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Abstract

In this paper we take a significant step forward in the classification of 3-groups
of coclass 2. Several new phenomena arise. Theoretical and computational tools
have been developed to deal with them. We identify and are able to classify
an important subset of the 3-groups of coclass 2. With this classification and
further extensive computations, it is possible to predict the full classification.
On the basis of the work here and earlier work on the p-groups of coclass 1, we
formulate another general coclass conjecture. It implies that, given a prime p
and a positive integer r, a finite computation suffices to determine the p-groups
of coclass r.

1 Introduction

The coclass of a group of order pn and nilpotency class c is defined as n− c. In 1980,
Leedham-Green & Newman [16] made a series of conjectures about finite p-groups,
using coclass as the primary invariant. A detailed account of the proofs of these
conjectures, and the resultant program of study, can be found in [14].

The goal is to classify p-groups via coclass. We expect that it is possible to reduce
the classification to a finite calculation, and that the p-groups of a given coclass can
be partitioned into finitely many families, where the groups in a family share similar
structure and can be described by a parametrised presentation. One approach to
achieving this goal is to understand the structure of the coclass graph G(p, r). Its
vertices are the p-groups of coclass r, one for each isomorphism type, and its edges
are P → Q, with Q isomorphic to the quotient P/Lc(P ), where Lc(P ) is the last non-
trivial term of the lower central series of P . If G(p, r) can be constructed from a finite
subgraph using a finite number of graph-theoretic operations, then this may assist in
realising our goal.

We thank Heiko Dietrich for his careful reading, many comments, and for an illustration; and
Marcus du Sautoy for useful discussions. Both Eick and O’Brien were partially supported by the
Alexander von Humboldt Foundation. All authors were partially supported by the Marsden Fund of
New Zealand via grant UOA1015.
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Eick & Leedham-Green [11] proved that the graph for the 2-groups of a given coclass
can be constructed from a finite subgraph by applying just one type of operation to
the subgraph – and this operation has an analogue at the group-theoretic level. That
the graph exhibits such a simple structure was first conjectured by Newman & O’Brien
[18]. Their Conjecture P was proved by du Sautoy [7] and in a much sharper form in
[11]. The results of [11] have already been applied to study the automorphism groups
of 2-groups [9], and Schur multiplicators of p-groups [10].

Blackburn’s classification [3] of the 3-groups of coclass 1 implies that these groups
exhibit behaviour similar to that proved for 2-groups. But we know from other in-
vestigations that the results of [11] are not generally true. The 5-groups of coclass 1
have been investigated in [4, 5, 6, 15, 17]; while this work suggests that G(5, 1) can be
constructed from a finite subgraph, the above operation does not suffice.

The number of isomorphism classes of p-groups of coclass r of order pn, for odd
p, is bounded by a linear function of n precisely when (p, r) is one of (3, 1), (3, 2) or
(5, 1). We consider here the 3-groups of coclass 2. The study of G(3, 2) goes back to the
late 1970s (see [1, 2]) and early results played a role in the development of the original
coclass conjectures. Our computations, reported in Section 8, show that the complete
graph is very dense. In Theorems 5.10 and 7.1 we determine a significant subgraph: the
skeleton graph (defined in Section 3.4). While this subgraph is comparatively sparse,
it exhibits the broad structure of G(3, 2). Our computations suggest that the complete
structure of G(3, 2) can be determined from a finite subgraph.

The skeleton graph of G(3, 2) exhibits some new features; we consider these in
Section 7. Its determination required dealing with number-theoretic problems similar
to those considered by Leedham-Green & McKay [15] in their investigation of skeleton
graphs of G(p, 1) for p ≥ 5. That G(3, 2) does not reveal all complexities that arise
in classifying p-groups by coclass is demonstrated by Dietrich [6]. We conclude by
stating Conjecture W: a new conjecture about the graph-theoretic operations needed
to describe G(p, r) for arbitrary p and r.

We briefly consider its implications for the goal of classifying the p-groups of co-
class r, one already realised via Theorem P for the prime 2. A constructive proof of
Conjecture W , its analogue for odd primes, that provides explicit bounds would reduce
this classification for a fixed p and r to a finite calculation. It would also allow us to
determine a recursive formula in n for the number of isomorphism types of groups of
order pn and coclass r.

2 Preliminaries

2.1 Coclass trees

By [14, Corollary 7.4.13], every infinite pro-p-group G of coclass r is a p-adic pre-space
group. Namely, G has a normal subgroup T which is a free, finitely generated module
over the ring Zp of p-adic integers, and Q := G/T is a finite p-group that acts uniserially
on T . While T is not unique, the rank d of T as Zp-module is an invariant of G called

2



its dimension; it is a consequence of [14, Corollary 7.4.13 and Theorem 10.5.12] that
d = (p− 1)ps for some s ∈ {0, . . . , r − 1}.

The uniserial action implies that the subgroups defined by T0 := T and Ti+1 :=
[Ti, Q] form a chain T = T0 > T1 > . . . > Ti > Ti+1 > . . . > {0} with [Ti : Ti+1] = p
and Ti+d = pTi for 0 ≤ i < ∞. We set T∞ := {0}. This chain extends to a doubly
infinite series · · · > T−2 > T−1 > T0 > T1 > T2 > · · · and again Ti+1 has index p in Ti
for all i.

If P and Q are groups in G(p, r), then P is a descendant of Q if there is a (possibly
trivial) path in G(p, r) from P to Q. The descendant tree of Q is the subtree of its
descendants, and has root Q.

If G is an infinite pro-p-group of coclass r, then G/Li+1(G), the quotient of G
having class i, is a finite p-group of coclass at most r for all i > 0, and the coclass of
G/Li+1(G) is precisely r for all but finitely many values of i. Moreover, since there are
only finitely many infinite pro-p-groups of coclass r up to isomorphism [14, p. (viii)], for
sufficiently large i the group G/Li+1(G) is a quotient of only one infinite pro-p-group
of coclass r. Choose i minimal with respect to these properties. The coclass tree T (G)
is the descendant tree of G/Li+1(G) in G(p, r).

There are only finitely many coclass trees in G(p, r) and only finitely many groups
in G(p, r) are not contained in a coclass tree [13, Proposition 2.2]. Hence the study of
the broad structure of G(p, r) reduces to an investigation of its coclass trees.

2.2 Mainline and branches

Let G be an infinite pro-p-group of coclass r, and let T (G) be its coclass tree with root
G/Li+1(G). The quotients G/Li+1(G), G/Li+2(G), . . . form a unique maximal infinite
path, or mainline, in T (G).

For j ≥ i, let Bj denote the subtree of T (G) consisting of G/Lj+1(G) and all of
its descendants that are not descendants of G/Lj+2(G). Thus Bj is a finite subtree
of T (G), and is its jth branch. Hence T (G) consists of an infinite sequence of trees
Bi,Bi+1, . . . , connected by the mainline. The subtree of all vertices in Bj of distance
at most k from G/Lj+1(G) is denoted by Bj,k.

2.3 Periodicity

Eick & Leedham-Green [11, Theorem 29] prove the following.

Theorem 2.1 Let G be an infinite pro-p-group of coclass r and dimension d. There
exists an explicit function f such that, for every positive integer k and every j ≥ f(k),
there is a graph isomorphism πj : Bj,k → Bj+d,k.

We say that T (G) has period d and defect f ; bounds for the latter appear in [11].
This theorem suggests that we arrange the infinitely many branches of a coclass tree

T (G) with root G/Li+1(G) into d sequences (Bi+e,Bi+e+d,Bi+e+2d, . . .) for 0 ≤ e < d.
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The depth of a rooted tree is the length of a maximal path from a vertex to the
root. A sequence of branches has bounded depth if the depths of its trees Bi+e+kd are
bounded by a constant. (If every sequence of branches has bounded depth, then T (G)
has bounded depth.) Theorem 2.1 implies that a sequence of branches of bounded depth
is ultimately constant, and can therefore be constructed from a finite subsequence.

Every sequence of branches of a coclass tree in G(2, r) or G(3, 1) has bounded depth
(see [14, Theorem 11.4.4]). In these cases Theorem 2.1 shows that Bj+d ∼= Bj for
large enough j. The proof in [11] of Theorem 2.1 is underpinned by an explicit group-
theoretic construction. It defines families of p-groups of coclass r where the groups in
a family share similar structure and are described by a parametrised presentation.

All coclass graphs other than G(2, r) and G(3, 1) contain coclass trees of unbounded
depth (see [14, Theorem 11.4.4]) and so are not covered by Theorem 2.1. We show
that both types of coclass trees occur in G(3, 2).

2.4 Notation

Much of our notation is standard. For consistency, if G is the split extension A n B
or the non-split extension A · B, then in both cases B is normal in G. We denote a
term of the lower central series of G by Li(G) for i > 0; and a left-normed commutator
[a, b, . . . , b︸ ︷︷ ︸

i

] by [a,i b].

3 Skeletons

In this section we recall a construction by Leedham-Green & McKay [14, §8.4] that is
central to the investigation of branches of unbounded depth. Throughout this section,
let p be an odd prime.

Let G be an infinite pro-p-group of coclass r. Recall that G is an extension of a d-
dimensional Zp-module T by a finite p-group Q which acts uniserially on T with series
T = T0 > T1 > . . .. The exterior square T ∧ T is a ZpQ-module under the diagonal
action of Q. If i < j then we define Ti ∧Tj = Tj ∧Ti to be the Zp-submodule of Ti ∧Ti
spanned by {s ∧ t | s ∈ Ti, t ∈ Tj}.

3.1 Twisting homomorphisms

Let γ : T ∧ T → T be a ZpQ-module homomorphism. Then γ(T` ∧ T ) is a Q-invariant
subgroup of T for every ` ≥ 0. Let γ(T ∧ T ) = Tj for j ≥ 0, and let γ(Tj ∧ T ) = Tk. If
j ≤ m ≤ k, then γ induces a homomorphism γm : T/Tj ∧ T/Tj → Tj/Tm defined by

γm(a+ Tj ∧ b+ Tj) = γ(a ∧ b) + Tm.

This induced homomorphism can be used to define a new group multiplication ‘·’ on
T/Tm that turns the additive abelian group T/Tm into a multiplicative group of class
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at most 2. More precisely, for a, b ∈ T we define

(a+ Tm) · (b+ Tm) = (a+ b+ Tm) + 1
2
γm(a+ Tj ∧ b+ Tj).

The resulting group Tγ,m := (T/Tm, ·) has order pm. Commutators are evaluated easily
in Tγ,m as

[a+ Tm, b+ Tm] = γm(a+ Tj ∧ b+ Tj).

If m = j, then γm is the trivial homomorphism, and Tγ,m is abelian. If j < m ≤ k
then Tγ,m has derived subgroup Tj/Tm and class precisely 2. Also Tγ,n is a quotient of
Tγ,m if j ≤ n ≤ m.

Lemma 3.1 With the above notation, let γ(T ∧ T ) = Tj and γ(Tj ∧ T ) = Tk, and let
d be the rank of T , as ZpQ-module.

(a) If j is infinite, or equivalently γ = 0, then m is infinite and Tγ,∞ ∼= (T,+).

(b) If j is finite, or equivalently γ 6= 0, then 2j − d < k ≤ 2j + d.

(c) If j ≤ m ≤ k, then Tpiγ,m+2id is defined for every i ≥ 0.

Proof:

(a) This follows directly from the definition.

(b) Write j = id+e with 0 ≤ e < d. Then Tk = γ(Tj∧T ) = γ(piTe∧T ) = piγ(Te∧T ),
and Tj+d = pTj = γ(pT ∧ T ) ≤ γ(Te ∧ T ) ≤ γ(T ∧ T ) = Tj. Hence piTj+d ≤
Tk ≤ piTj or, equivalently, id + j + d ≥ k ≥ id + j. As id = j − e, this yields
2j + (d− e) ≥ k ≥ 2j − e.

(c) Note that piγ(T ∧ T ) = piTj = Tj+id, and

piγ(Tj+id ∧ T ) = p2iγ(Tj ∧ T ) = p2iTk = Tk+2id.

Thus if j ≤ m ≤ k, then j + 2id ≤ m+ 2id ≤ k + 2id, and the result follows. •

3.2 Skeleton groups

Assume that G splits over T . Let γ : T ∧ T → T be a ZpQ-module homomorphism,
where γ(T ∧T ) = Tj and γ(Tj∧T ) = Tk, and j ≤ m ≤ k <∞. Since the natural action
of Q on T/Tm respects the new multiplication induced by γ, we can define a skeleton
group Gγ,m := QnTγ,m. If j is sufficiently large, then Gγ,m is a group of depth m−j in
the branch of T (G) with root QnT/Tj. Lemma 3.1(c) shows that the homomorphism
piγ for i ≥ 0 defines a skeleton group Gpiγ,m+2id of depth m− j+ id in the branch with
root QnT/Tj+id. Thus the sequence of branches with roots QnT/Tj+id for i = 0, 1, . . .
has unbounded depth.
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Now assume that G is a non-split extension of T by Q. As described in [14, §10.4],
there exists a unique minimal supergroup S of T such that G embeds in the infinite
pro-p-group H := Q n S of finite coclass. A finite upper bound to [H : G] = [S : T ]
is given in [14, Theorem 10.4.6]. Let γ : S ∧ S → S be a ZpQ-module homomorphism
where γ(S ∧ S) = Sj and γ(Sj ∧ S) = Sk, and j ≤ m ≤ k. Now Hγ,m = Q n Sγ,m
is the skeleton group defined by γ and m. Assume that the largest mainline quotient
of Hγ,m has class j, so H/Lj+1(H) ∼= Hγ,m/Lj+1(Hγ,m). Assume also that j is large
enough so that Lj+1(H) ≤ G. Define Gγ,m as the full preimage in Hγ,m of G/Lj+1(H).
Then Gγ,m is the skeleton group for G defined by γ and m.

Lemma 3.2 Every constructible group in the sense of [14, Definition 8.4.9] is a skele-
ton group, and conversely.

Proof: This is straightforward if the infinite pro-p-group G splits over T . If G is a non-
split extension of T by Q, then a constructible group Gα for G is defined as an extension
determined by α ∈ HomQ(T ∧ T, T ) in [14, Definition 8.4.9]. This homomorphism
extends to the minimal split supergroup S of T and defines a constructible group Gα

for the pro-p-group Qn S. Since Gα is a skeleton group for Qn S and contains Gα as
an appropriately embedded subgroup, Gα is a skeleton group. •

3.3 The isomorphism problem for skeleton groups

Assume that T is a characteristic subgroup of G. (This assumption is always satisfied in
our later applications.) Since Ti for i ≥ 0 is then characteristic in G, each α ∈ Aut(G)
induces an automorphism of T/Ti. Hence we can define an action of Aut(G) on the
set of homomorphisms γm induced by surjections γ ∈ HomQ(T ∧ T, Tj). Namely, for
x, y ∈ T/Tj let

α(γm)(x ∧ y) := α(γm(α−1(x) ∧ α−1(y))).

Lemma 3.3 Let γ and γ′ be two surjections in HomQ(T ∧ T, Tj), and assume that
there exists α ∈ Aut(G) with α(γm) = γ′m. Then Gγ,m

∼= Gγ′,m.

Proof: First consider the case where G = Qn T . Since T is characteristic in G, the
automorphism α induces automorphisms of Q and of T . The restriction of α to T is a
Zp-linear map. Hence for a, b ∈ T , if ·γ and ·γ′ denote the twisted operations on T/Tm
defined by γ and γ′ respectively then

α((a+ Tm) ·γ (b+ Tm)) = α((a+ b+ Tm) + 1
2
γm(a+ Tj ∧ b+ Tj))

= α(a+ Tm) + α(b+ Tm) + 1
2
α(γm(a+ Tj ∧ b+ Tj))

= α(a+ Tm) + α(b+ Tm) + 1
2
γ′m(α(a+ Tj) ∧ α(b+ Tj)))

= α(a+ Tm) ·γ′ α(b+ Tm).
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Thus α induces an isomorphism Tγ,m → Tγ′,m. Since G = Q n T , we deduce that
Gγ,m = QnTγ,m and the map Gγ,m → Gγ′,m : (g, x) 7→ (α(g), α(x)) is an isomorphism.

Now suppose that G is a non-split extension of T by Q, and let H = GS be a
minimal split supergroup. An automorphism of G restricts to an automorphism of
T and this, in turn, extends uniquely to S. Since H = GS, an automorphism of G
extends to an automorphism of H which normalises G. The split case implies that
Hγ,m

∼= Hγ′,m and thus Gγ,m
∼= Gγ′,m. •

The isomorphisms induced by this action of Aut(G) on skeleton groups are orbit iso-
morphisms. The determination of the orbit isomorphisms is an important step towards
a solution of the isomorphism problem for the skeleton groups. Other isomorphisms
can arise, as the study of 3-groups of coclass 2 shows. We call them exceptional. Their
complete determination requires considerable care.

3.4 The skeleton graph

Let P be a skeleton group in T (G) of class c, and let Lc(P ) be the last non-trivial
term of its lower central series. If P/Lc(P ) is in T (G), then it is also a skeleton group.
Thus the skeleton groups define a subgraph, the skeleton graph, of T (G) which includes
the mainline. The subtree of branch Bj consisting of skeleton groups defines Sj, the
skeleton of Bj.

The twig of P is the subtree of all descendants of P that are not descendants of any
skeleton group that is a proper descendant of P . Thus T (G) is partitioned into twigs,
and the twigs are connected by the skeleton graph of T (G).

The following is a consequence of [14, Theorem 11.3.9] and Lemma 3.2.

Theorem 3.4 There is an absolute bound to the depth of the twigs in T (G).

Hence the skeleton graph exhibits the broad structure of T (G), the twigs contain
the fine detail. In particular, there are only finitely many isomorphism types of twigs.
Conjecture W (Section 9) suggests that there are patterns in the isomorphism types of
twigs which occur in a coclass tree.

4 The infinite pro-3-groups of coclass 2

We show that there are 16 infinite pro-3-groups of coclass 2 up to isomorphism, and
identify the four coclass trees in G(3, 2) that have unbounded depth.

Theorem 4.1 There are six isomorphism types of infinite pro-3-groups of coclass 2
with non-trivial centre. They have the following pro-3 presentations:

{a, t, z | a3 = zf , [t, ta] = zg, ttata
2

= zh, z3 = [z, a] = [z, t] = 1}

where (f, g, h) is one of (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 2), (1, 0, 0), or (1, 1, 2).
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Proof: Every infinite pro-3-group of coclass 2 with non-trivial centre is a central
extension of the cyclic group of order 3 by the (unique) infinite pro-3-group S of coclass
1 (see [14, §7.4]). This is reflected in the presentations, since 〈z〉 is a central subgroup
of order 3 with quotient S. The isomorphism types of infinite pro-3-groups of coclass
2 with non-trivial centre correspond one-to-one to the orbits of Aut(S) × Aut(Z/3Z)
on H2(S,Z/3Z) ∼= (Z/3Z)3. •

Every infinite pro-3-group G of coclass 2 with trivial centre is a 3-adic space group
of dimension d = 2 ·3s where s ∈ {0, 1}. As the unique 3-adic space group of dimension
2 has coclass 1, it follows that d = 6. Thus G is an extension of a free Z3-module of
rank 6 by a finite 3-group acting faithfully and uniserially on the module.

We use number theory to describe the infinite pro-3-groups of coclass 2 in more
detail. Let K be the ninth cyclotomic number field. Then K = Q3(θ), where Q3 is the
field of 3-adic numbers, and θ is a primitive ninth root of unity; so 1 + θ3 + θ6 = 0.
The ring of integers O of K is a free Z3-module of rank 6 generated by 1, θ, . . . , θ5.

Let W be the group of Z3-linear maps of O generated by the permutations a =
(1, θ, . . . , θ8) and y = (1, θ3, θ6). Then W has order 81 and is isomorphic to the wreath
product of two cyclic groups of order 3. Further, b = (θ, θ4, θ7)(θ2, θ8, θ5) = a5y2ay,
and so b ∈ W . The action of W on O extends to a Q3-linear action on K. We write
kw for the image of k ∈ K under w ∈ W . Note that ka = kθ, and thus a acts as
multiplication by θ. Further, kb = σ4(k), where, for i prime to 3, the map σi is the
Galois automorphism of K defined by θ 7→ θi.

The split extension W n (O,+) = {(w, o) | w ∈ W, o ∈ O} is a uniserial 3-adic
space group of coclass 4 with translation subgroup {(1, o) | o ∈ O} ∼= (O,+). Let
p = (θ − 1)O denote the unique maximal ideal in O. The maximal W -invariant series
in the translation subgroup (O,+) is O = p0 > p1 > p2 > . . ..

It is sometimes useful to have a multiplicative version of (O,+). We denote this
multiplicative group by T and write Ti for the subgroup corresponding to pi. If t0 ∈ T
corresponds to 1 ∈ O, then ti = [t0,i a] ∈ Ti \Ti+1 corresponds to (θ−1)i ∈ pi \pi+1. In
the multiplicative setting we write the split extension W n T as {wt | w ∈ W, t ∈ T}.

Every 3-adic space group of coclass 2 embeds as a subgroup of finite index in WnT .
Define C := 〈a〉 and D := 〈a, b〉 as subgroups of W , and so of W n T .

Theorem 4.2 There are ten isomorphism types of infinite pro-3-groups of coclass 2
with trivial centre. They are:

(a) R := 〈a, t0〉 so R = C n T .

(b) Gi := 〈a, bti−1〉 for i = 1, 2, 3, so Gi = D · Ti and has index 3 in its minimal split
supergroup Hi−1 := 〈a, b, ti−1〉.

(c) 〈a, yti−2〉 and 〈a, ya−1ti−2〉 for i = 2, 3, 4. Each subgroup is isomorphic to W · Ti
and has index 9 in W n Ti−2.
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That there are precisely ten isomorphism types follows from [8]; the algorithm given
there can be used to obtain descriptions of the groups.

The following can be deduced from Corollary 11.4.2 and Theorem 11.4.4 of [14].

Theorem 4.3 The six groups of Theorem 4.1 and the six groups in part (c) of Theorem
4.2 have coclass trees whose sequences of branches all have bounded depth.

Since the trees of bounded depth are covered by Theorem 2.1, we do not investigate
them further. As we prove below, the remaining groups – those in parts (a) and (b)
of Theorem 4.2 – have coclass trees with unbounded depth, and so we study them.
In Sections 5 and 7 respectively, we study T (R) and T (Gi) for 1 ≤ i ≤ 3; in Section
6 we prepare for the latter by studying T (Hi) for 0 ≤ i ≤ 2. We first theoretically
determine their skeleton graphs and then investigate their twigs.

5 The skeleton groups in T (R)

The root of T (R) has order 39. Let Bj denote the branch of T (R) whose root has class
j and order 3j+2, and let Sj be the skeleton of Bj.

In this section we determine Sj for every j ≥ 7. The general construction of
skeleton groups is described in Section 3. In number-theoretic notation, it uses the
surjections γ ∈ HomC(O ∧O, pj), and their images γm in HomC(O/pj ∧O/pj, pj/pm),
for j ≤ m ≤ k, where k is as defined in Section 3.1; we determine the value of k in
Lemma 5.3. The resulting skeleton groups Rγ,m := C n Tγ,m have order 3m+2, class
m, and depth m− j in Sj. We first describe HomC(O ∧O,O), then we determine all
orbit isomorphisms, and finally show that there are no exceptional isomorphisms. We
also give presentations for the skeleton groups and describe their automorphisms. To
facilitate the determination of Sj, we use a different representation of R for each j.

5.1 The homomorphism space

We now describe the space of homomorphisms which determine the skeleton groups in
T (R). Recall that σi is the Galois automorphism of K defined by θ 7→ θi where i is
prime to 3. We first define the map

ϑ : O ∧O → O : x ∧ y 7→ σ2(x)σ−1(y)− σ−1(x)σ2(y). (1)

Lemma 5.1 The map ϑ is an element of HomC(O ∧ O,O). If i and j are non-
negative integers, then ϑ maps pi ∧ pj onto pi+j+ε, where ε = 3 if i ≡ j mod 3, and
ε = 2 otherwise.

Proof: Clearly ϑ(θx ∧ θy) = σ2(θx)σ−1(θy)− σ−1(θx)σ2(θy) = θϑ(x ∧ y). Hence ϑ is
compatible with the action of θ, and thus ϑ ∈ HomC(O ∧O,O). The image of pi ∧ pj
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under ϑ is generated by ϑ((θ−1)iθu1 ∧ (θ−1)jθu2) for 0 ≤ u1, u2 ≤ 5, as pi = (θ−1)iO
and O is generated by 1, θ, . . . , θ5 as a Z3-module. Let e = i− j and f = u1−u2. Then

ϑ((θ − 1)iθu1 ∧ (θ − 1)jθu2)

= (θ2 − 1)j+eθ2(u2+f)(θ−1 − 1)jθ−u2 − (θ−1 − 1)j+eθ−(u2+f)(θ2 − 1)jθ2u2

= (θ2 − 1)j(θ−1 − 1)j(θ − 1)eθu2−f−e[(1 + θ)eθ3f+e − (−1)e]

= (θ − 1)i+j c(i, j, u1, u2) [(1 + θ)eθ3f+e − (−1)e],

where c(i, j, u1, u2) is a unit. Consider the term (1 + θ)eθ3f+e − (−1)e: if e ≡ 0 mod 3
then it is in p3; if e ≡ 0 mod 3 and f 6≡ 0 mod 3 then it is in p3 \ p4; if e 6≡ 0 mod 3
then it is in p2 \ p3. •

Let U denote the unit group of the ring O.

Lemma 5.2 Let i and j be non-negative integers.

(a) HomC(pi ∧ pi, pi+j) = {c(θ − 1)j−i−3ϑ | c ∈ O} = pj−i−3ϑ.

(b) HomC(pi ∧ pi, pi+j) \ HomC(pi ∧ pi, pi+j+1) = (θ − 1)j−i−3Uϑ.

Proof: Lemma 5.1 shows that (θ − 1)j−i−3ϑ is a surjective element of HomC(pi ∧
pi, pi+j). By [14, Theorem 11.4.1], the set {ϑ} is a K-basis of HomC(K ∧K,K). Hence
HomC(pi ∧ pi, pi+j) = pj−i−3ϑ for every j ≥ 0. Also pl \ pl+1 = (θ − 1)lU for every l. •

5.2 A change of representation and notation

To describe Sj, the skeleton of Bj, we must determine the orbits of the action of Aut(R)
on the set of homomorphisms induced by the surjections of Lemma 5.2 for i = 0. The
term (θ − 1)j−3 introduces technical complications to these computations. We avoid
these by adjusting our notation.

Let Rh = C n Th ∼= C n ph for h ≥ 0. Then R0 = R and Rh
∼= R for h ≥ 1.

Using Rj−3 instead of R0, the skeleton groups in Bj correspond to the Z3C-module
surjections

γ : pj−3 ∧ pj−3 → p2j−3.

Lemma 5.2 shows that these surjections can be written as cϑ for some unit c ∈ U ,
avoiding (θ − 1)j−3.

If j ≤ m ≤ k, then the new surjection γ induces the homomorphism

γm : pj−3/p2j−3 ∧ pj−3/p2j−3 → p2j−3/pm+j−3.

As with the previous notation, γm defines a multiplication ‘·’ on the set pj−3/pm+j−3.
We denote the resulting group (pj−3/pm+j−3, ·) by Tj−3,γ,m. It has order 3m and derived
subgroup p2j−3/pm+j−3. Now Rj−3,γ,m = CnTj−3,γ,m is a skeleton group in Sj of order
3m+2, class m, and depth m− j.
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Lemma 5.3 For every j ≥ 7, the skeleton Sj has depth j − χj, where χj = 0 if 3
divides j, and χj = 1 otherwise. In particular, every skeleton Sj is non-trivial, and
every sequence of branches in T (R) has unbounded depth.

Proof: Lemma 5.1 implies that ϑ maps pj−3 ∧ pj−3 onto p2j−3, and p2j−3 ∧ pj−3 onto
p3j−6+ε, where ε = 3 if 3 divides j, and ε = 2 otherwise. Hence Rj−3,γ,m is defined for
j ≤ m ≤ 2j − 3 + ε = 2j − χj. •

Hence, for the remainder of Section 5, we assume that j ≥ 7 and j ≤ m ≤ 2j − χj,
where χj is defined in the above lemma.

5.3 The automorphism group of Rh

We construct the automorphism group of Rh for h ≥ 0 from three subgroups.

Galois automorphisms. Observe that σ2 generates the Galois group Gal(K,Q3),
which is cyclic of order 6. Further, σ2 induces an automorphism of O, and thus of ph,
that extends to an automorphism of Rh, also called σ2, mapping a to a2. Let

A0 = 〈σ2〉 ≤ Aut(Rh).

Unit automorphisms. Multiplication by a unit u ∈ U is an automorphism of the
additive group O that normalises ph. Thus it extends to an automorphism µu of Rh

that fixes a. Let
A1 = 〈µu | u ∈ U〉 ≤ Aut(Rh).

Central automorphisms. Viewing Rh as a subgroup of C n Th−1 allows an element
of Th−1 ∼= ph−1 to act as an automorphism by conjugation. This action of φ ∈ ph−1 is
denoted by νφ. Such automorphisms fix Th and Rh/Th pointwise. Let

A2 = 〈νφ | φ ∈ ph−1〉 ≤ Aut(Rh).

Lemma 5.4 Aut(Rh) = (A0 n A1) n A2, and is isomorphic to (Aut(C) n U) n Th−1.

Proof: Since ph is a characteristic subgroup of Rh, it follows that Aut(Rh) maps into
Aut(C); and this map is onto, since A0 maps onto Aut(C). It remains to prove that
A1nA2 is the kernel of this homomorphism. This kernel maps, by restriction, into the
group of automorphisms of ph as C-module; that is to say, as O-module. But ph is a
free O-module of rank 1, so this automorphism group is naturally isomorphic to the
group of units U of O, and so the subgroup A1 shows that this restriction map is onto.

Finally, we need to verify that A2 is the kernel of this restriction map. This kernel,
as it centralises both Rh/p

h and ph, consists of the group of derivations of C into
the C-module ph. Now H1(C,K) = 0, since C has order 9, and 9 is invertible in
K. Thus, if Rh = C n ph is embedded, in the natural way, into C n K, then every
derivation of C into ph becomes an inner derivation induced by an element of K. But
the inner derivations induced by conjugation by elements of K that normalise Rh are
those induced by conjugation by elements of ph−1. The result follows. •
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5.4 Some number theory

As the descriptions of Aut(Rj−3) and HomC(pj−3 ∧ pj−3, p2j−3) exhibit, number theory
plays a role in the construction of skeleton groups. We now present some number-
theoretic results that help to solve the isomorphism problem for skeleton groups in
Sj.

As O is a local ring with unique maximal ideal p, its unit group U = O \ p. Recall
the structure of U from [12, Chapter 15].

Lemma 5.5 For i > 0, let Ui = 1 + pi and κi = 1 + (θ − 1)i.

(a) U = U0 > U1 > U2 > . . . is a filtration of U whose quotients are cyclic, and
respectively generated by −1, θ, κ2, θ

3 and κi for i ≥ 4.

(b) The torsion subgroup of U has order 18, and is generated by θ and −1.

(c) The exponential map defines an isomorphism p4 → U4.
Recall that a subgroup U of a group V covers a normal section A/B of V if A/B ≤

UB/B.

Lemma 5.6 Let ρ : U → U : u 7→ σ2(u)σ−1(u)u−1. Then ρ(U) is a subgroup of index
34 in U that covers Ui/Ui+1 if and only if i 6∈ {1, 3, 5, 11}.
Proof: First we consider ρ(U4). Let τ : p4 → p4 be defined by x 7→ σ2(x)+σ−1(x)−x.
The image τ(p4) maps under the exponential map onto ρ(U4), so p4/τ(p4) ∼= U4/ρ(U4).
To determine the image of τ , observe that σ2 is an automorphism of order 6. Thus it
is diagonalisable with eigenvalues wi for i = 0, . . . , 5, where w := −θ3 is a primitive
sixth root of unity. As σ−1 = σ3

2, it follows that τ is diagonalisable with eigenvalues
{wi + w3i − 1 | 0 ≤ i ≤ 5}. Hence det(τ) = −9 and the image of τ has index 32 in p4.
Thus ρ(U4) has index 32 in U4.

Next, we determine ρ(U) modulo U12 = 1 + 9O. A routine calculation shows:

ρ(−1) = −1;

ρ(θ) = 1;

ρ(κ2) ≡ κ2θ
6κ4κ6κ7κ8κ9 mod U12;

ρ(θ3) = 1;

ρ(κ4) ≡ κ4κ5κ6κ10κ11 mod U12;
ρ(κ5) ≡ κ6κ

2
7κ

2
10 mod U12;

ρ(κ6) ≡ κ6κ
2
9 mod U12;

ρ(κ7) ≡ κ28κ
2
9κ

2
10κ11 mod U12;

ρ(κ8) ≡ κ8κ
2
9κ10κ11 mod U12;

ρ(κ9) ≡ 1 mod U12;
ρ(κ10) ≡ κ10κ11 mod U12;
ρ(κ11) ≡ 1 mod U12.

12



Thus ρ(U4) covers neither U5/U6 nor U11/U12. Since ρ(U4) has index 32 in U4, it contains
U12. The result follows. •

Hence U/ρ(U) has order 81 and is generated by the cosets with representatives
θ, κ5, κ11. A routine calculation shows that κ35 ≡ κ211 mod U12, so θ and κ5 suffice.
Defining V := (Z/9Z)2, we obtain an isomorphism of abelian groups ϕ : U/ρ(U)→ V
defined by

θu1κu25 ρ(U) 7→ (u1, u2).

Lemma 5.7 The Galois automorphism σ2 acts on U/ρ(U) as

V → V : (u1, u2) 7→ (2u1, 2u2).

Proof: By definition, σ2(θ) = θ2. A routine calculation shows that

σ2(κ5) ≡ κ25κ
2
6κ

2
7κ8κ9κ11 mod U12.

This yields σ2(κ5) ≡ κ25 mod ρ(U). •

5.5 A solution of the isomorphism problem

We show that orbit isomorphisms solve the isomorphism problem completely for the
skeleton groups in Sj.

Lemma 5.8 Let γ and γ′ be two surjections in HomC(pj−3∧pj−3, p2j−3). Then Rj−3,γ,m
and Rj−3,γ′,m are isomorphic if and only if there exists α ∈ Aut(Rj−3) with α(γm) = γ′m.

Proof: By Lemma 3.3, we only have to show that, if Rj−3,γ,m and Rj−3,γ′,m are
isomorphic, then there exists an automorphism α of Rj−3 with α(γm) = γ′m. But
Tj−3/Tm+j−3 is characteristic in Rj−3,γ,m and Rj−3,γ′,m. Thus, if Rj−3,γ,m and Rj−3,γ′,m
are isomorphic, then an isomorphism between them induces automorphisms α1 and α2

of C = 〈a〉 and Tj−3/T2j−3 respectively. These automorphisms form a compatible pair;
namely, a−α1tα2aα1 = (a−1ta)α2 for all t in Tj−3/T2j−3. Since Tj−3 is a free O-module,
α2 lifts to an automorphism α3 of Rj−3 such that α1 and α3 form a compatible pair,
and hence define an automorphism α of Rj−3. Clearly α satisfies α(γm) = γ′m. •

We must investigate the action of Aut(Rj−3) on the homomorphisms induced by the
surjections to solve the isomorphism problem for skeleton groups. Observe that A2 ≤
Aut(Rj−3) acts trivially on them. Hence it remains to determine the (A0nA1)-orbits on
the image of HomC(pj−3∧pj−3, p2j−3) in HomC(pj−3/p2j−3∧pj−3/p2j−3, p2j−3/pm+j−3).
Throughout let n = m−j, so Rj−3,γ,m is a group of depth n in Sj. Recall the definition
of ϑ from Equation (1).

Lemma 5.9 Let c, c′ ∈ U . The surjections cϑ and c′ϑ induce the same element of
HomC(pj−3/p2j−3 ∧ pj−3/p2j−3, p2j−3/p2j−3+n) if and only if c ≡ c′ mod Un.
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Proof: Let c ∈ Un, so c = 1 + e for e ∈ pn. If x, y ∈ pj−3, then cϑ(x ∧ y) =
ϑ(x ∧ y) + eϑ(x ∧ y) and eϑ(x ∧ y) ∈ p2j−3+n. The converse is similar. •

By Lemma 5.9, the desired orbits correspond to the (A0 n A1)-orbits on

Ωn = U/Un.

We first consider the action of A1. Using the definition of ρ from Lemma 5.6, for
µu ∈ A1 and c ∈ U

(µu(cϑ))(x ∧ y) = (cϑ(xu−1 ∧ yu−1))u
= c(σ2(xu

−1)σ−1(yu
−1)− σ2(yu−1)σ−1(xu−1))u

= c(σ2(x)σ2(u
−1)σ−1(y)σ−1(u

−1)− σ2(y)σ2(u
−1)σ−1(x)σ−1(u

−1))u

= cσ2(u
−1)σ−1(u

−1)u(σ2(x)σ−1(y)− σ2(y)σ−1(x))

= cρ(u−1)ϑ(x ∧ y).

Thus A1 acts on Ωn via multiplication by ρ(U). The orbits of this action correspond
to the cosets

∆n := U/ρ(U)Un.
Lemma 5.6 shows that ∆n has at most 34 elements for every n. As A1 is normal in
A0 n A1, the orbits under the action of A1 are blocks for the orbits of A0 n A1. It
remains to determine the orbits of A1 on the elements of ∆n. For c ∈ U

(σ2(cϑ))(x ∧ y)) = σ2(c(ϑ(σ−12 (x) ∧ σ−12 (y))))

= σ2(cσ
−1
2 (ϑ(x ∧ y)))

= σ2(c)ϑ(x ∧ y). (2)

Lemma 5.7 shows that σ2 acts as multiplication by the diagonal matrix(
2 0
0 2

)
on V ∼= U/ρ(U). This allows us to read off the orbits of A0 n A1 on ∆n.

Theorem 5.10 The skeleton Sj is isomorphic to the first j − χj levels in Figure 1,
where j ≥ 7 and χj = 0 if 3 divides j and χj = 1 otherwise.

Proof: The root of this tree corresponds to a mainline group, and the nodes at
depth n correspond to groups defined by γ = cϑ for c ∈ U/Un, or rather to orbits
of such parameters by Lemmas 5.8 and 5.9. Thus the vertex of depth 1 corresponds
to c = ±1 mod U1. These two values of c lie in the same orbit, as they are in the
same coset modulo ρ(U). The two vertices of depth 2 arise from the parameters c ∈
{1, θ, θ2} mod U2. These last two are in the same orbit under σ2. The left vertex of
depth 2 corresponds to c = θ, and the right vertex to c = 1. The three vertices of
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depth 4 arise from c = θk mod U4 with k determined modulo 9. The leftmost node
we take to be defined by θ, and may equally be defined by θk for any k prime to 1
modulo 3. The central node we take to be defined by c = θ3, the alternative c = θ6

being in the same orbit as this value by the action of σ2. The rightmost node is
defined by c = 1. The eight nodes of depth 6, from left to right, we take to be defined
by c = θκ5, θ, θκ

2
5; θ

3κ5, θ
3, θ3κ25;κ5, 1 mod U6. The groups of depth 12 are defined by

c = θκ45, θκ5, θκ
7
5; θκ

3
5, θ, θκ

6
5; θκ

2
5, θκ

5
5, θκ

8
5; θ

3κ5; θ
3κ35, θ

3, θ3κ65; θ
3κ25;κ5;κ

3
5, 1 mod U12. •

Hence the 17 isomorphism types of groups of depth at least 12 in Sj are obtained
by using the homomorphism γ = θu1κu25 ϑ with the values of u1 and u2 listed in Table 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
u1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 0 0 0
u2 4 1 7 3 0 6 2 5 8 1 3 0 6 2 1 3 0

Table 1: Representative units for the groups in Sj of depth at least 12
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Figure 1: The skeleton Sj of Bj
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5.6 Presentations for the skeleton groups in Bj
Lemma 5.11 Let γ = θu1κu25 ϑ and let 7 ≤ j ≤ m ≤ 2j − χj. Let

f(x) = (−1)j−3x2j−5(x+ 1)(u1+2+8j)(x+ 2)j−3(x2 + 3x+ 3)(x5 + 1)u2 ∈ Z[x],

and let ai denote the coefficient of xi in f(x) for 2j − 5 ≤ i ≤ m+ j − 4. Let α and τ
be two abstract group generators and let τi = [τ,i α] for i ≥ 0. Let

r = [τ1, τ0](

m+j−4∏
i=2j−5

τaii−j+3)
−1.

Then Rj−3,γ,m has a presentation

{α, τ | α9 = (τα3)3 = [τ, α3, τ ] = [τ, τα
4

][τα, τα
3

] = [τ, τα
5

][τα
2

, τα
3

] = [τ,m α] = r = 1}.

Proof: Let F denote the free group on {α, τ}, and T the normal closure of {τ} in F .
Let G denote the group defined by the presentation, and let H = G/Lj−2(G). We use
the same notation for elements and subgroups of F , and the images of these elements
and subgroups in G and H; the context will resolve ambiguities.

We first check that the relations are satisfied in Rj−3,γ,m, when α and τ stand for a
and (θ − 1)j−3 respectively.

Clearly a9 = 1, and so the relation (τα3)3 = 1 reduces to s · sθ3 · sθ6 = 0, where s =
(θ−1)j−3, and the twisted operation defined by γ is denoted by ‘·’. But ϑ(u∧uθ3) = 0
for every u ∈ pj−3, so s · sθ3 · sθ6 = s + sθ

3
+ sθ

6
= 0, and the relation [τ, α3, τ ] = 1

follows from the same identity. Similarly [τ, τα
4
][τα, τα

3
] = [τ, τα

5
][τα

2
, τα

3
] = 1 follows

from the identity ϑ(u ∧ θ4u) + ϑ(θu ∧ θ3u) = ϑ(u ∧ θ5u) + ϑ(θ2u ∧ θ3u) = 0.
Finally, to check the relation r = 1, we calculate

[τ0, τ1] = γ((θ − 1)j−3 ∧ (θ − 1)j−2)

= θu1(1 + (θ − 1)5)u2ϑ((θ − 1)j−3 ∧ (θ − 1)j−2)

= θu1(1 + (θ − 1)5)u2((θ2 − 1)j−3(θ−1 − 1)j−2 − (θ−1 − 1)j−3(θ2 − 1)j−2)

= θu1(1 + (θ − 1)5)u2((θ − 1)j−3(θ + 1)j−3(θ − 1)j−2(−1)j−2θ−(j−2)

−(θ − 1)j−3θ−(j−3)(−1)j−3(θ − 1)j−2(θ + 1)j−2)

= θu1(1 + (θ − 1)5)u2(θ − 1)2j−5(θ + 1)j−3(−1)j−2θ−(j−2)(θ + 1 + θ2)

= θu1−j+2(1 + (θ − 1)5)u2(θ − 1)2j−5(θ + 1)j−3(−1)j−2(θ2 + θ + 1).

Now substituting x for θ − 1 gives rise to the polynomial f(x), as required. Note that
the two coefficients a2j−5 and a2j−4 of f(x) are both multiples of 3, and a2j−3 is not a
multiple of 3, reflecting the fact that γ maps pj−3 ∧ pj−3 onto p2j−3.

We now consider H. Define τ (k) = τα
k

for k ≥ 0. Observe that T/T ′ is generated
by {τ (k) : 0 ≤ k ≤ 5}, since the relations α9 = (τα3)3 = 1 imply that T/T ′ is a
homomorphic image of the additive group of integers in the ninth cyclotomic number
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field. The next step is to prove that T is abelian. The relation r = 1 reduces, in H,
to the relation [τ1, τ0] = 1, or, equivalently, to [τ (1), τ ] = 1. Let I be the set of pairs
{(k, `) : 0 ≤ k < ` ≤ 5} such that [τ (`), τ (k)] = 1. So (k, `) ∈ I if ` = k + 1; in
particular, (2, 3) ∈ I; so the relation [τ, τ (5)][τ (2), τ (3)] = 1 implies that (5, 0) ∈ I. So
τ (6) and τ (0) commute with τ (5). But the relation (α3τ)3 = 1 implies that ττ (3)τ (6) = 1,
so (5, 3) ∈ I, and (k, `) ∈ I if ` = k + 2. The relation [τ, α3, τ ] = 1 implies that
(k, `) ∈ I if ` = k + 3. Since (k, `) ∈ I if ` = k + 1, or if ` = k + 2, the relations
[τ, τ (4)][τ (1), τ (3)] = [τ, τ (5)][τ (2), τ (3)] = 1 imply that (k, `) ∈ I if ` = k + 4 or ` = k + 5.
Thus T is abelian, as required.

It follows that H is a mainline quotient of R, and that G lies in the branch with root
H. To verify that G is isomorphic to Rj−3,γ,m it suffices to check that r corresponds to
the image of γ(θ − 1 ∧ 1), a routine calculation. •

5.7 The automorphism groups of the skeleton groups in Bj
The classification, up to isomorphism, of the skeleton groups in Bj translates to the
calculation of certain orbits. The stabilisers of the orbit representatives determine the
automorphism groups of the skeleton groups.

n δ(n) ζ(n)
1 0 (6)

2, 3 1 (3, 6)
4, 5 2 (1, 3, 6)

6, . . . , 11 3 (1, 1, 1, 3, 3, 3, 3, 6)
12, . . . , j − 1 4 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 6)

Table 2: Definitions of functions δ and ζ

Theorem 5.12 Let 7 ≤ j ≤ m ≤ 2j−3, and let γ : pj−3∧pj−3 → p2j−3 be a surjection.
Suppose that Rj−3,γ,m is isomorphic to the skeleton group of depth n := m − j in Bj,
determined by the column labelled by k in Table 1.

(a) Aut(Rj−3,γ,m) has order 3m+j+δ(n)ζ(n, k), where δ and ζ are defined in Table 2,
and ζ(n, k) is the kth entry in ζ(n).

(b) Aut(Rj−3,γ,m) is isomorphic to a subgroup of (C6nU/Um)nTj−4,γ′,m, where C6 is
the cyclic group of order 6 and γ′ is the map from pj−4 ∧ pj−4 onto p2j−5 induced
by γ.

Proof: Since Tj−3,γ,m is characteristic in Rj−3,γ,m, there are homomorphisms µ and ν
where

Aut(Rj−3,γ,m)
µ→ Aut(C)× Aut(Tj−3,γ,m) : ξ 7→ (ξ|Rj−3,γ,m/Tj−3,γ,m

, ξ|Tj−3,γ,m
),

Aut(Rj−3,γ,m)
ν→ Aut(C) : ξ 7→ ξ|Rj−3,γ,m/Tj−3,γ,m

.
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Let K0 denote the kernel of µ, and K2 the kernel of ν. Recall that C = 〈a〉. Observe
that CK2(a), the centraliser of a in K2, is a complement to K0 in K2, and it acts
faithfully on Tj−3,γ,m. Thus CK2(a) can be identified with the stabiliser in U/Um of γm
under the action defined by Lemma 5.6. Let U be the subgroup of CK2(a) corresponding
to Un/Um. Define K1 := U nK0 to obtain a chain of normal subgroups

K0 ≤ K1 ≤ K2 ≤ Aut(Rj−3,γ,m).

Using a construction dual to the orbit computations for the isomorphism problem, we
deduce that K0 has order 3m; the index of K0 in K1 equals the order of U ∼= Un/Um,
and thus, by Lemma 5.5, is 3m−n = 3j; the index of K1 in K2 is 3δ(n); the index of K2

in Aut(Rj−3,γ,m) is the order ζ(n, k) of a subgroup of Aut(C) ∼= C6, and is 1, 3 or 6. •

6 The skeleton groups in T (Hi)

For i ≥ 0 let Hi = D n Ti, where D = 〈a, b〉 as defined in Section 4. The isomorphism
type of Hi depends only on the value of i modulo 3. We thus consider i ∈ {0, 1, 2} and
investigate the skeleton groups in T (Hi) as an intermediate step towards understanding
those in T (Gi+1).

In number-theoretic notation, the skeleton groups in T (Hi) are determined by sur-
jections γ ∈ HomD(pi∧pi, pi+j) and their images γm ∈ HomD(pi/pi+j∧pi/pi+j, pi+j/pi+m)
for j ≤ m ≤ k where k is the maximum class of a skeleton group in Bj(Hi), the branch
with root of class j in T (Hi); we determine the value of k in Lemma 6.2. The resulting
skeleton groups Hi,γ,m := D n Ti,γ,m have order 3m+3, coclass 3 and class m. If Si,j is
the skeleton of Bj(Hi), then Hi,γ,m is a group of depth n := m− j in Si,j.

We use the following notation. Let ω := θ3 be a primitive cube root of unity.
Now K3 = Q3(ω) is the third cyclotomic number field with ring of integers O(3). Let
p(3) := (ω − 1)O(3) be the unique maximal ideal of O(3), and let U(3) be its group
of units. The Galois group of K3 over Q3 is cyclic of order 2, and is generated by
σ2 : ω 7→ ω2.

6.1 The homomorphism space

We now determine the space of homomorphisms describing the skeleton groups in
T (Hi). Recall the definition of ϑ from Equation (1). It follows from Equation (2)
that ϑ is compatible with the action of the Galois automorphism σ4 = σ2

2, and thus
ϑ ∈ HomD(O ∧O,O).

Lemma 6.1 If i and j are non-negative integers, then HomD(pi∧pi, pi+j) = p
d(j−i−3)/3e
(3) ϑ.

Thus if j 6≡ i mod 3 there are no surjections in HomD(pi ∧ pi, pi+j); otherwise

HomD(pi ∧ pi, pi+j) \ HomD(pi ∧ pi, pi+j+1) = (ω − 1)(j−i−3)/3U(3)ϑ.

18



Proof: Observe that D acts as 〈C, σ4〉 on O; thus HomD(pi ∧ pi, pi+j) corresponds to
the space of fixed points of σ4 in HomC(pi∧pi, pi+j). Lemma 5.2 shows that HomC(pi∧
pi, pi+j) = pj−i−3ϑ. From Equation (2) we deduce that σ4(cϑ) = (σ4(c))ϑ for every
c ∈ K. The fixed points of σ4 in K are the elements of K3. Finally, pj−i−3 ∩ K3 =
p
d(j−i−3)/3e
(3) . The lemma follows. •

Lemma 6.1 implies the following.

Lemma 6.2 The skeletons Si,j with j 6≡ i mod 3 have depth 0. The skeletons Si,j with
j ≡ i mod 3 have depth j − χj, where χj = 0 if 3 divides j and χj = 1 otherwise. In
particular, two of the six sequences of branches in T (Hi) have unbounded depth.

It remains to investigate Si,j for j ≡ i mod 3 in more detail. Since Hj−3 ∼= Hi, we
adjust our notation as in Section 5.2, and use Hj−3 instead of Hi. Thus the homo-
morphisms used to construct skeleton groups now have the form γ = cϑ for some unit
c ∈ U(3).

6.2 The automorphism group of Hi

Theorem 6.3 Aut(Hi) is isomorphic to (Aut(D) · U(3)) n Ti−1.

Proof: Since Ti is the Fitting subgroup of Hi, it is characteristic in Hi; so Aut(Hi)
maps into Aut(D), a group of order 54. To show that this map is onto, consider first
the group W defined in Section 4; it is isomorphic to C3 o C3, and acts on pi in such
a way that W n pi contains Hi = D n pi as a normal subgroup of index 3. Thus W
may be regarded as a subgroup of Aut(Hi) that maps onto a subgroup of order 27 of
Aut(D). Now σ2 acts naturally on pi, and this action extends to an automorphism of
Hi of even order that maps a ∈ D to a2 and centralises b. Thus Aut(Hi) maps onto
Aut(D). If σ2 and W are regarded as lying in Aut(Hi), they generate a group of order
162 that maps onto Aut(D).

The kernel of the homomorphism of Aut(Hi) onto Aut(D) acts as multiplication
by elements of U(3) on Ti. Thus Aut(Hi) acts on Ti as an extension of U(3) by Aut(D).

The kernel of the action of Aut(Hi) on Ti, and on Hi/Ti, is isomorphic to the
additive group of derivations of D into Ti. Since 3 is invertible in the field K, we
deduce that H1(D,K) = 0. Thus the desired derivations can be realised as conjugation
by elements of pi−1. •

6.3 Some number theory

Recall the structure of U(3) from [12, Chapter 15].

Lemma 6.4 For k > 0, let U(3,k) = 1 + pk(3) and λk = 1 + (ω − 1)k.

(a) U(3) > U(3,1) > U(3,2) > . . . is a filtration of U(3) whose quotients are cyclic, and
respectively generated by −1, ω and λk for k ≥ 2.
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(b) The torsion subgroup of U(3) has order 6, and is generated by ω and −1.

(c) The exponential map defines an isomorphism p2(3) → U(3,2).

Lemma 6.5 ρ(U(3)) is a subgroup of index 32 in U(3) that covers U(3,k)/U(3,k+1) if and
only if k 6∈ {1, 3}.

Proof: First we consider ρ(U(3,4)). Let τ : p4(3) → p4(3) be defined by x 7→ σ2(x) +

σ−1(x) − x. Then τ is an endomorphism of p4(3) which has determinant −3. Thus

ρ(U(3,4)) has index 3 in U(3,4). (Note that O is now a module over Z3[ω] whereas O in
Lemma 5.6 is a module over Z3.)

Next, we determine ρ(U(3)) modulo U(3,6) = 1+27O(3). A routine calculation shows:

ρ(−1) = −1;

ρ(ω) = 1;

ρ(λ2) ≡ λ2λ
2
3λ5 mod U(3,6);

ρ(λ3) ≡ λ5 mod U(3,6);
ρ(λ4) ≡ λ4λ5 mod U(3,6);
ρ(λ5) ≡ 1 mod U(3,6).

Thus ρ(U(3,4)) does not cover U(3,5)/U(3,6). Since ρ(U(3,4)) has index 3 in U(3,4), it contains
U(3,6). The result follows. •

Hence U(3)/ρ(U(3)) has order 9 and is generated by the cosets with representa-
tives ω and λ3. Defining V := (Z/3Z)2, we obtain an isomorphism of abelian groups
ϕ : U(3)/ρ(U(3))→ V defined by

ωu1λu23 ρ(U(3)) 7→ (u1, u2).

Lemma 6.6

(a) The Galois automorphism σ2 acts on U(3)/ρ(U(3)) as

V → V : (u1, u2) 7→ (2u1, 2u2).

(b) Multiplication by ω translates to the action on U(3)/ρ(U(3)) via

V → V : (u1, u2) 7→ (u1 + 1, u2).

Proof: Clearly σ2(ω) = ω2 and σ2(λ3) = 1− (ω− 1)3 ≡ λ23 mod ρ(U(3)). Thus σ2 acts
as multiplication by 2I2 on V . That (b) holds is obvious. •
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6.4 A solution of the isomorphism problem

We show that orbit isomorphisms solve the isomorphism problem completely for the
skeleton groups in Si,j.

Lemma 6.7 Let j ≥ 7, and let ξ be a Z3D-automorphism of pi/pi+j. There is a Z3D-
automorphism ζ of pi such that, if ζ̂ is the automorphism of pi/pi+j induced by ζ, then
ξ − ζ̂ maps pi/pi+j into pi+j−4/pi+j.

Proof: Since pi is a projective O-module, ξ can be lifted to an O-module automor-
phism κ of pi. Since ξ is a D-module automorphism, σ4(κ)−κ maps pi into pi+j. Now
κ is multiplication by some η ∈ O, and η = η0 + η1θ + η2θ

2 where ηe ∈ Q3(ω) for
0 ≤ e ≤ 2. Then σ4(η) − η = η1(θ

4 − θ) + η2(θ
8 − θ2) = (ω − 1)(η1θ + η3θ

2), where
η3 = η2(ω + 1) ∈ Q3(ω). Since η1 and η3 are elements of Q3(ω) and σ4(η) − η ∈ pj,
it follows that η1 and η3 are elements of pj−4, and so η2 ∈ pj−4. Taking ζ to be
multiplication by η0, the result follows. •

Theorem 6.8 Let 7 ≤ j ≤ m ≤ 2j − χj. Let γ and γ′ be two surjections in
HomD(pj−3 ∧ pj−3, p2j−3). Then Hj−3,γ,m and Hj−3,γ′,m are isomorphic if and only
if there exists α ∈ Aut(Hj−3) with α(γm) = γ′m.

Proof: If γ and γ′ are in the same Aut(Hj−3)-orbit, then Hj−3,γ,m and Hj−3,γ′,m are
isomorphic by Lemma 3.3. Conversely, let α : Hj−3,γ,m → Hj−3,γ′,m be an isomorphism.
Theorem 6.3 shows that Aut(Hj−3) maps onto Aut(D), so we may assume that α acts as
the identity on D. Then α restricts to an isomorphism from Tj−3,γ,m to Tj−3,γ′,m, which
is also an automorphism of the D-module Tj−3/Tj−3+m. Hence this automorphism
commutes with the action of 〈a〉, and, since Tj−3 is projective as O-module, lifts to
an automorphism α′ of Tj−3 which also commutes with the action of a. Now α′ is
multiplication by a unit u ∈ U . The proof of Lemma 6.7 shows that u = u1u2, where
u1 ∈ U(3) and u2 ∈ Um−4. Multiplication by u1 induces an automorphism of Hj−3,γ,m
taking γm to ρ(u1)γm. It remains to show that ρ(u1)γm = γ′m. But ρ(u)γm = γ′m, so it
suffices to prove that ρ(u2) centralises γm. But 1−ρ(u2) ∈ pm−4, and pm−4γm = 0 since
γm ∈ HomD(pj−3/p2j−3 ∧ pj−3/p2j−3, p2j−3/pj−3+m), and 2j− 3 +m− 4 ≥ j− 3 +m. •

We now solve the isomorphism problem for the skeleton groups by describing the
orbit isomorphisms. The description of Aut(Hj−3) in Theorem 6.3 shows that Tj−4
acts trivially on the homomorphisms induced by the surjections. Further, D acts as
the inner automorphisms of D, and so also acts trivially. Hence Aut(Hj−3) acts as
Out(D) · U(3).

Throughout, we assume that i ≡ j mod 3 and n = m − j, so that Hj−3,γ,m is a
group of depth n in Si,j. The following is proved in a manner similar to Lemma 5.9.

Lemma 6.9 Let c, c′ ∈ U(3). The surjections cϑ and c′ϑ induce the same element of
HomD(pj−3/p2j−3 ∧ pj−3/p2j−3, p2j−3/p2j−3+n) if and only if c ≡ c′ mod U(3,dn/3e).
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We must determine the orbits of Out(D) · U(3) on

Ωn := U(3)/U(3,dn/3e).

As in Section 5.5, the normal subgroup U(3) acts on Ωn as multiplication by ρ(U(3)).
The orbits of this action correspond to the cosets

∆n := U(3)/ρ(U(3))U(3,dn/3e).

Lemma 6.5 shows that ∆n has at most 32 elements. As U(3) is normal in Out(D) · U(3),
its orbits are blocks for the desired orbits. It remains to determine the action of Out(D)
on ∆n. Recall that U(3)/ρ(U(3)) is isomorphic to V = (Z/3Z)2 via ϕ.

Recall that D is a normal subgroup of index 3 in the group W of Zp-linear maps of
O defined in Section 4, and hence is normalised by the element β of W that permutes
the powers of θ by the permutation (θ2, θ5, θ8). Observe that Out(D) has order 6, and
is generated by the images of β and σ2.

Lemma 6.10 β acts on cϑ via multiplication by ω for c ∈ U(3).

Proof: Let X, Y and Z be the Z3[ω]-submodules of O generated by {1, θ3}, {θ, θ4},
and {θ2, θ5} respectively. Now X = O(3) and O = X ⊕ Y ⊕ Z. Also β centralises X
and Y , and acts as multiplication by ω on Z.

Both σ2 and σ−1 normalise X and interchange Y with Z. Thus

σ2(X)σ−1(Y ) ⊆ XZ ⊆ Z and σ2(Y )σ−1(X) ⊆ ZX ⊆ Z;

σ2(X)σ−1(Z) ⊆ XY ⊆ Y and σ2(Z)σ−1(X) ⊆ Y X ⊆ Y ;

σ2(Y )σ−1(Z) ⊆ ZY ⊆ X and σ2(Z)σ−1(Y ) ⊆ Y Z ⊆ X.

Observe that O ∧ O = (X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z). Let x, y and z be elements
of X, Y and Z respectively. We can determine the action of β on ϑ as follows:

β(ϑ)(x ∧ y) = β[σ2(β
−1(x))σ−1(β

−1(y))− σ2(β−1(y))σ−1(β
−1(x))]

= β[σ2(x)σ−1(y)− σ2(y)σ−1(x)]

= ωϑ(x ∧ y)

β(ϑ)(x ∧ z) = β[σ2(β
−1(x))σ−1(β

−1(z))− σ2(β−1(z))σ−1(β
−1(x))]

= β[σ2(x)σ−1(ω
−1z)− σ2(ω−1z)σ−1(x)]

= ωβ[σ2(x)σ−1(z)− σ2(z)σ−1(x)]

= ωϑ(x ∧ z)

β(ϑ)(y ∧ z) = β[σ2(β
−1(y))σ−1(β

−1(z))− σ2(β−1(z))σ−1(β
−1(y))]

= β[σ2(y)σ−1(ω
−1z)− σ2(ω−1z)σ−1(y)]

= ωβ[σ2(y)σ−1(z)− σ2(z)σ−1(y)]

= ωϑ(x ∧ z).
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Thus β acts as multiplication by ω on ϑ and so on cϑ for c ∈ U(3). •

Hence the action of Out(D) = 〈σ2, β〉 on the space of homomorphisms translates to
the action of σ2 and multiplication by ω on ∆n. We summarise the action determined
in Lemma 6.6.

Corollary 6.11 Out(D) = 〈σ2, β〉 acts on V as the affine matrix group M = 〈a, b〉
with

a =

 2 0 0
0 2 0
0 0 1

 and b =

 1 0 0
0 1 0
1 0 1

 .

Namely, the image of (u1, u2) ∈ V under m ∈ M is determined by the vector-matrix
multiplication (u1, u2, 1)m.

This allows us to read off the orbits of Out(D) on V and thus on ∆n. The orbits
on V are {(0, 0), (1, 0), (2, 0)} and {(0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)}. These amal-
gamate to one orbit in V/V1 for V1 = 〈(0, 1)〉. We now summarise the classification of
skeleton groups in T (Hi).

Theorem 6.12 Let j ≥ 7, and let χj = 0 if 3 divides j and χj = 1 otherwise. Let Si,j
denote the skeleton of Bj(Hi), the branch in T (Hi) with root of order 3j+3 and class j.
Then Si,j is non-trivial if and only if i ≡ j mod 3, and in this case Si,j is isomorphic
to the first j − χj levels in Figure 2.
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Figure 2: The skeleton Si,j of Bj(Hi)
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6.5 Presentations of the skeleton groups in Bj(Hi)

Recall that Hi,γ,m = D n Ti,γ,m where D = 〈a, b〉 and Ti,γ,m = 〈t〉 as D-module. Thus
Hi,γ,m is an extension of Ri,γ,m by 〈b〉, where b3 = 1 and ab = a4. We use this to
construct a presentation for Hi,γ,m from that for Ri,γ,m.

Lemma 6.13 Let γ = cwϑ where c = 1 + 3(θ3 − 1) and w ∈ {0, 1}, and let 7 ≤ j ≤
m ≤ 2j − χj. Assume that 3 | j and write j − 3 = 3x for some x ≥ 2. Let α, β and τ
be three abstract group generators and let

r = [[τ, α], τ ](τ (α
3−1)x(α−1−α2))w(1+3(α3−1)).

Then Hj−3,γ,m has a presentation

{α, β, τ | α9 = (τα3)3 = [τ, α3, τ ] = [τ, τα
4

][τα, τα
3

] = 1,

[τ, τα
5

][τα
2

, τα
3

] = β3 = [β, τ ] = αβα−4 = [τ,m α] = r = 1}.

Proof: We first check that the relations are satisfied in Hj−3,γ,m, when α and β and
τ stand for a and b and (θ − 1)j−3 respectively. The relations that do not involve β,
other than the relation r = 1, all hold, as in the proof of Lemma 5.11, and the relations
involving β clearly hold. We now verify the relation r = 1.

If w = 0, then γ = ϑ. Since t = (θ3 − 1)xθ3x, we can evaluate [t, ta] by computing

ϑ((θ3 − 1)x ∧ (θ3 − 1)xθ) = (θ6 − 1)2x(θ−1 − θ2) = (θ3 − 1)2xθ3x(θ−1 − θ2)

using the identity (θ3 + 1)2 = (θ6)2 = θ3. Thus [[t, a], t]t(a
3−1)x(a−1−a2) = 1.

If w = 1, then γ = cϑ for c = 1 + 3(θ3 − 1). Writing wx for t(a
3−1)x(a−1−a2), we

deduce, as in the first case, that [[t, a], t]w
1+3(a3−1)
x = 1.

It now follows, exactly as in the proof of Lemma 5.11, that the group generated by
{α, τ}, subject to the above relations that do not involve β, is isomorphic to Rj−3,γ,m.

It is easy to see that the relations not involving τ give a presentation for D. It
remains to prove that the given presentation defines the action of β on the normal
closure of 〈τ〉 in 〈α, τ〉. But the presentation implies that (τα

i
)β = τα

4i
, and the proof

is complete. •

Lemma 6.13 yields a presentation for the skeleton group H0,γ,m. When i = 1 or 2,
we do not give presentations for the corresponding skeleton groups, but instead exhibit
them as subgroups of low index in H0,γ,m.

Remark 6.14 Let H0,γ,m = 〈a, b, t〉 be a group of depth n := m− j in Bj(H0).

(a) The subgroup 〈a, b, [t, a]〉 of index 3 in H0,γ,m is the skeleton group for H1 defined
by γ and m. It has depth n− 2 in the skeleton with root of class j + 1.

(b) The subgroup 〈a, b, [t, a, a]〉 of index 9 in H0,γ,m is the skeleton group for H2 defined
by γ and m. It has depth n− 4 in the skeleton with root of class j + 2.
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7 The skeleton groups in T (Gi+1)

The aim of this section is to determine the skeleton groups in T (Gi+1) with i ∈ {0, 1, 2}.
The roots of T (Gi+1) have orders 39, 38 and 37 respectively.

Our main result is the following.

Theorem 7.1 Let i ∈ {0, 1, 2} and h ≥ 9. Let Si+1,h denote the skeleton of the branch
of Gi+1 with root of order 3h+2 and class h. Then Si+1,h is non-trivial if and only if
h ≡ 0 mod 3.

Let Fl,n and Fr,n denote the rooted subtrees of depth n of the left and right graphs
in Figure 3, respectively.

(a) S1,h ∼= Fr,h if h ≡ 0 mod 6 and S1,h ∼= Fl,h if h ≡ 3 mod 6.

(b) S2,h ∼= Fr,h−5 if h ≡ 0 mod 6 and S2,h ∼= Fl,h−5 if h ≡ 3 mod 6.

(c) S3,h ∼= Fl,h−3 if h ≡ 0 mod 6 and S3,h ∼= Fr,h−3 if h ≡ 3 mod 6.
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Figure 3: Two skeletons of branches in T (Gi+1)

The proof of this theorem differs significantly from the other cases. We first describe
Aut(Gi+1). We describe the skeleton groups in T (Gi+1) in Section 7.2. Determining
their isomorphism types is challenging. We classify the skeleton groups up to orbit iso-
morphism in Section 7.3. For the first time, there are exceptional isomorphisms among
skeleton groups. We determine these in Section 7.4. Finally, in Section 7.5, we iden-
tify isomorphism types of skeleton groups in T (Gi+1) with subgroups of representative
skeleton groups in T (Hi).
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7.1 The automorphism group of Gi+1

Recall, from Section 4, that D = 〈a, b〉 and ti+1 = [ti, a] for i ∈ {0, 1, 2}. The infinite
pro-3-group Gi+1 = 〈a, bti〉 = D · Ti+1 embeds as a subgroup of index 3 in its minimal
split supergroup Hi = 〈a, b, ti〉 = D n Ti.

Theorem 7.2 Aut(Gi+1) is the normaliser of Gi+1 in Aut(Hi). It has index 6 in
Aut(Hi), and is isomorphic to (Aut(D) · U(3,1)) n Ti.

Proof: Recall, from Theorem 6.3, that Aut(Hi) ∼= (Aut(D) · U(3)) n Ti−1. Every
D-automorphism of Ti+1 extends uniquely to a D-automorphism of Ti, so Aut(Gi+1)
is the normaliser of Gi+1 in Aut(Hi). Nine of the 13 maximal subgroups of Hi have
coclass 2. Of these, three are isomorphic to R. The remaining six, all isomorphic to
Gi+1, are 〈atεi , btδi 〉 for ε ∈ {0, 1, 2} and δ = ±1. These are conjugate under the action
of Aut(Hi): the three values of ε are permuted transitively by conjugating by ti−1, and
the two values of δ are exchanged by multiplication by −1 ∈ U(3) \ U(3,1). The result
follows. •

Note that Aut(Hi) contains an element σ2 corresponding to the action of σ2 on O,
and an element µ corresponding to multiplication by −1 on O. Theorem 7.2 shows
that µ 6∈ Aut(Gi+1). If i+ 1 is odd, then σ2 ∈ Aut(Gi+1); otherwise µσ2 ∈ Aut(Gi+1).

7.2 Descriptions of the skeleton groups in T (Gi+1)

Let j ≥ 7, and let γ ∈ HomD(pi∧pi, pi+j) be surjective, so j ≡ i mod 3. Then γ defines
a skeleton group Hi,γ,m := D n Ti,γ,m for each m with j ≤ m ≤ 2j − χj as shown in
Lemma 6.2. The skeleton group Hi,γ,m has order 3m+3, class m and it is contained in
the jth branch of T (Hi).

As before, we identify ti ∈ T with its corresponding element in Ti,γ,m and thus
obtain that Hi,γ,m = 〈a, b, ti〉. With this notation, Gi+1,γ,m = 〈a, bti〉 is the skeleton
group for Gi+1 defined by γ and m. It has order 3m+2 and class m. However, it is
non-trivial to read off the branch of T (Gi+1) containing Gi+1,γ,m. The following lemma
provides bounds for the branch.

Lemma 7.3 Let j ≥ 7, let γ ∈ HomD(pi ∧ pi, pi+j) be a surjection and let j ≤ m ≤
2j − χj. If Gi+1,γ,m is contained in the skeleton Si+1,h, then j ≤ h ≤ j + 2.

Proof: We must determine the maximal mainline quotient of Gi+1,γ,m. By construc-
tion, the class j quotient is on the mainline. Since γ(pi+1 ∧ pi+1) = pi+j+2, the class
j + 3 quotient is not. Thus j ≤ h ≤ j + 2. •

It can happen that Hi,γ,m is isomorphic to Hi,γ′,m, yet Gi+1,γ,m is not isomorphic
to Gi+1,γ′,m. Thus, to construct the skeleton groups in T (Gi+1), we have to consider
all homomorphisms γ, and cannot restrict to isomorphism type representatives for the
skeleton groups in T (Hi).
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To solve the isomorphism problem for the skeleton groups in T (Gi+1), we proceed
in two steps. First, we consider surjections γ ∈ HomD(pi ∧ pi, pi+j) and reduce the
homomorphisms induced by them under the action of Aut(Gi+1). This yields repre-
sentatives for skeleton groups in T (Gi+1) up to orbit isomorphism. We then determine
exceptional isomorphisms among these.

7.3 Orbit isomorphisms

The orbit isomorphisms for Gi+1 are determined by the orbits of Aut(Gi+1) on the
homomorphisms induced by surjections in HomD(pi ∧ pi, pi+j). Lemma 6.1 shows that
such surjections exist if and only if i ≡ j mod 3. Again, we consider the case i = j − 3
to simplify the number-theoretic translation.

Let n = m− j. Observe that Aut(Gj−2) acts as Out(D) · U(3,1) on

Ωn = U(3)/U(3,dn/3e).

As in Section 6.4, the normal subgroup U(3,1) acts on Ωn as multiplication by ρ(U(3,1)).
The orbits under this action can be determined readily, as in Lemma 6.5. We summarise
the result.

Lemma 7.4 ρ(U(3,1)) is a subgroup of index 2 · 32 in U(3) that covers U(3,k)/U(3,k+1) if
and only if k 6∈ {0, 1, 3}.

It remains to determine the orbits of Out(D) on

∆n := U(3)/ρ(U(3,1))U(3,dn/3e).

Defining V := Z/2Z⊕ (Z/3Z)2, we obtain an isomorphism of abelian groups
ϕ : U(3)/ρ(U(3,1))→ V defined by

(−1)u0ωu1λu23 ρ(U(3,1)) 7→ (u0, u1, u2).

If V1 = 〈(0, 1, 0), (0, 0, 1)〉 and V2 = 〈(0, 0, 1)〉, then

∆n
∼=


V/V1 for 1 ≤ n ≤ 3
V/V2 for 3 < n ≤ 9

V for 9 < n.

Theorem 7.5 Let j ≥ 7.

(a) If j is odd, then the action of Out(D) on V yields four orbits, with representatives
(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1). These orbits amalgamate to two orbits in V/V1
and in V/V2. Thus the orbits of Out(D) on ∆n for 1 ≤ n ≤ ` define a graph
isomorphic to the first ` levels of the left graph in Figure 3.
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(b) If j is even, then the action of Out(D) on V yields three orbits, with represen-
tatives (0, 0, 0), (0, 0, 1), (0, 0, 2). These orbits amalgamate to one orbit in V/V1
and in V/V2. Thus the orbits of Out(D) on ∆n for 1 ≤ n ≤ ` define a graph
isomorphic to the first ` levels of the right graph in Figure 3.

Proof: Recall Out(D) = 〈σ2, β〉. Lemma 6.10 shows that β acts via multiplication
by ω on the space of surjections. This translates to the action V → V : (u0, u1, u2) 7→
(u0, u1 + 1, u2).

If j is odd, then Aut(Gj−2) contains σ2. This acts via σ2(−1) = −1, σ2(ω) = ω2 and
σ2(λ3) ≡ λ23 mod ρ(U(3,1)), which translates to V → V : (u0, u1, u2) 7→ (u0, 2u1, 2u2).
Together with the action of β this produces four orbits on V :

{(0, x, 0) | x ∈ {0, 1, 2}}, {(1, x, 0) | x ∈ {0, 1, 2}},
{(0, x, y) | x ∈ {0, 1, 2}, y ∈ {1, 2}}, {(1, x, y) | x ∈ {0, 1, 2}, y ∈ {1, 2}}.

These amalgamate to two orbits in V/V1 and in V/V2 and so yield the result in (a).
If j is even, then Aut(Gj−2) contains µσ2, where µ acts as multiplication by −1.

This translates to the action V → V : (u0, u1, u2) 7→ (u0 + 1, 2u1, 2u2). Together with
the action of β this produces three orbits on V : {(u, x, 0) | u ∈ {0, 1}, x ∈ {0, 1, 2}}
and {(0, x, 1), (1, x, 2) | x ∈ {0, 1, 2}} and {(0, x, 2), (1, x, 1) | x ∈ {0, 1, 2}}. These
amalgamate to one orbit in V/V1 and in V/V2 and so yield the result in (b). •

Theorem 7.5 yields a complete list of skeleton groups Gj−2,γ,m up to orbit isomor-
phisms, where γ = cϑ and c is determined by an orbit representative listed there.
We define a graph S∗i+1,j on these orbit isomorphism types of groups, with edges
Gj−2,cϑ,m → Gj−2,c′ϑ,m−1 if Gj−2,cϑ,m−1 is orbit isomorphic to Gj−2,c′ϑ,m−1. Then S∗i+1,j

contains the mainline group of class j. Theorem 7.5 asserts that S∗i+1,j is non-trivial if
and only if i ≡ j mod 3, and in this case has the shape displayed in Figure 3.

7.4 Exceptional isomorphisms

In this section we determine the exceptional isomorphisms among skeleton groups for
Gi+1. We show that there are no exceptional isomorphisms for G1. However such
isomorphisms occur, for the first time, for each of G2 and G3.

As a first step, we observe that the determination of all exceptional isomorphisms
can be reduced to a finite calculation.

Theorem 7.6 Let 0 ≤ i ≤ 2 and let Si+1,h,k be the tree consisting of all groups of
depth at most k in Si+1,h.

(a) For h > 61, Si+1,h,10 is isomorphic to Si+1,h−6,10.

(b) For h ≥ 10, if Si+1,h,10 is isomorphic to F?,10 where ? is l or r, then Si+1,h is
isomorphic to F?,h.
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Proof: (a) The construction in [11] of the isomorphism πh of Theorem 2.1 ensures
that it maps a skeleton group Gi+1,γ,m in Bh,10(Gi+1) to the skeleton group Gi+1,3γ,m

in Bh+6,10(Gi+1) for all h ≥ f(10), where f is the defect function of Theorem 2.1.
This induces a graph isomorphism Si+1,h,10

∼= Si+1,h+6,10 for all h ≥ f(10). Hence the
skeleton of Bh,10(Gi+1) for all h can be obtained from those for h ≤ f(10) + 6 using πh.

It remains to determine an explicit bound for f(10). An application of [11, Theorem
29] yields 686 as a bound for f(10). This can be improved significantly for skeleton
groups as follows. By Lemma 7.3, we have that j ≤ h ≤ j + 2. Thus a group of depth
at most 10 in a skeleton satisfies m ≤ h+ 10 ≤ (j + 2) + 10.

We now employ the notation of [11]. Let P be the class 6 quotient of the infinite pro-
3-group Gi+1. Recall that L7(Gi+1,γ,m) corresponds as a set to Ti+6/Ti+m. As γ maps
Ti+6 ∧ Ti+6 into Ti+j+12 and m ≤ j + 12, it follows that L7(Gi+1,γ,m) is isomorphic as
P -module to L7(Gi+1)/Lm+1(Gi+1). Hence Gi+1,γ,m can be considered as an extension
of L7(Gi+1)/Lm+1(Gi+1) by P . This implies that we can choose l = 7.

If K is the kernel of the action of P on L7(Gi+1), then K is elementary abelian
of order 35. Thus 3a = exp(K/K ′) = 3 and 3b = 3, the exponent of the Schur
multiplicator of K. So a = b = 1. Since P has order 3e = 38, we deduce that
n = max{2(a + b + 1)d, ed} = max{36, 48} = 48. An upper bound for f(10) is now
l + n = 55.
(b) Consider two groups Gi+1,γ,m and Gi+1,γ′,m of depth at least 10 in Si+1,h. If they are
isomorphic, then their quotients at depth precisely 10 are isomorphic. The hypothesis
and Theorem 7.5 imply that at depth 10 isomorphism coincides with orbit isomorphism.
Hence the two quotients at depth 10 are orbit isomorphic. Since there is no further
branching below depth 10 in the graph S∗i+1,j, it follows that Gi+1,γ,m and Gi+1,γ′,m are
orbit isomorphic. Hence, orbit isomorphism and isomorphism coincide at all depths at
least 10, and so Si+1,h can be read off. •

We use Lemma 7.3 and Theorem 7.5 to construct a finite list of groups of the form
Gi+1,γ,m that contains a complete set of skeleton groups for Si+1,h,10 and then reduce
this list up to isomorphism using the algorithm of [20]. Theorem 7.6(a) implies that it
suffices to perform the finite calculation for (b) for all values of h ≤ 61.

We determined Si+1,h,10 by computer for h ≤ 61. If 3|h, then this is the tree
suggested by Theorem 7.1 up to depth 10; otherwise it is an isolated vertex, the mainline
group. This computation is sufficient to prove Theorem 7.1.

In the remainder of this section we provide an alternative theoretical description of
the exceptional isomorphisms. Our proof provides insight into the exceptional isomor-
phisms. It proceeds in two steps. First, given a skeleton group Gi+1,γ,m, we determine
the skeleton Si+1,h containing it; so we determine the precise class h of the maximal
mainline quotient of Gi+1,γ,m. Secondly, we determine the precise shape of Si+1,h,10 and
apply Theorem 7.6(b) to deduce the shape of Si+1,h. Before we embark on this, we
present some preliminary results.
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7.4.1 Some preliminary results

Our overall approach towards the investigation of the exceptional isomorphisms is to
consider each skeleton group Gi+1,γ,m = 〈a, bti〉 as a cyclic extension of Ki+1,γ,m :=
〈a, ti+1〉 ≤ Gi+1,γ,m by a cyclic group of order 3.

Lemma 7.7 Aut(Gi+1) acts transitively on the subset {〈a(bti)
k, ti+1〉 | 0 ≤ k ≤ 2〉} of

the set of maximal subgroups of Gi+1, and each element of this subset is isomorphic to
Ri+1 = C n Ti+1.

Proof: There is an automorphism of D that maps a to ab and centralises b. As in
the proof of Theorem 6.3, this automorphism lifts to an element of W that may be
regarded as an automorphism δ1 of Hi. So δ1 maps a to ab, centralises b, and centralises
ti modulo Ti+1. The same theorem shows that Aut(Hi) contains an automorphism δ2,
corresponding to conjugation by t2i−1, that maps a to at−2i , centralises b modulo Ti+2,
and centralises ti. Then δ := δ1δ2 is an automorphism of Hi that sends 〈a, ti+1〉 to
〈abti, ti+1〉, and normalises Gi+1. Hence δ ∈ Aut(Gi+1). Since δ2 maps 〈a, ti+1〉 to
〈a(bti)

2, ti+1〉, the result follows. •

Remark 7.8 The subgroup Ki+1,γ,m is a skeleton group for Ri+1. Lemma 5.1 implies
that ϑ(pi∧pi) = p2i+3; so, if γ : pi∧pi 7→ pi+j is surjective, then γ(pi+1∧pi+1) = pi+j+2.
Hence Ki+1,γ,j+n is isomorphic to the mainline group of class j + n in T (Ri+1) for
n ≤ 2, and so it is independent of γ; but if n > 2 then Ki+1,γ,j+n is not isomorphic to
a mainline group, since in this case Ti+1,γ,j+n is non-abelian.

The following lemma solves the isomorphism problem for cyclic extensions by a
3-cycle.

Lemma 7.9 Let G and H be groups containing a normal subgroup M of index 3.
Let x ∈ G \ M and y ∈ H \ M . Let x3 = ζ and y3 = ζ ′, and let α and β be the
automorphisms of M induced by conjugation by x and y respectively. Then there is an
isomorphism of G to H that normalises M , and maps x to an element of the coset
My, if and only if there is an automorphism λ of M , and an element h of M , such
that ζλ = ζ ′hβ

2
hβh and λ−1αλ = βν, where ν is conjugation by h.

Proof: If such λ and h exist, then an isomorphism φ from G to H may be defined by
taking the restriction of φ to M to be λ, and defining xφ = yh; and conversely. •

As a final preliminary, we require two number-theoretic results.

Lemma 7.10

(a) For every integer k the endomorphism f of pk defined by y 7→ σ4(y) − y covers
pl/pl+1 if and only if l ≥ k + 2 and l 6≡ 2 mod 3.
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(b) For every integer k the image of the endomorphism 1+σ4 +σ7 of pk is 3pk∩O(3).
In particular, the image does not cover pj/pj+1 unless j ≡ 0 mod 3.

Proof:

(a) If l ≡ 0 mod 3 and αl = (θ3 − 1)l/3, then f(αl) = 0. If l 6≡ 0 mod 3 and
αl ∈ pl \ pl+1, then αl ≡ ±(θ − 1)l mod pl+1; also

(θ4 − 1)l − (θ − 1)l = (θ − 1)l((θ3 + θ2 + θ + 1)l − 1) ≡ l(θ − 1)l+2 mod pl+2,

since θ3 + θ2 + θ + 1 ≡ 1 + (θ − 1)2 mod p3. Hence f(αl) ∈ pl+2 \ pl+3.

(b) Observe that θi + σ4(θ
i) + σ7(θ

i) = θi(1 + θ3i + θ6i). But 1 + θ3i + θ6i = 0 if
i 6≡ 0 mod 3, and 1 + θ3i + θ6i = 3 otherwise. •

7.4.2 Determining the branch of a skeleton group

The following theorem determines the precise maximal mainline quotient of a skeleton
group Gi+1,γ,m.

Theorem 7.11 Let j ≥ 7, let i ≡ j mod 3, and let 0 ≤ n ≤ j − χj, where χj = 0 if
3 divides j, and χj = 1 otherwise. If γ is a surjection in HomD(Ti ∧ Ti, Ti+j), then
Gi+1,γ,j+n is isomorphic to a mainline group if and only one of the following holds:

(a) n = 0 for i ≡ 0 mod 3;

(b) n ≤ 2 for i ≡ 1 mod 3;

(c) n ≤ 1 for i ≡ 2 mod 3.

Proof: If n = 0 then Gi+1,γ,j+n is a mainline group by construction. If n > 2, then
Gi+1,γ,j+n is not a mainline group by Remark 7.8. We consider the three cases in turn.

(a) We assume, without loss of generality, that i = 0, and show that G1,γ,j+1 is not
isomorphic to the mainline group of the same order. Recall that G1,γ,j+1 contains a
maximal subgroup K1,γ,j+1 that is isomorphic to the mainline group C n T1/Tj+1 for
R1 by Remark 7.8, and is independent of γ. To shorten notation, we denote it by M1,j.
(The first suffix indicates that T1 is its lattice and the second suffix reflects the order).

Suppose that ι : G1,γ,j+1 → G1,0,j+1 is an isomorphism. Then ι maps M1,j onto one
of the subgroups 〈a(bt0)

k, t1〉 for k = 0, 1, 2 of G1,0,j+1. Since the automorphism group
of G1,0,j+1 acts transitively on these subgroups by Lemma 7.7, we may assume k = 0.
Equating T0 with O, the generator bt0 of G1,γ,j+1 lying outside K1,γ,j+1 becomes b1;
since θ − 1 ∈ p, which lies in the Frattini subgroup of G1,γ,j+1, we may replace b1 by
bθ. Since (bθ)3 = 1, the group G1,γ,j+1 is a split extension of M1,j by 〈bθ〉. Clearly the
mainline group G1,0,j+1 is also a split extension of M1,j by the 3-cycle bθ.
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Theorem 5.12 shows that the automorphism group of M1,j is (Aut(C) n U/Uj) n
T/Tj. Thus we write an element of this automorphism group as (σ, u, o), where σ ∈
Aut(C), and u ∈ U/Uj, and o ∈ O/pj.

The 3-cycle bθ in G1,0,j+1 induces the automorphism (σ4, 1, θ) of M1,j, where 1
and θ represent the images of these elements in U/Uj and O/pj respectively. The
corresponding 3-cycle bθ in G1,γ,j+1 induces the automorphism (σ4, 1 +w, θ+φ), where
w and φ are in pj−1/pj. Note that w is non-zero, as γ is a surjection onto Tj, and thus
the action of bθ on T1/Tj+1 is not the same as the action of b, since θ, as an element of
T0/Tj+1, needs no longer centralise T1/Tj+1.

We use Lemma 7.9 to prove that these two automorphisms do not define isomorphic
extensions. The lemma applies since every automorphism of D centralises b modulo
〈a〉. Note that, in the lemma, ζ = ζ ′ = 1, as our groups are split extensions, and
the role of h is played by a3xt ∈ M1,j for some x ∈ {0, 1, 2}, where t1+ba

3x+b2a6x = 0.
Conjugation by this element is the automorphism (1, θ3x, t).

Taking λ in the lemma to be (σm, u, o), we are led to

(σ4, 1, θ)(σm, u, o) = (σm, u, o)(σ4, 1 + w, θ + φ)(1, θ3x, t),

as an equation in (m,u, o, t, x), where t + tba
3x

+ tb
2a6x = 0. This is equivalent to the

simultaneous equations:

u = θ3x(1 + w)σ4(u) (∗1)

uσm(θ) + o = θ3x(1 + w)σ4(o) + θ3x(θ + φ) + t. (†1)

We now show that (∗1) has no solution in U/Uj. Multiplying u by θ−x we may take
x = 0. So now (∗1) has become

u = (1 + w)σ4(u). (∗2)

Suppose first that u ∈ U4 (modulo Uj). Since U4 is naturally isomorphic to p4 by
Lemma 5.5(c), we must consider the image of the endomorphism f of p4 defined by
f(y) = σ4(y)−y, which, by Lemma 7.10(a), covers pl/pl+1 if and only if l 6≡ 2 mod 3 and
l ≥ 6. For arbitrary u and l ∈ {1, 2}, note that σ4(u)u−1 ∈ Ul+2 \ Ul+3 if u ∈ Ul \ Ul+1,
and σ4(u) = u if u = ±θ3; so since j > 6 the assumption that u ∈ U4 (modulo Uj) is
harmless. Thus we can solve (∗2) if and only if j 6≡ 0 mod 3. But j ≡ 0 mod 3 in our
considered case, so (∗2) cannot be solved.

Thus an isomorphism ι cannot exist, so G1,γ,j+1 is not isomorphic to a mainline
group.

(b) We may assume that i = 1, and show that G2,γ,j+2 is isomorphic to the mainline
group G2,0,j+2. The parameter j + 2 reflects the fact that exceptional isomorphisms
cause the branch in question to leave the mainline two steps lower. Recall that G2,γ,j+2

contains the maximal subgroup K2,γ,j+2. By Remark 7.8, the latter is isomorphic to
C n T2/Tj+3, a mainline group for R2. Again, this group is independent of γ, and we
denote it by M2,j+1.
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We consider G2,γ,j+2, and the corresponding mainline group, as extensions of M2,j+1

by b(θ2−θ). To adapt the argument of case (a) we require both extensions to split. For
both groups we observe that b(θ2− θ) has order 3. This is equivalent to the statement
that (θ2− θ)b2+b+1 = 0, and since θb = θ4, this is easily checked for the mainline group.
Indeed, (θ2 − θ)b2+b+1 = θ5 − θ7 + θ8 − θ4 + θ2 − θ = 0.

Repeating this calculation in G2,γ,j+2 is a little more complicated. We need to
evaluate (θ2 − θ)b2+b+1, or rather (θ2 − θ)b2 · (θ2 − θ)b · (θ2 − θ), where the operation ·
is addition twisted by γ. Writing x for θ2 − θ we find xb

2 · xb · x = xb
2

+ xb + x + y,
where y = 1

2
γ(xb

2 ∧ xb + xb
2 ∧ x + xb ∧ x) = 1

2
γ(xb ∧ x)b−b

2+1. Now xb
2

+ xb + x = 0;

and γ = cϑ, so y = 1
2
cϑ(θ8 − θ4 ∧ θ2 − θ)b−b2+1. But ϑ(θi ∧ θj) = 0 if i ≡ j mod 3, so

y = −1
2
cϑ(θ8 ∧ θ + θ4 ∧ θ2)b−b2+1 = −3

2
c(σ4 − σ7 + 1)θ6 = −3

2
cθ6, and hence vanishes,

as required, in G2,γ,j+2.
We now have to solve the equation

(σ4, 1, θ
2 − θ)(σm, u, o) = (σm, u, o)(σ4, 1 + w, θ2 − θ + φ)(1, θ3x, t),

where w ∈ pj−1/pj+1 and φ ∈ pj/pj+2 are given.
We find a solution with m = 1 and x = o = 0 by solving the simultaneous equations

u = (1 + w)σ4(u) (∗3)

u(θ2 − θ) = θ2 − θ + φ+ t. (†3)

Since j ≡ 1 mod 3, the cases that are not covered by the image of f (see Lemma
7.10) are avoided, and (∗3) can be solved, with u ∈ Uj−3. (Note that (∗3) only
determines u modulo Uj−1.) It remains to choose t so that (†3) is satisfied. Note
that t is subject to the condition that t1+b+b

2
= 0. Lemma 7.10(b) implies that

t 7→ t1+b+b
2

maps pi into 3pi for all i, so this condition is satisfied if 3t ∈ pj+2. Since
(u − 1)(θ2 − θ) ∈ pj−2/pj+2, and φ ∈ pj/pj+2, it follows that t can be chosen so that
(†3) is satisfied, and 3t ∈ pj+2.

This defines the desired isomorphism between G2,γ,j+2 and G2,0,j+2.

(c) We may assume that i = 2, and show that G3,γ,j+1 is isomorphic to G3,0,j+1, but
G3,γ,j+2 is not isomorphic to G3,0,j+2.

First we show that G3,γ,j+1 is isomorphic to G3,0,j+1. Both are non-split extensions
of K3,γ,j+1 by a 3-cycle. Now K3,γ,j+1

∼= C n T3/Tj+3 and we denote it by M3,j.
The method of proof is as follows. The groups that we need to prove isomorphic

are both of the form G3,γ,j+1, where in one case γ maps onto pj+1/pj+2, and in the
other case is zero. Both have index 3 in a group that is a split extension of its Fitting
subgroup by D. In the first the Fitting subgroup is twisted by γ, and in the second it
is abelian. However, the Fitting subgroups consist of the same set of elements in both
cases, with the same action of the Galois group. It is the group multiplication that
is different. We also take the split extensions to have the same underlying set, and
express G3,γ,j+1 in each case as a non-split extension of the same maximal subgroup
M3,j by the same element, namely b(1− θ)2. We prove that the cube of this element is
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the same element ζ of M3,j in each case. We then solve the appropriate analogues of (∗)
and (†), and observe that the automorphism of M3,j we have constructed centralises ζ,
and, in the notation of Lemma 7.9, hβ

2
hβh = 1. This will complete the proof.

The first step is to prove that if r := b(1 − θ)2 in either group then r3 = 3. Thus
we need to calculate r3 modulo pj+3; but, for later use, we calculate r3 modulo pj+4.
If γ = 0 it is easy to see that r3 = 3. If γ 6= 0, then, since b3 = 1, it follows that
r3 = (1− θ)2b2 · (1− θ)2b · (1− θ)2, so we must evaluate the expression

(1− 2θ7 + θ5) · (1− 2θ4 + θ8) · (1− 2θ + θ2)

in p3/pj+4. Since (1− 2θ7 + θ5) + (1− 2θ4 + θ8) + (1− 2θ + θ2) = 3 this evaluates to

3 + 1
2
γ((1− θ)2b2 ∧ (1− θ)2b) + 1

2
γ((1− θ)2b2 ∧ (1− θ)2) + 1

2
γ((1− θ)2b ∧ (1− θ)2) =

3 + 1
2
((γ(1− θ)2b ∧ (1− θ)2)b + γ((1− θ)2 ∧ (1− θ)2b)b2 + γ((1− θ)2b ∧ (1− θ)2)) =

3 + 1
2
(σ4 − σ7 + 1)(γ((1− θ)2b ∧ (1− θ)2)),

where b acts as σ4. Now γ = cϑ, where c ∈ pj−5, so we calculate ϑ((1− θ4)2 ∧ (1− θ)2)
modulo p9:

ϑ((1− θ4)2 ∧ (1− θ)2) = (1− θ8)2(1− θ−1)2 − (1− θ−4)2(1− θ2)2
= (1− θ4)2(1− θ)2((1 + θ4)2θ−2 − θ−8(1 + θ)2),

and this evaluates to −(1− θ)8 modulo p9. Thus, if c = c0(1− θ)j−5 for some unit c0,
then

r3 ≡ 3− (σ4 − σ7 + 1)(1
2
c0(1− θ)j+3) ≡ 3 + c0(1− θ)j+3 mod pj+4,

and r3 ≡ 3 mod pj+3, as required.
We now turn to the analogues of (∗) and (†). Again we will solve them with m = 1,

and x = o = 0, by solving the simultaneous equations

u = (1 + w)σ4(u) (∗4)

(u− 1)(1− θ)2 = φ+ t. (†4)

Equation (∗4) is to be solved in U/Uj, with w ∈ pj−1 \ pj, which is possible since
j − 1 ≡ 1 mod 3; and (†4) is to be solved in p2/pj+2, with φ ∈ pj+1/pj+2, which is
possible as before.

Now u ∈ Uj−3; so u centralises r3, as required, and we deduce that G3,γ,j+1
∼=

G3,0,j+1.
To complete case (c), we show that G3,γ,j+2 is not isomorphic to G3,0,j+2. We need

to consider the equation

u = θ3x(1 + w)σ4(u) (∗5)

in U/Uj+1. Here w ∈ pj−1/pj+1. We may again assume that x = 0. A careful calculation
shows that this equation has a solution; but as we are proving non-isomorphism this is
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more than we need. However, we need more information about w. Since 1 + w is the
unit by which one multiplies an element of p3/pj+4 on conjugating by (1 − θ)2 in the
twisted group, w(1 − θ)3 = γ((1 − θ)3 ∧ (1 − θ)2). One checks that ϑ(1 ∧ (1 − θ)2) ≡
−(1− θ)4 mod p5, so if γ = c0(1− θ)j−5ϑ then γ(1∧ (1− θ)2)) ≡ −c0(1− θ)j−1 mod pj.
Also

γ((1− θ)3 ∧ (1− θ)2) ≡ γ((1− θ3) ∧ (1− θ)2)
≡ (1− θ6)γ(1 ∧ (1− θ)2)
≡ (1− θ3)(1 + θ3)(−c0(1− θ)j−1))
≡ c0(1− θ)j+2 mod pj+3.

Thus w ≡ c0(1 − θ)j−1 mod pj. Now u = 1 + u0(1 − θ)j−3 for some unit u0, and
since j ≡ 2 mod 3 it follows from (∗5) that u − σ4(u) ≡ u0(1 − θ)j−1 mod pj. So
u0 ≡ c0 mod p.

Following the notation of Lemma 7.9, we have ζ = 3 and ζ ′ = 3 + c0(1 − θ)j+3 in
(p6 \ p7)/pj+4; but

ζλ = σm(ζ)u = ζu = ζ(1 + u0(1− θ)j−3) = 3 + 3c0(1− θ)j−3 = 3− c0(1− θ)j+3.

This clashes with the above expression for ζ ′. Thus the groups are not isomorphic:
no suitable h can be found, since Lemma 7.10 shows that 1 + σ4 + σ7 does not cover
pj+3/pj+4. •

We now know that a branch in T (Gi+1) with non-trivial skeleton has a root of class
h where 3|h. It remains to determine the shape of each skeleton.

7.4.3 Determining the shape of Si+1,h,10

By Theorem 7.6 it suffices now to determine the precise shape of Si+1,h,10 for h ≥ 9.
By Theorem 7.5, if j ≥ 7 and i = j− 3, a skeleton group Gi+1,γ,m, not on the mainline,
is defined by a homomorphism

γ = (−1)u0λu23 ϑ,

where λ3 = 1 + (ω − 1)3; and if j is odd we may take both u0 and u2 in {0, 1};
and if j is even we may take u0 = 0 and u2 ∈ {0, 1, 2}. Recall that we assume that
γ : pi ∧ pi → pi+j where i = j − 3.

We now decide when groups defined by different values of these parameters are
isomorphic under exceptional isomorphisms.

Theorem 7.12 Let γ and γ′ be surjections from Ti ∧ Ti to Ti+j. If n ≤ 9 then
Gi+1,γ,j+n

∼= Gi+1,γ′,j+n if and only they are orbit isomorphic, or they are both iso-
morphic to a mainline group.
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Proof: (a) Consider first the case i ≡ 0 mod 3 and n = 1, as in (a) of Theorem
7.11. We have seen that the two groups obtained by taking u0 = 0 and u0 = 1 are
not isomorphic to the mainline group of the same order. It remains to prove that, if
j is odd, then these two groups are not isomorphic to each other via an exceptional
isomorphism. We saw in Theorem 7.11(a) that the critical parameter for G1,γ,j+1 was
w ∈ pj−1/pj. We now have two such parameters, say w1 and w2 = −w1. These
determine γ and γ′. Then Equation (∗1) is replaced by

(1 + σm(w1))u = σ4(u)(1− w1).

or equivalently σ4(u)− u = σm(w1) + w1. Since, as we saw, this has no solution when
the right hand side is a non-zero element of pj−1/pj, it remains to prove that the right
hand side cannot lie in pj. We may take w1 = (θ − 1)j−1 + pj. But σm(θ − 1)j−1 ≡
mj−1(θ − 1)j−1 mod pj, and mj−1 cannot be congruent to −1 modulo 3 if j is odd.

(b) Now consider the case i ≡ 1 mod 3. We must now take n = 3, and prove that, if j is
odd, then the two parameters w1 and −w1 (taking u0 ∈ {0, 1}) in (pj−1\pj)/pj+2 do not
define isomorphic groups. But this is clearly the case, since an exceptional isomorphism
between two groups Gi+1,γk,m (for k = 1, 2) must induce orbit isomorphisms between
the groups Gi+1,γk,m−2. For, if Gi+1,γ1,m is isomorphic to Gi+1,γ2,m then since Gi+1 is
an extension of Ti+1 by D it follows that, by applying an orbit automorphism, we may
assume that γ1 and γ2 induce the same homomorphisms from Ti+1∧Ti+1 to Ti+j/Ti+m.
Then γ2 = γ1 + γ + γ3, where γ3 maps Ti+1 ∧ Ti+1 into Ti+m. It follows that γ3 maps
Ti ∧ Ti into Ti+m−2; so γ1 and γ2 induce the same homomorphisms from Ti+1 ∧ Ti+1 to
Ti+j/Ti+m−2, as required.

(c) Now consider the case i ≡ 2 mod 3. We must now take n = 2, and prove that, if j is
odd, then the two parameters γ and γ′ taking values ±(1−θ3)(j−5)/3 respectively do not
define isomorphic groups. Following the argument of case (c) of Theorem 7.11, one sees
that a necessary condition for the groups to be isomorphic is that σm(3 + (1− θ)j+3) ≡
3− (1− θ)j+3 mod pj+4 for some m. This is equivalent to mj+3 ≡ −1 mod 3, which is
impossible if j is odd. •

Now consider the case where n ≥ 10. It remains to decide when two different values
of u2, as above, can give rise to isomorphic groups.

(i) Suppose that i ≡ 0 mod 3, so we may assume that i = 0. Taking n = 10, there
are either two or three groups of the form G1,γ,j+10, for fixed j ≡ i mod 3, according
to whether j is respectively odd or even, that are not orbit isomorphic, but where the
corresponding quotients G1,γ,j+9 are orbit isomorphic, and we need to prove that the
groups G1,γ,j+10 are not isomorphic. Since ϑ(θ ∧ θ4) = ϑ(θ ∧ θ7) = ϑ(θ4 ∧ θ7) = 0 it
follows that bθ, as an element of G1,γ,j+10, has order 3 in all cases, so we may again
use Lemma 7.9 with ζ = ζ ′ = 1. The role of M in that lemma is now played by
R1,δ,j+9, where δ is the restriction of γ to p ∧ p. The automorphism group of this
group is described in Theorem 5.12. The role of γ′ in that theorem is played by γ
here. So the automorphism group of R1,δ,j+9 is a subgroup of (C6 nU/Uj+9)n T0,γ,j+9.
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The automorphism induced by bθ will then be of the form (σ4, 1 + w0, θ · φ0), where
w0, φ0 ∈ pj−1/pj+9 for one value of γ, and similarly with w0 and φ0 replaced by w1 and
φ1 for another value of γ. Since these two values of γ differ by a factor of λ3 (or λ23), it
follows that w0 and w1 differ modulo pj. It now follows, as in case (a) of Theorem 7.5,
that we must consider the equation

(σ4, 1 + w0, θ · φ0)(σm, u, o) = (σm, u, o)(σ4, 1 + w1, θ · φ1)(1, θ
3x, t)

in (C6nU/Uj+9)nO/pi+j+9 for (m,u, o, x, t), the other parameters being given, where
the operation ‘·’ on O/pi+j+9 is obtained by twisting with γ. As before, by considering
the analogue of Equation (∗1) that arises from the displayed equation, one sees that
two groups G1,γ,j+10, for different values of γ, that are not orbit isomorphic are not
isomorphic.

(ii) Suppose that i ≡ 1 mod 3, so we may assume that i = 1. Taking n = 11, we need
to prove that if G2,γ1,j+9 and G2,γ2,j+9 are orbit isomorphic then G2,γ1,j+11 and G2,γ2,j+11

are isomorphic. An additional complication arises here, since b(θ2 − θ) no longer has
order 3. As observed above, in G2,γk,j+11, one finds that (b(θ2 − θ))3 = 3ckθ

6, where
γk = ckϑ for k = 1, 2. Here ck ∈ pj−2, and c1 − c2 ∈ pj+7, so (b(θ2 − θ))3 is the same
element in the two groups; so we may apply Lemma 7.9 with ζ = ζ ′ ∈ pj+4/pj+11.
Postponing further consideration of ζ and ζ ′, we need to solve essentially the same
equations as before (with i = 1). In particular, we need a conjugating automorphism
(σm, u, o). Repeating the earlier argument, we find a solution with m = 1, u ∈ U7,
and o = 0. One then checks, from Theorem 5.12, that (1, u, 0) is an automorphism of
R2,γ,j+11 that centralises ζ. Thus the equations required to construct the isomorphism
may be constructed as before.

Taking i = 1 and n = 12, we observe, as before, that if G2,γ1,j+10 and G2,γ2,j+10 are
not orbit isomorphic, then G2,γ1,j+12 and G2,γ2,j+12 are not isomorphic.

(iii) Suppose that i ≡ 2 mod 3, so we may assume that i = 2. Taking n = 10, we need
to prove that if G3,γ1,j+9 and G3,γ2,j+9 are orbit isomorphic then G3,γ1,j+10 and G3,γ2,j+10

are isomorphic. This can be carried out as with case (ii), as the cubes ζ and ζ ′ are
equal.

Finally, we need to prove that if G3,γ1,j+9 and G3,γ2,j+9 are orbit isomorphic, but
G3,γ1,j+10 and G3,γ2,j+10 are not, then G3,γ1,j+11 and G3,γ2,j+11 are not isomorphic. Now
the cubes ζ and ζ ′ are not equal, and the argument is similar to case (c) of Theorem
7.12 with n = 2.

7.5 Identifying the skeleton groups in T (Gi+1)

In this section we describe the skeleton groups in T (Gi+1). These are Gj−2,γ,m with
j ≡ i mod 3 and γ ∈ {±cϑ | c = 1 or c = 1 + 3(θ3 − 1)}. They are constructed as
subgroups of small index in Hj−3,γ,m. Explicit descriptions for Hj−3,γ,m are given in
Section 6.5 for γ = cϑ with c = 1 or c = 1 + 3(θ3 − 1). The others are obtained using
the following lemma.
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Lemma 7.13 Gi+1,−γ,m ∼= 〈a, bt−1i 〉 ≤ Hi,γ,m.

Proof: Multiplication by −1 ∈ U(3) induces an isomorphism between Hi,γ,m and
Hi,−γ,m. This acts by inversion on Ti,γ,m and maps Gi+1,γ,m to Gi+1,−γ,m. •

We now equate skeleton groups in T (Gj−2) with subgroups of low index in skele-
ton groups in T (Hj−3). This implicitly defines presentations for these groups. Let
Hj−3,γ,m = 〈a, b, t〉 be a skeleton group for Hj−3 of depth n := m − j in the skeleton
with root of class j. Let γ = cϑ with c = 1 or c = 1 + 3(θ3 − 1).

(a) The two subgroups 〈a, bt±1〉 of index 3 in Hj−3,γ,m are skeleton groups for G1.
They have depth n in the skeleton with root of class j. They are isomorphic if
and only if γ = ϑ and 6 | j.

(b) The two subgroups 〈a, b[t, a]±1〉 of index 9 in Hj−3,γ,m are skeleton groups for
G2. They have depth n − 4 in the skeleton with root of class j + 3. They are
isomorphic if and only if γ = ϑ and 6 | j.

(c) The two subgroups 〈a, b[t, a, a]±1〉 of index 27 in Hj−3,γ,m are skeleton groups for
G3. They have depth n − 5 in the skeleton with root of class j + 3. They are
isomorphic if and only if γ = ϑ and 6 | j − 3.

8 Twigs for T (R) and T (Gi)

Recall that all coclass trees in G(3, 2) except T (R) and T (Gi) for i ∈ {1, 2, 3} can be
constructed from a finite subtree using the periodicity exhibited in Theorem 2.1. In
this section we provide evidence that these exceptions can also be constructed from a
finite subtree using Theorem 2.1 and a second periodic pattern that we now describe.

8.1 A second periodic pattern

Let G ∈ {R,G1, G2, G3} and choose kG so that the skeleton Sj(G) of the branch Bj(G)
for j ≥ 7 has no branching at depth kG or larger. Let t(G) be the absolute bound to
the depth of twigs in T (G) identified in Theorem 3.4.

Let fG = f(kG+6+t(G)), where f is the defect function of Theorem 2.1. If j ≥ fG,
then the isomorphism πj of Theorem 2.1 maps the skeleton groups in Bj,kG+6(G) to
the skeleton groups in Bj+6,kG+6(G), and it induces a graph isomorphism between the
twigs of these skeleton groups.

Here we investigate the twigs for the skeleton groups of depth at least kG. The
explicit descriptions of the skeleton groups in T (R) and T (Gi) allow us to compute
the twigs of these groups using the p-group generation algorithm [19]. Let Wj,n(G, γ)
denote the twig of the skeleton group Gγ,m of depth n = m− j in Sj(G) defined by the
homomorphism γ. Our computations support the following.
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Conjecture 8.1 Let j ≥ 7 and G ∈ {R,G1, G2, G3}.

(a) Wj,n(G, γ) ∼=Wj+6,n+6(G, 3γ) for each homomorphism γ and integer n satisfying
kG ≤ n ≤ depth(Sj(G)).

(b) There exists an integer uG such that Wj,n(G, γ) ∼= Wj,n+6(G, γ) for each homo-
morphism γ and integer n satisfying kG ≤ n < uG − 6.

Part (a) and Theorem 2.1 imply that, for j ≥ fG, every twig of a skeleton group in
Bj+6(G) can be read off from a twig in Bj(G): for the skeleton groups of depth at most
kG+6 we use Theorem 2.1, and for all others we use (a). This reduces the construction
of T (G) to a finite subgraph consisting of all branches Bj(G) for j < fG + 6.

Part (b) implies that the twigs of skeleton groups having depth in {kG, . . . , kG + 5}
describe those of the skeleton groups having depth in {kG, . . . , uG − 1}. Hence we can
describe compactly the twigs of the skeleton groups of depth at least kG.

Table 3 summarises our choice for kG; informed by our computations, we conjecture
values for uG and the depth of Bj(G). Recall that Sj(R) is non-trivial for every j ≥ 7
and Sj(Gi) is non-trivial for every j ≥ 7 divisible by 3.

G kG uG depth(Bj(G)) case
R 12 j − 2 j + 3 3 | j

12 j − 2 j + 1 3 - j
G1 10 j j + 4 3 | j
G2 10 j − 6 j 3 | j
G3 10 j − 6 j + 2 3 | j

Table 3: Summary data for conjecture on G(3, 2)

While the depth of Sj(G3) is j− 3, our descriptions of the skeleton groups allow us
to investigate these only to depth j− 6, so uG3 is conjectured for this shorter skeleton.

8.2 Twigs for T (R)

Conjecture 8.2

(a) There are 45 isomorphism types of twigs for the skeleton groups of depth at least
13 in a branch of T (R).

(b) Let j ≥ 13, let 12 ≤ n ≤ depth(Sj(R)), and let γ1, . . . , γ17 define the 17 iso-
morphism types of groups in Sj(R) of depth n that are summarised in Table 1.
Let Σ1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, Σ2 = {10, 14, 15}, Σ3 = {11, 12, 13, 16}, and
Σ4 = {17}. Then Wj,n(R, γe) ∼=Wj,n(R, γf ) if e and f are in the same set Σk.
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(c) Table 4 describes the twigs of the skeleton groups of depth n ≥ 12 in Bj(R); it
lists two invariants (a, b) for each twig – its depth a and number of vertices b.
The top part of a table describes these twigs for n ∈ {12, . . . , j − 3}; we write
n = l + 6x with l ∈ {12, . . . , 17} and x ≥ 0. The bottom part of a table describes
the twigs for n ∈ {uR, . . . , depth(Sj(R))}.

We verified this conjecture for 13 ≤ j ≤ 26.

n Σ1 Σ2 Σ3 Σ4

12 + 6x (3,20169) (3,20169) (3,6993) (3,3647)
13 + 6x (3,20169) (3,20169) (3,7317) (3,3659)
14 + 6x (3,20169) (3,20169) (3,7209) (3,3767)
15 + 6x (3,20169) (3,20169) (3,6993) (3,3497)
16 + 6x (3,20169) (3,20169) (3,7317) (3,3827)
17 + 6x (3,20169) (3,20169) (3,7209) (3,3605)

j − 2 (3,20331) (3,20331) (3,7209) (3,3767)
j − 1 (2,775) (2,775) (2,277) (2,144)

j ≡ 2 mod 6

n Σ1 Σ2 Σ3 Σ4

12 + 6x (3,20169) (3,20169) (3,6993) (3,3636)
13 + 6x (3,20169) (3,20169) (3,7317) (3,3690)
14 + 6x (3,20169) (3,20169) (3,7209) (3,3744)
15 + 6x (3,20169) (3,20169) (3,6993) (3,3522)
16 + 6x (3,20169) (3,20169) (3,7317) (3,3798)
17 + 6x (3,20169) (3,20169) (3,7209) (3,3630)

j − 2 (3,20331) (3,20331) (3,7209) (3,3633)
j − 1 (2,775) (2,775) (2,277) (2,151)

j ≡ 5 mod 6

n Σ1 Σ2 Σ3 Σ4

12 + 6x (3,20169) (3,20169) (3,20169) (3,10434)
13 + 6x (3,20169) (3,20169) (3,7317) (3,3696)
14 + 6x (3,20169) (3,20169) (3,7317) (3,3792)
15 + 6x (3,20169) (3,20169) (3,20169) (3,10140)
16 + 6x (3,20169) (3,20169) (3,7317) (3,3792)
17 + 6x (3,20169) (3,20169) (3,7317) (3,3696)

j − 2 (3,19845) (3,19845) (3,7317) (3,3696)
j − 1 (3,19701) (3,19701) (3,7065) (3,3666)
j (2,757) (3,20440) (3,20440) (3,10303)

j ≡ 3 mod 6

n Σ1 Σ2 Σ3 Σ4

12 + 6x (3,20169) (3,20169) (3,20169) (3,10483)
13 + 6x (3,20169) (3,20169) (3,7317) (3,3659)
14 + 6x (3,20169) (3,20169) (3,7317) (3,3811)
15 + 6x (3,20169) (3,20169) (3,20169) (3,10085)
16 + 6x (3,20169) (3,20169) (3,7317) (3,3811)
17 + 6x (3,20169) (3,20169) (3,7317) (3,3659)

j − 2 (3,19845) (3,19845) (3,7317) (3,3811)
j − 1 (3,19701) (3,19701) (3,7065) (3,3533)
j (2,757) (3,20440) (3,20440) (3,10603)

j ≡ 0 mod 6

n Σ1 Σ2 Σ3 Σ4

12 + 6x (3,20169) (3,20169) (3,6993) (3,3647)
13 + 6x (3,20169) (3,20169) (3,7209) (3,3605)
14 + 6x (3,20169) (3,20169) (3,7317) (3,3827)
15 + 6x (3,20169) (3,20169) (3,6993) (3,3497)
16 + 6x (3,20169) (3,20169) (3,7209) (3,3767)
17 + 6x (3,20169) (3,20169) (3,7317) (3,3659)

j − 2 (3,19845) (3,19845) (3,7317) (3,3827)
j − 1 (2,775) (2,775) (2,331) (2,174)

j ≡ 4 mod 6

n Σ1 Σ2 Σ3 Σ4

12 + 6x (3,20169) (3,20169) (3,6993) (3,3636)
13 + 6x (3,20169) (3,20169) (3,7209) (3,3630)
14 + 6x (3,20169) (3,20169) (3,7317) (3,3798)
15 + 6x (3,20169) (3,20169) (3,6993) (3,3522)
16 + 6x (3,20169) (3,20169) (3,7209) (3,3744)
17 + 6x (3,20169) (3,20169) (3,7317) (3,3690)

j − 2 (3,19845) (3,19845) (3,7317) (3,3690)
j − 1 (2,775) (2,775) (2,331) (2,181)

j ≡ 1 mod 6

Table 4: Conjectured twigs for branch Bj in T (R) where j ≥ 13

We exhibit 3 of the 45 twigs in Figure 4. These are drawn compactly: if a subtree
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occurs b times in the tree, then the subtree is drawn only once and its root has b
attached to it. Observe A has invariants (3, 20169), both B and C have invariants
(3, 7317); so our invariants do not distinguish all twigs. We conjecture that all twigs
with invariants (3, 20169) in Bj(R) are isomorphic to Tree A; all twigs with invariants
(3, 7317) in Bj(R) where 3 | j are isomorphic to Tree B; all twigs with invariants
(3, 7317) in Bj(R) where 3 - j are isomorphic to Tree C.
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Figure 4: Trees A, B, and C

8.3 Twigs for T (Gi)

Figure 3 shows that there are either 3 or 4 pairwise non-isomorphic skeleton groups at
depth n ≥ 10.

Conjecture 8.3 The number of isomorphism types of twigs for skeleton groups of
depth at least 10 in a branch of T (Gi) is 11, 13, and 11 for i ∈ {1, 2, 3} respectively.
The twigs are identified uniquely by their invariants. Tables 5−7 describe the invariants
of the twigs of the skeleton groups of depth n ≥ 10 in Bj(Gi).

We verified the description for G1 for j ∈ {12, 15, 18, 21, 24}, for G2 for j ∈
{15, 18, 21, 24, 27}, and for G3 for j ∈ {18, 21, 24, 27, 30}.
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n k = 1, 2, 3
10 + 6x (2,2187)
11 + 6x (2,1215)
12 + 6x (3,19683)
13 + 6x (2,2187)
14 + 6x (2,1215)
15 + 6x (3,19683)

j (4,22681)
j ≡ 0 mod 6

n k = 1, 3 k = 2, 4
10 + 6x (2,1119) (2,2187 )
11 + 6x (2,636 ) (2,1215 )
12 + 6x (3,9948) (3,19683)
13 + 6x (2,1122) (2,2187 )
14 + 6x (2,627 ) (2,1215 )
15 + 6x (3,9897) (3,19683)

j (4,11437) (4,22681)
j ≡ 3 mod 6

Table 5: Conjectured twigs for branch Bj in T (G1) for j ≥ 12

n k = 1, 2, 3
10 + 6x (4,1863)
11 + 6x (4,2673)
12 + 6x (4,1215)
13 + 6x (4,1863)
14 + 6x (4,2673)
15 + 6x (4,1215)

j − 6 (6,5265)
j − 5 (1,28 )

j ≡ 0 mod 6

depth k = 1, 3 k = 2, 4
10 + 6x (4,957) (4,1863)
11 + 6x (4,1350) (4,2673)
12 + 6x (4,645) (4,1215)
13 + 6x (4,942) (4,1863)
14 + 6x (4,1380) (4,2673)
15 + 6x (4,618) (4,1215)

j − 6 (6,2700) (6,5265)
j − 5 (1,19) (1,28)

j ≡ 3 mod 6

Table 6: Conjectured twigs for branch Bj in T (G2) for j ≥ 15

n k = 1, 3 k = 2, 4
10 + 6x (3,97) (3,171)
11 + 6x (3,60) (3,111)
12 + 6x (6,629) (6,1257)
13 + 6x (3,90) (3,171)
14 + 6x (3,75) (3,111)
15 + 6x (6,681) (6,1257)

j − 6 (8,912) (8,1717)
j ≡ 0 mod 6

n k = 1, 2, 3
10 + 6x (3,171 )
11 + 6x (3,111 )
12 + 6x (6,1257)
13 + 6x (3,171 )
14 + 6x (3,111 )
15 + 6x (6,1257)

j − 6 (8,1717)
j ≡ 3 mod 6

Table 7: Conjectured twigs for branch Bj in T (G3) for j ≥ 18
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9 A general conjecture

Let G be an infinite pro-p-group of coclass r and dimension d. We now conjecture how
a sequence of branches of unbounded depth in T (G) can be constructed from a finite
subgraph, and demonstrate how this conjecture allows us to construct T (G) by a finite
calculation.

Before stating the conjecture formally, we first consider the significance of the work
of [11]. For given k > 0, Theorem 2.1 implies that for ` ≥ f(k), where f is the defect
function, the graphs B`+id,k, for i = 0, 1, . . . are all isomorphic.

Every skeleton group in T (G) is defined via the minimal split supergroup H of G
and a homomorphism γ : T ∧ T → T defining a skeleton group in T (H). Consider the
set Γ`,k of the skeleton groups of depth k in the branch B` of T (G) up to isomorphism
and assume that ` is large enough with respect to k. The construction in [11, Theorem
9] ensures that, if γ defines a skeleton group in Γ`,k, then piγ defines a skeleton group
in Γ`+id,k. Further, this correspondence induces a bijection between Γ`,k and Γ`+id,k for
each i ≥ 0. If P ∈ Γ`+id,k, then P is its image under this bijection in Γ`,k.

Following Theorem 2.1, we arrange the infinitely many branches of T (G) into d
sequences. The theorem completely describes a sequence of branches of bounded depth.
We now state the conjecture for a sequence of branches of unbounded depth, and
illustrate it in Figure 5.

Conjecture W
Let G be an infinite pro-p-group of finite coclass r and dimension d. Let B`0+id for
i = 0, 1, . . . be a sequence of branches in T (G) of unbounded depth. There exist integers
k ≥ d and ` = `0 + ed for some e ≥ 0 and a map ν : Γ`,k → Γ`,k−d that satisfy the
following: if P is in Γ`+id,k, and Q is in Γ`+(i−1)d,k−d and ν(P ) = Q, then the descendant
trees of P and Q are isomorphic.

k − d

k
P

k − d

k

k − d

k

∼=

Q
P

Q

Bℓ

Bℓ+(i−1)d

Bℓ+id

ν

Figure 5: An illustration of Conjecture W
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The data of Section 8 supports the conjecture. For each sequence of branches of
unbounded depth in T (R), we can choose k = 18 and ` = 19, 20, 21, 22, 23, 18 for
`0 = 7, . . . , 12 respectively. For those in T (Gi), we can choose k = 16; for `0 ≡ 0 mod 6
we can take l = 18, 24, 24 respectively; for `0 ≡ 3 mod 6 we can take l = 21, 27, 27
respectively.

If the conjecture is true, then we can construct the infinite sequence B`+id for
i = 0, 1, . . . by a finite calculation.

To do so, we must first choose an explicit value of k. Theorem 2.1 implies, that for
` ≥ f(k), the graphs B`+id,k are all isomorphic, and hence may be constructed. The
graph isomorphism maps a skeleton group P of depth k to a skeleton group P of the
same depth.

The conjecture posits a map ν` := ν from Γ`,k into Γ`,k−d such that the graph of
descendants of P ∈ Γ`+d,k is isomorphic to the graph of descendants of ν`(P ) ∈ Γ`,k−d.
Thus the subgraph of B`+d containing both the groups of depth at most k and those
descendants of skeleton groups of depth k may be constructed, together with a map,
ν`+d, from Γ`+d,k into Γ`+d,k−d that corresponds to ν` under the isomorphism between
B`,k and B`+d,k.

Now the subgraph of B`+2d containing both the groups of depth at most k and those
descendants of skeleton groups of depth k can be constructed from the corresponding
subgraph of B`+d and the map ν`+d. The corresponding subgraphs of B`+id for all i > 0
can be constructed recursively in the same way.

Finally, the complete graphs B`+id may be constructed by a finite calculation, again
using Theorem 2.1. All that needs to be added are the descendants of the groups of
depth k that are not skeleton groups. Since the twigs have depth at most t(G), the
subgraphs Bl+id,k+t(G) are isomorphic for l + id ≥ f(k + t(G)).

The central difficulty in proving Conjecture W is finding a description for the map
ν`. The investigations of G(3, 2) and G(5, 1) suggest that ν` can be defined as taking
the d-step ancestor of a given group. However [6, Remark 4] suggests that this is not
true for G(p, 1) for p ≥ 7.
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