 2/2 •
2n+2 1/1

2n+3 1

Table 4. Family #4 with periodic root of order 27 & twig length 3

Order Structure

2n+1 2/2 •
2n+2 1

Table 5. Family #5 with periodic root of order 27 & twig length 2

Order Structure

2n+1 3/1

Table 6. Family #6 with periodic root of order 25 & twig length 1
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Order Structure

2n+1 4/2

2n+2 8/1 4

Table 7. Family #7 with periodic root of order 26 & twig length 2

Order Structure

2n+1 6/2

2n+2 6/2 4 •
2n+3 3

Table 8. Family #8 with periodic root of order 26 & twig length 2

Order Structure

2n+1 6/1

Table 9. Family #9 with periodic root of order 25 & twig length 1

Order Structure

2n+1 4/1

Table 10. Family #10 with periodic root of order 27 & twig length 1

Order Structure

2n+1 24/1

2n+2 8/4

2n+3 16/8 16/8 4/2 4/2

2n+4 24/12 8/4 8/4 16/8 12/6 12/6 12/6 12/6 16/8 12/6 8/4 8/4

12/6 12/6 24/12 12/6 32/16 32/16 32/16 32/16 •
2n+5 16 16 16 16 24/1 16 16 24 24 16 16 32

32 32 32 32 32 32 32 16 16 16 16 32

16 32 16 32 32 24 24 24 24 32 32 24

24/1 24 24 32 32 24 24 24 24 32 32 24

24 24 24 16 16 16 16 32 16 32/1 16 32

32 24 24 24 24/1 32 32 32 32 32 32 32

32 32 32 24 24 24 24 32 32 24 24 24

24 16 16 16 16 24 24 16 16 24 24 16

16 32 32 24 24 24 24 32 32 32 32 32

32 32 32 32 32 32 32 32 32 32 32 32

32 32 32 32 32 32 32 32 32 32 32 32

32 32 32 32 32 32 32 32 32 32 32 32

32 32 32 32 32 32 32 32 32 32 32 32

32 32 32 32 32 32 32 32 32 32 32

2n+6 8 8 8 8

Table 11. Family #11 with periodic root of order 214 & twig length 5
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Order Structure

2n+1 12/4

2n+2 18/6 9/3 18/6 9/3

2n+3 12 12 18/6 12 18 12 24 18 18 12 12 18 12 18 12 24 18 18

2n+4 6/2 6 6 6 4 4 •
2n+5 6/2

2n+6 12/4 12/4

2n+7 24 24 24 24 24 24 24 24

Table 12. Family #12 with periodic root of order 211 & twig length 3

Order Structure

2n+1 20/8

2n+2 10/4 10/4 10/4 10/4 4 4 4 4

2n+3 20/8 12/4 12 8 8 12 8 12 12 8 12 12 8 12 8 12

2n+4 4 4 4 4 10/4 10/4 10/4 10/4 10/4 10/4 6 6 •
2n+5 12 8 12/4 6 6 10 10 12 20 8 12 10 10 6 6 16

16 12 12 16 16 12 12

2n+6 6 6 6/2 6/2

2n+7 24 24 24 24

Table 13. Family #13 with periodic root of order 212 & twig length 4

Order Structure

2n+1 12/6

2n+2 4 4 12/6 8/4 12/6 8/4 •
2n+3 3 3 6 6 8/4 8/4 6 6 6/3 6/3 12/6 6/3 6/3 8 4 12/6

12/6 4 6

2n+4 4 4 8 4 4 4 8 4 8 6 6 8 6 6 4 4

12/6 8/4 12/6 8/4 8/4 6 6 8/4 6 6 4 4 4 4 4 4

4 4 8 8 8 8

2n+5 4 4 8 8 4 8 8 8 6 4 3 3 6 6 4 8

6 6 6 6 16 16 16 16 16 16 16 16

Table 14. Family #14 with periodic root of order 210 & twig length 4

Order Structure

2n+1 4/2

2n+2 8/4 8/4

2n+3 16/8 8/4 8/4 8/4 8/4 8/4 16/8 8/4

2n+4 16/2 16/2 8 8 16 16 8 8 16 16/2 16 16 16 16 16 16

16 16 16 16 16 16 16 16 16 16 16 16 8 8 16 16

8 8 16 16 16 16 16 16 •
2n+5 4 4 4/2 4 4

2n+6 8 8

Table 15. Family #15 with periodic root of order 211 & twig length 4
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Order Structure

2n+1 4/2

2n+2 8/4 8

2n+3 16/8 16/8 16 16

2n+4 16 16 16 16 16/1 16/1 16/1 16/1 16 16 16 16 16/1 16/1 16/1 16/1 •
2n+5 4 4/2 4 4 4 4 4

2n+6 8 8

Table 16. Family #16 with periodic root of order 211 & twig length 4

Order Structure

2n+1 12/6

2n+2 6 6 6/3 6 8 8

2n+3 4 4/2 4/2

2n+4 12/6 8 8 12/6 •
2n+5 16 16 12 8 8 8 8 8 8 16 16

Table 17. Family #17 with periodic root of order 210 & twig length 4

Order Structure

2n+1 12/1

2n+2 8/4 •
2n+3 6 12 6

Table 18. Family #18 with periodic root of order 28 & twig length 2

Order Structure

2n+1 4/2

2n+2 4/2 6/4

2n+3 2 2 4/2 4/2 4/2 4/2

2n+4 6/4 4/2 6/2 4/2 2 1 1 2 •
2n+5 4/2 4/2 4/2 2 2 4/2 4/2 2 2

2n+6 4/2 2/1 2 1 1 2 4 4 2/1 2/1

2n+7 4/2 4/2 4 4 4

2n+8 6 4 2/1 4/2

2n+9 4 4 4

Table 19. Family #19 with periodic root of order 29 & twig length 6

Order Structure

2n+1 8/4

2n+2 6/2 6/2 6 6

2n+3 6/2 3 4 3/1

2n+4 6/2 6/2 6 •
2n+5 5/2 4/2 5/2

2n+6 4 4 6 6 8 8

Table 20. Family #20 with periodic root of order 212 & twig length 4
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Order Structure

2n+1 6/4

2n+2 6/4 4 3/1 2 •
2n+3 4 6/2 4 4

2n+4 4 2

Table 21. Family #21 with periodic root of order 27 & twig length 3

Order Structure

2n+1 4/1

Table 22. Family #22 with periodic root of order 27 & twig length 1

Order Structure

2n+1 5/2

2n+2 5/2 5/2 •
2n+3 4/1 5/1 4/1

2n+4 5/1 4 2

2n+5 4

Table 23. Family #23 with periodic root of order 27 & twig length 4

Order Structure

2n+1 4/2

2n+2 6/2 3 •
2n+3 4/2

2n+4 3 4

Table 24. Family #24 with periodic root of order 27 & twig length 3

Order Structure

2n+1 4/1

Table 25. Family #25 with periodic root of order 27 & twig length 1

Order Structure

2n+1 6/2 •
2n+2 3

Table 26. Family #26 with periodic root of order 27 & twig length 2

Order Structure

2n+1 2/1

Table 27. Family #27 with periodic root of order 26 & twig length 1
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Order Structure

2n+1 4/1

2n+2 8/2

2n+3 16/4 16

2n+4 16/4 16/4 16 16 •
2n+5 4/1 4 4 4/1 4/1 4 4

2n+6 8/2 8 8

2n+7 8 8

Table 28. Family #28 with periodic root of order 29 & twig length 4

Order Structure

2n+1 16/2

2n+2 12/4 12/4

2n+3 12 24 24 12 24/1 12 12 24

2n+4 12/4 •
2n+5 8 8 16/2

2n+6 12/4 12/4

2n+7 12 24 24 12 24/1 12 12 24

2n+8 12

Table 29. Family #29 with periodic root of order 212 & twig length 5

Order Structure

2n+1 12/2

2n+2 16/2 16/2

2n+3 12/2 12/2 12/2 12/2

2n+4 24/4 24 24 24 24 24 24 24 •
2n+5 6/1 12 6

2n+6 16/2

2n+7 12 12

Table 30. Family #30 with periodic root of order 211 & twig length 4

Order Structure

2n+1 16/4

2n+2 32/2 32/2 8 8

2n+3 16 16 16/4 16/4

2n+4 8 8 32/2 32/2 8 8 16/1 16/1 •
2n+5 16/4 8 8 16 16/4

2n+6 32/2 32/2 8 8 16 16 32 32

2n+7 16/4 16/4 16 16

2n+8 32 32 8 8 16 16 8 8

Table 31. Family #31 with periodic root of order 211 & twig length 5
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Order Structure

2n+1 24/2

2n+2 12/2 12/2 •
2n+3 24/1 24 24

2n+4 8/1

2n+5 16

Table 32. Family #32 with periodic root of order 210 & twig length 4

Order Structure

2n+1 16/2

2n+2 8/4 8/4 •
2n+3 8/1 16 8 16/2 8 8/1 16

2n+4 4 4 4 4/2

2n+5 8 8

Table 33. Family #33 with periodic root of order 210 & twig length 4

Order Structure

2n+1 8/1

2n+2 8/8

2n+3 8 16 8 4 8 4 8 16/2

2n+4 8/8 4 •
2n+5 4 4 8/1 8/1 8/1 4 4

2n+6 8/8 8/8 8/8

2n+7 8 16 8 4 8 4 8 16 4 8 16 8

16/2 8 4 8 8 4 8 16 8 16 8 4

2n+8 4 4

Table 34. Family #34 with periodic root of order 212 & twig length 5

Order Structure

2n+1 8/4

2n+2 8/1 8/1 8/1 8/1

2n+3 8/4 8/4 8/4 8/4

2n+4 8 16 8 16/8 8 16 8 16 16 8 16 8 16 8 16 8 •
2n+5 4 4 4 2 4/2 4 2

2n+6 8/1 8/1

2n+7 8 8

Table 35. Family #35 with periodic root of order 211 & twig length 4

Order Structure

2n+1 12/3

2n+2 12/3 8 8 •
2n+3 16 12

Table 36. Family #36 with periodic root of order 28 & twig length 2
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Order Structure

2n+1 16/1

2n+2 8/2 •
2n+3 16

Table 37. Family #37 with periodic root of order 28 & twig length 2

Order Structure

2n+1 4/2

2n+2 8/2 4 •
2n+3 4/2

2n+4 4 8

Table 38. Family #38 with periodic root of order 27 & twig length 3

Order Structure

2n+1 8/1

Table 39. Family #39 with periodic root of order 27 & twig length 1

Order Structure

2n+1 8/4

2n+2 4/4 4/4 4 4

2n+3 4/2 4 4/2 4 4 4/2 4 4/2

2n+4 4/2 4 4 4 4 4 4/2 4 •
2n+5 8 8 8

Table 40. Family #40 with periodic root of order 212 & twig length 5

Order Structure

2n+1 12/4

2n+2 8 8/2 8/2 8

2n+3 12/4 12/4 8/2 8/2

2n+4 8/2 8 8 8/2 4 4 4 4 8 8 8/2 8 •
2n+5 12/4 12/4 12/4 16 16

2n+6 8 8 8 8 8 8/2 8/2 8 8 8 8 8

2n+7 12 12 8 8

Table 41. Family #41 with periodic root of order 212 & twig length 5

Order Structure

2n+1 9/4

2n+2 6/2 6 6 6/2 •
2n+3 9/2 9 9

2n+4 4 4

Table 42. Family #42 with periodic root of order 210 & twig length 3
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Order Structure

2n+1 6/4

2n+2 4 4/4 4/4 4 •
2n+3 3/2 6 3 6/4 3 3/2 6

2n+4 2 2 2 2 2 2 2 2

Table 43. Family #43 with periodic root of order 212 & twig length 4

Order Structure

2n+1 6/2

2n+2 4 4/2 •
2n+3 6

Table 44. Family #44 with periodic root of order 28 & twig length 2

Order Structure

2n+1 6/2

2n+2 6/2 4/1 •
2n+3 6/2 6/1

2n+4 4/1 6/1 8

2n+5 6 8

Table 45. Family #45 with periodic root of order 28 & twig length 4

Order Structure

2n+1 2/2

2n+2 4/4 2 •
2n+3 2 2 2/2

2n+4 2 2

Table 46. Family #46 with periodic root of order 27 & twig length 3

Order Structure

2n+1 6/1

Table 47. Family #47 with periodic root of order 27 & twig length 1

Order Structure

2n+1 3/2 •
2n+2 2

Table 48. Family #48 with periodic root of order 26 & twig length 2

Order Structure

2n+1 2/1

Table 49. Family #49 with periodic root of order 25 & twig length 1
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Order Structure

2n+1 3/2 •
2n+2 1

Table 50. Family #50 with periodic root of order 25 & twig length 2

Order Structure

2n+1 2/1

Table 51. Family #51 with periodic root of order 27 & twig length 1

Order Structure

2n+1 2/1

Table 52. Family #52 with periodic root of order 27 & twig length 1

Order Structure

2n+1 3/2 •
2n+2 2/1

2n+3 1

Table 53. Family #53 with periodic root of order 27 & twig length 3

Order Structure

2n+1 6/1

Table 54. Family #54 with periodic root of order 26 & twig length 1

Order Structure

2n+1 10/1

Table 55. Family #55 with periodic root of order 26 & twig length 1

Order Structure

2n+1 16/4

2n+2 4 8/1 4 8

Table 56. Family #56 with periodic root of order 27 & twig length 2

Order Structure

2n+1 12/2

2n+2 12/2 6/1 •
2n+3 12/2 4

2n+4 4 4

Table 57. Family #57 with periodic root of order 27 & twig length 3
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Order Structure

2n+1 3/1

Table 58. Family #58 with periodic root of order 24 & twig length 1

Order Structure

2n+1 6/1

Table 59. Family #59 with periodic root of order 24 & twig length 1

Order Structure

2n+1 4/2 •
2n+2 2

Table 60. Family #60 with periodic root of order 26 & twig length 2

Order Structure

2n+1 7/1

Table 61. Family #61 with periodic root of order 26 & twig length 1

Order Structure

2n+1 16/4

2n+2 24/1 24 12 12

Table 62. Family #62 with periodic root of order 27 & twig length 2

Order Structure

2n+1 18/3

2n+2 18/3 14 16 •
2n+3 12 8

Table 63. Family #63 with periodic root of order 27 & twig length 2

Order Structure

2n+1 13/1

Table 64. Family #64 with periodic root of order 26 & twig length 1

Order Structure

2n+1 5/1

Table 65. Family #65 with periodic root of order 26 & twig length 1
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Order Structure

2n+1 6/2 •
2n+2 2

Table 66. Family #66 with periodic root of order 26 & twig length 2

Order Structure

2n+1 3/2 •
2n+2 2

Table 67. Family #67 with periodic root of order 25 & twig length 2

Order Structure

2n+1 5/1

Table 68. Family #68 with periodic root of order 26 & twig length 1

Order Structure

2n+1 8/2 •
2n+2 2

Table 69. Family #69 with periodic root of order 26 & twig length 2

Order Structure

2n+1 2/1

Table 70. Family #70 with periodic root of order 25 & twig length 1

Order Structure

2n+1 12/1

Table 71. Family #71 with periodic root of order 26 & twig length 1

Order Structure

2n+1 12/2

2n+2 20/1 16

Table 72. Family #72 with periodic root of order 27 & twig length 2

Order Structure

2n+1 9/1

Table 73. Family #73 with periodic root of order 26 & twig length 1
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Order Structure

2n+1 9/1

Table 74. Family #74 with periodic root of order 26 & twig length 1

Order Structure

2n+1 6/2 •
2n+2 2

Table 75. Family #75 with periodic root of order 25 & twig length 2

Order Structure

2n+1 6/2 •
2n+2 2

Table 76. Family #76 with periodic root of order 25 & twig length 2

Order Structure

2n+1 6/1

Table 77. Family #77 with periodic root of order 25 & twig length 1

Order Structure

2n+1 6/1

Table 78. Family #78 with periodic root of order 26 & twig length 1

Order Structure

2n+1 4/1

Table 79. Family #79 with periodic root of order 25 & twig length 1

Order Structure

2n+1 4/1

Table 80. Family #80 with periodic root of order 25 & twig length 1

Order Structure

2n+1 10/1

Table 81. Family #81 with periodic root of order 25 & twig length 1
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