
A practical model for computation with matrix

groups

Henrik Bäärnhielm, Derek Holt, C.R. Leedham-Green, and E.A. O’Brien

Abstract. We describe an algorithm to compute a composition tree for a matrix
group defined over a finite field, and show how to use the associated structure to
carry out computations with such groups; these include finding composition and
chief series, the soluble radical, and Sylow subgroups.

1. Introduction

In this article we describe in detail algorithms for computing with large matrix
groups defined over finite fields, and their implementation in Magma [BCP97].
The motivation comes from the matrix group recognition project [LG01]: its aim is
to understand the structure of G = 〈Y 〉 6 GL(d,Fq). Our algorithms construct a
composition series for G, and facilitate membership testing and writing of elements
of G as words in Y . Further functionality includes, for example, the computation
of chief series, the centre, the soluble radical, and Sylow subgroups.

Comparable questions can already be answered readily for permutation groups
of large degree. These algorithms rely on “base and strong generator” (BSGS)
methods [HEO05, Chapter 4]. It is now possible to study the structure of permu-
tation groups with moderately small bases having degrees up to about ten million.
Variations of these techniques have only limited applicability to matrix groups.

A composition tree for a finite group is a data structure to store its composition
factors; it is defined in Section 3. The basic strategy for computing a composi-
tion tree of a matrix group, based on a combination of a constructive version of
Aschbacher’s theorem [Asc84] and constructive recognition algorithms for finite
simple groups, was proposed by Leedham-Green [LG01], and a prototype was im-
plemented in Magma by Leedham-Green and O’Brien in 2000. Various develop-
ments and refinements of the strategy were introduced in [NS06, O’B06, O’B11].

Last revised April 9, 2014. We thank Peter Brooksbank and Max Neunhöffer for helpful com-
ments, and Colva Roney-Dougal for helpful discussions. Bäärnhielm was funded by a University
of Auckland Postdoctoral Fellowship. All authors were partially supported by the Marsden Fund
of New Zealand via grant UOA1015.

1

2 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

Similar methods can also be applied to permutation groups, and are useful for
the study of large base groups, where BSGS techniques are less effective. Neunhöffer
& Seress [NS06] present a uniform data structure for both matrix and permutation
groups; an implementation is available as the GAP [Gro14] recog packages [NSa,

NSb].
In summary, our objectives are four-fold.

(1) Construct a composition tree for a group G that is a subgroup of either
GL(d,Fq) or of Sym(n).

(2) Using the composition tree, construct a composition series for G.
(3) Adjust the generators of the subgroups in the composition series to obtain

a new composition series that refines a particular characteristic series of
G. We refer to this step as rearranging the composition series.

(4) Provide the infrastructure needed by the Soluble Radical Model of [HEO05,
Chapter 10] to answer other structural questions about G.

Of these four tasks the first has required most effort. It may be divided into three
subtasks: realising a constructive version of Aschbacher’s theorem; constructive
recognition for simple groups; and combining these to complete the task. We are
now, after some 20 years of continuous development, at the point where, in practice,
we can construct a composition tree for a matrix group defined in dimension up to
100 and over a large field in a reasonable length of time.

It is not our purpose here to describe the large body of work, by many authors,
that enables us to make Aschbacher’s theorem constructive, and to process sim-
ple groups. This work is described elsewhere; we give references. Our concern here
is with the strategic concepts and technical details needed to combine these algo-
rithms into a package that both constructs a composition tree, and, by carrying
out our other objectives, can be used to analyse the structure of such groups. This
superstructure has been developed by us over the past 15 years, and is described
in sufficient detail to guide others who may wish to implement these ideas.

We barely touch on questions of complexity; the critical issues arise with the al-
gorithms for Aschbacher’s theorem and simple groups. Serious obstructions remain
before we have a provably polynomial-time algorithm to compute a composition
tree. We contrast this with the striking theoretical results obtained in the black-
box context [BBS09] and reported in Section 3.3.

Sections 5–9 describe the construction of the composition tree. Sections 10–
11 describe the rearranging algorithm, which requires us to solve an identification
problem for automorphisms of classical groups that may be of independent interest.
In Section 12 we explain how the resulting data structure is exploited by the Soluble
Radical Model to carry out various structural computations in G such as finding
its centre and its Sylow subgroups.

Our implementations of the resulting algorithms are available in Magma as the
CompositionTree package, and form part of its standard machinery for computing
with matrix groups. Section 13 discusses aspects of our implementations and their
performance.

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 3

The algorithms of [HS08, Sta06] construct directly a chief series of G that
refines the characteristic series of G defined in Section 3.3. By contrast, we first
construct a composition series. The algorithm to adjust the generators of the terms
in the composition series is straightforward, and uses the composition tree as a
“black box” with a well-defined interface, without relying on detailed knowledge
of its construction. A disadvantage compared with [HS08] is that certain groups
require many adjustments.

Algorithms for computing with linear groups defined over infinite fields often
compute, as a preliminary step, an image over a finite field. Our algorithms, in par-
ticular those that produce a presentation for the image, are immediately applicable;
see, for example, [DFO11, DFO13].

2. Background and notation

All groups in this paper are assumed to be finite. For background on aspects
of the matrix group recognition project, we refer the reader to [LG01, O’B06,

O’B11].
As outlined in [Ser03, Chapter 6], an extensive library of highly efficient al-

gorithms exists for small base permutation groups. Finite polycyclic groups are
usually represented by PC-presentations; practical algorithms for their study ap-
pear in [HEO05, Chapter 8]. High-quality implementations of both classes of al-
gorithms are available in both GAP and Magma; we assume their availability, and
refer the interested reader to these sources for details. We refer to these as standard
machinery.

Many existing algorithms to compute structural information aboutG 6 GL(d,Fq)
– for example, its composition factors or conjugacy classes – rely on the availabil-
ity of a BSGS for G; see [HEO05] for a discussion. We refer to these as BSGS

machinery.
We assume that efficient algorithms are available to solve many basic problems

for invertible matrices. These include finding orders ([CLG97] and [O’B06]); com-
puting characteristic and minimal polynomials ([NP08] and [HEO05, §7.3]); and
computing large powers ([HEO05, §3.1.1] and [LGO09]).

A straight-line program (SLP) is a compactly stored word in a set of group
generators and their inverses; for a formal definition, see for example [HEO05,
§3.1.3]. While the length of a word in a given generating set constructed in n
multiplications and inversions can increase exponentially with n, the length of the
corresponding SLP is linear in n. Babai & Szemerédi [BS84] prove that every
element of a finite group G has an SLP of length O

(
log2 |G|

)
in every generating

set.
A rewriting algorithm for a finite group G solves the constructive membership

problem: given u ∈ U > G = 〈Y 〉, decide whether u ∈ G, and if so express u as an
SLP in Y . Here U is the universal group containing G: namely, U is GL(d,Fq) or
Sym(n) when G is a matrix group or permutation group, respectively.

A constructive recognition algorithm for a (quasi)simple group G solves the
following problem: construct an isomorphism ϕ from G to a standard copy of G

4 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

(see Section 4.2) such that ϕ(g) can be computed efficiently for every g ∈ G. Such
an isomorphism is said to be effective. We also demand that ϕ−1 is effective. All
constructive recognition algorithms employed here are Las Vegas.

The concept of a black-box group was introduced in [BS84]. In this model, group
elements are represented by bit-strings of uniform length; the only group operations
permissible are multiplication, inversion, and checking for equality with the identity
element. Permutation groups and matrix groups defined over finite fields are covered
by this model.

Seress [Ser03, p. 17] defines a black-box algorithm as one that does not use
specific features of the group representation, nor particulars of how group operations
are performed; it uses only the operations permissible in a black-box group. A
common assumption is that oracles are available to perform certain tasks – usually
problems not known to be solvable in polynomial time. An example is an oracle to
determine the order of an element in a black-box group. Number-theoretic oracles
include a discrete log oracle: for a given non-zero µ ∈ Fq and a fixed primitive
element ω of Fq, it returns the unique integer k in the range 1 6 k < q for which
µ = ωk. Another is integer factorisation, usually of numbers of the form qi−1. The
most efficient algorithms for both number-theoretic oracles run in sub-exponential
time (see [Shp99, Chapter 4]).

Babai [Bab91] presents a black-box Monte Carlo algorithm to construct nearly
uniformly distributed random elements of a finite group G in polynomial time. An
alternative is the product replacement algorithm [CLGM+95, Pak00]. We assume
that a random element and its SLP in the generators of G are simultaneously
constructed. Both algorithms satisfy this assumption.

The central order of g ∈ G is the smallest power of g that lies in the centre of
G. The cyclic group of order e is denoted by Ce.

3. Outline of the algorithms

A composition tree of a group G is a data structure – namely, a full binary tree
– to store either its composition factors, or factors of a subnormal series that can
be readily refined to a composition series. We describe both the structure and its
construction in detail in Section 5; here we outline the algorithms to achieve the
objectives identified in the introduction.

Each node of the tree has an associated group, a subnormal section of G; it
is the group of the root node. For the associated group H of each non-leaf node,
there is an epimorphism θ : H → H1 and a monomorphism θ0 : H0 → H with
Im θ0 = Ker θ, where H0 and H1 are respectively the groups associated with the
left child and the right child of the node.

The tree is constructed recursively. The data structure facilitates rewriting in
G. In particular, the ability to perform rewriting in a section of G is available once
a composition tree has been constructed for this section. This ability is essential to
the recursion, and depends on the availability of rewriting algorithms for the finite
simple groups.

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 5

3.1. Composition tree construction. Here is an outline of the algorithm to
construct a composition tree of a group G with a given generating set Y .

(1) Either:
(i) construct an effective epimorphism θ : G → G1, for some group G1;

or
(ii) deduce that G is cyclic, elementary abelian, or “close” to being non-

abelian simple. Now G becomes a leaf in the tree.
In Case (i), θ must be a reduction: namely, G1 is “smaller” than G in some
respect – for example, its degree or field of definition. Assume henceforth
that Case (i) applies.

(2) Recursively construct a composition tree for G1 = 〈θ(Y)〉.
(3) Construct generators for G0 := Ker θ.
(4) Recursively construct a composition tree for G0.
(5) Combine the composition trees for G1 and G0 into a tree for G.

If G 6 GL(d,Fq), then we exploit Aschbacher’s theorem [Asc84] in Step (1).
This requires algorithms to decide whether G lies in a certain Aschbacher class, and
to construct the corresponding θ. Other homomorphisms, such as the determinant
map, may also be used.

If G 6 Sym(n), then we could exploit the O’Nan-Scott theorem [HEO05,
Chapter 10] in Step (1). However, as outlined in [Ser03, Chapter 6], an extensive
library of highly efficient algorithms exists which only require a BSGS. For a small
base permutation group one can easily construct a BSGS. Thus our goal is more
limited: we apply certain reductions to large base groups to obtain small base
images, and then use the existing algorithms to complete the investigation.

The group associated with a leaf need not be simple. It may be cyclic or ele-
mentary abelian, a simple or soluble primitive permutation group, or an absolutely
irreducible matrix group that is simple modulo its centre. Our decisions on what
groups may be treated as leaves are partly dictated by complexity considerations,
and partly based on the quality of algorithms available to process a leaf. For exam-
ple, we observe no practical advantage from refining a cyclic group to its composition
factors.

3.2. The composition series. The composition tree suffices if we are inter-
ested only in rewriting and membership testing in G, but for many other structural
calculations we require a composition series. To construct such a series, we need to
find composition series of the groups associated with the leaves of the tree. This
may require additional work, particularly when the group associated with a node
is insoluble but not simple. To do this efficiently, we need constructive recognition
algorithms for the non-abelian composition factors of G.

We use the tree and associated constructive recognition algorithms to construct
the following.

• A composition series 〈1〉 = G0 < G1 < · · · < Gm = G and, for each k, a
subset Xk of Gk that generates Gk modulo Gk−1.

6 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

• For each k > 0, an effective epimorphism τk : Gk → Sk, where Sk is the
standard copy of Gk/Gk−1, and Ker τk = Gk−1.

• For each k > 0, a rewriting algorithm for Sk.
• For each k > 0, an effective map φk : Sk → Gk with φk ◦ τk = IdSk

.

If G is not a leaf, then it is straightforward to construct this data for G from the
corresponding data for its image and kernel. Hence the task reduces to constructing
such data for the leaves of the composition tree for G.

3.3. Rearranging the composition series. Recall, for example from [HEO05,
§10.1], that a finite group G has a characteristic series of subgroups

1 6 L 6M 6 K 6 G

defined as follows.
The group L is the soluble radical (the largest normal soluble subgroup) of

G. The group M is defined to be the complete inverse image in G of the socle
soc(G/L) of G/L (the product of its minimal normal subgroups). Thus M/L is the
direct product of a uniquely defined set ∆ of non-abelian simple groups. This set
is permuted by G, by conjugation, and K is the kernel of this action.

Observe that, since the centraliser of M/L in G/L is trivial, the factor K/M is
isomorphic to a subgroup of the direct product of the outer automorphism groups
of the simple factors of M/L, and is therefore soluble. The factor G/K can be
regarded as a permutation group on the (generally small) set ∆.

Babai & Beals [BB99] initiated the black-box approach to the study of matrix
groups: focusing on the abstract structure of G 6 GL(d, q), it seeks to construct pre-
cisely this characteristic series for G. In 2009, as a culmination of 25 years of work,
Babai, Beals & Seress [BBS09] proved that, subject to the existence of a discrete
log oracle and the ability to factorise integers of the form qi−1 for 1 6 i 6 d, there
exist black-box Las Vegas polynomial-time algorithms to construct this series for a
large class of matrix groups. The reliance on the discrete log oracle arises from the
application of the algorithm of [CLGO06] to recognise constructively central quo-
tients of SL(2, q). Kantor & Kassabov [KK13] and Borovik & Yalçınkaya [BY13]
propose new algorithms, for fields of even and odd characteristic respectively, which
perform this task in polynomial time for bounded characteristic without use of such
an oracle.

A chief series for G that refines the above characteristic series is particularly
useful for carrying out structural computations in G, such as calculating its auto-
morphism group, or its conjugacy classes of elements or subgroups. For details of
such algorithms, see [HEO05, Chapter 10]. While their implementations have used
BSGS machinery to date, the algorithms are essentially black-box.

As a first step towards such a chief series, we construct a composition series
that refines the characteristic series. We proceed up the composition series of G
and, for each Gk, we do the following. If possible, we replace each xk ∈ Xk by xkg
with g ∈ Gk−1, such that xkg ∈ L, or (if this is not possible) xkg ∈M , or (if this is
not possible) xkg ∈ K. This does not change Gk, it only modifies Xk. After these
changes, by taking the sets Xk in a different order – first those lying in L, second

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 7

those lying in M , third those lying in K, and finally those not in K – we obtain
a new composition series of G that passes through L, M , and K. We refer to this
process as rearranging the series.

The algorithm to perform this task is described in Section 11.

4. Standard copies, generators, presentations, rewriting

We now discuss various technical issues that play a role in the algorithms.

4.1. A group pair. A quotient of a group by a cyclic central subgroup may
occur as a node group in a composition tree. We define a group pair to be an ordered
pair (G,N), where G and N are subgroups of some common overgroup U , and G
centralises N . We call G and N respectively the upper group and the null subgroup
of the pair, and the quotient group GN/N ∼= G/(G ∩ N) is the represented group

of the pair. For notational purposes, it is convenient to regard a group G as being
a group pair with upper group G and trivial null subgroup.

We define a morphism θ : (G,N) → (G1, N1) between group pairs to be a map
θ : GN → G1N1 (note that we use θ for this map too) with θ(N) 6 N1, such that
θ induces a group homomorphism φ : GN/N → G1N1/N1. While θ : GN → G1N1

is not required to be a homomorphism, we nevertheless use Ker θ to denote {g ∈
GN | θ(g) = 1}. We call θ a monomorphism, epimorphism or isomorphism of group
pairs if φ has this property (as a group homomorphism). Group pair morphisms
θ0 : (G0, N0) → (G,N) and θ : (G,N) → (G1, N1) form an exact sequence if
Imφ0 = Kerφ, which is true if and only if Im(θ0)N = {g ∈ GN | θ(g) ∈ N1}.

We assign a group pair (G,N) to each node of a composition tree for G, and
the group associated with the node is the represented group of the pair. If the node
is not a leaf, then we define an associated exact sequence θ0 : (G0, N0) → (G,N)
and θ : (G,N) → (G1, N1), where (G0, N0) and (G1, N1) are the pairs assigned to
the left- and right-hand child nodes. This induces the required exact sequence on
the corresponding represented groups.

4.2. Standard copies. For each finite simple or quasisimple group G, we des-
ignate one standard copy S. To compute structural information in another copy H
of G, we often first construct effective isomorphisms between H and the standard
copy S, carry out the desired computations in S, and then use the isomorphisms
to transfer the results back to H.

The standard copy S has a designated set of standard generators. One important
component of a constructive recognition algorithm is to find generators X in an
arbitrary representation H of G that correspond to the standard generators under
an isomorphism, and to express the elements of X as SLPs in the input generators
of H. A second is an algorithm to write elements of H as SLPs in X. These enable
the construction of effective isomorphisms between H and S in both directions.

The standard copy of Alt(n) is on n points; its standard generators are (1, 2, 3)
and either of (3, . . . , n) or (1, 2)(3, . . . , n) according to the parity of n.

The standard copy of a quasisimple classical group G is the unique conjugate of
its natural representation which preserves a specific form; if A is a central subgroup

8 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

of G, then the standard copy of G/A is represented by the pair (G,A). Each classical
group has at most eight standard generators [LGO09, DLGLO13].

For each simply connected finite exceptional group of Lie type, Howlett, Rylands
& Taylor [HRT01] provide defining matrices for a specific faithful irreducible rep-
resentation of minimal dimension; we designate this representation as the standard
copy. Each such group has a reduced Curtis-Steinberg-Tits presentation [BGK+97];
those root elements which satisfy this presentation are the standard generators of
the exceptional groups of Lie rank at least 2; other choices were made for the groups
of rank 1 [Bää07, Bää14, BB09].

Wilson [Wil96] introduced standard generators for (coverings of) the sporadic
groups: these are defined on the Atlas web site [Wil].

4.3. Verification: using presentations for simple groups. Our algorithm
to construct a composition tree has a verification option, which guarantees the
correctness of its output. Without this, there is a small probability (which, as we
show in Proposition 5.1 below, can be made arbitrarily small by the user) that the
group is larger than reported. This option is described in Section 5.3. It requires
the computation of presentations of the node groups which, as we see in Section
4.5, reduces to finding presentations of the leaf groups.

For small and for soluble leaf groups, these can be computed using standard
machinery. For other groups, the problem reduces to the construction of presenta-
tions for the finite simple groups on their standard generators. Hence a goal of both
theoretical and practical interest is to obtain “short” presentations for the finite
simple groups on specific generating sets.

Informally, the length of a presentation is the number of generators plus the sum
of the lengths of the relators; see [GKKL08] for one definition. Key to this work are
short presentations for Alt(n) and Sym(n). Independently Bray et al. [BCLGO11]
and Guralnick et al. [GKKL08] proved that Alt(n) and Sym(n) have presentations
with a bounded number of generators and relations, and length O

(
log n

)
.

In a major extension, Guralnick et al. [GKKL08] proved that every non-abelian
finite simple group of Lie rank n over Fq, with the possible exception of 2G2(q), has
a presentation with a bounded number of generators and relations and total length
O
(
log n+log q

)
. In all cases, the lengths are optimal, up to multiplication by a fixed

constant. Unfortunately it does not seem possible to achieve this asymptotic bound
with our standard generators, but we can, for example, find a presentation of length
O(log2(n) + log q) with O(log n) relators on these generators, using [BCLGO11,
Theorem 1.3(a)].

There remains the task of writing down explicit presentations, satisfying these
limits, for the finite simple groups on their standard generators. Leedham-Green &
O’Brien [LGO14] do this for the classical groups. Explicit presentations on reduced
Steinberg generators for the exceptional groups of rank at least 2 appear in [LO14];
see also [BGK+97]. Bray & Bäärnhielm [BB09] provide a presentation for Sz(q) on
its standard generators. Presentations on standard generators for sporadic groups
are available at [Wil].

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 9

4.4. Generating sets. An upper group G stored in a node of a composition
tree has an ordered list of input generators that generate G. For the root node, they
are supplied by the user. If the node is a right child under a group pair morphism
θ, then its input generators are the images of the input generators of G under θ.

The group G has a second list of nice generators. This idea was introduced
by Neunhöffer & Seress [NS06]. In a non-leaf node with reduction epimorphism θ
and kernel monomorphism θ0, its nice generators are the images under θ0 of the
nice generators of the kernel node together with inverse images under θ of the nice
generators of the image node. If G is a leaf and its non-abelian composition factor
has standard copy S, then the nice generators of G are inverse images in G of the
standard generators of S, together with a generator of Z(G).

We maintain the two lists for a number of reasons. A critical reason is that we can
use the theoretical results described in Section 4.3 to write down a presentation for
a leaf node on its nice generators; such is not feasible for an arbitrary generating set.
This results in shorter presentations at all nodes than would be possible, in general,
for an arbitrary generating set. Another is that we can more easily design rewriting
algorithms that write an element of a leaf group in terms of its nice generators.
We store SLPs that define the nice generators as words in the input generators, so
words in the nice generators can be rewritten in terms of the input generators as
required. As we show below, this facility allows us to rewrite a presentation on the
nice generators to one on the input generators.

4.5. Presentations and rewriting for non-leaf nodes. Assume that pre-
sentations and rewriting algorithms are known for the child node groups G0N0/N0

and G1N1/N1 on their nice generators; we now describe how to provide them for
GN/N . In the following descriptions, we ignore the null subgroups and work just
with G0, G1 and G. The null subgroups introduce further technical complications;
we defer discussing these until Section 8. To simplify notation, we also identify G0

with its isomorphic image under θ0.
4.5.1. Presentations. The algorithm to write down a presentation of G, using

the fact that it is an extension of G0 by G1, is standard; see for example [HEO05,
Proposition 2.55] or [Joh90, §10.2].

Let {X0 | R0 } and {X1 | R1 } be presentations of G0 and G1. For each x ∈ X1,
choose x′ ∈ G with θ(x′) = x. Let X ′

1 := {x′ | x ∈ X1 } and X := X ′
1 ∪ X0. For

each relator r ∈ R1, we define a word r′ in X ′
1 by replacing each generator x in

r by the corresponding x′ ∈ X ′
1; so r

′ evaluates to an element of G0. Let wr be a
word in X0 that evaluates to the same element, and let R′

1 = {r′w−1
r | r ∈ R1}.

For each x0 ∈ X0 and x ∈ X ′ observe that x−1x0x ∈ G0; so there is a word wxx0

in X0 that evaluates to this element. Let S = {x−1x0xw
−1
xx0

| x ∈ X ′
1, x0 ∈ X0}. If

R := R0 ∪R′
1 ∪ S, then {X | R} is a presentation of G.

We use this theory with X0 and X1 being the sets of nice generators of G0 and
G1 respectively, and define X := X ′

1 ∪X0 to be the set of nice generators of G. We
use our rewriting algorithm in G0 to calculate the words wr and wxx0

.

10 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

To rewrite this presentation on the input generators of G, we use the following
result; see for example [Joh90, §4.4, Remark 7]. If G = 〈X〉, then two words in X
are G-equivalent if they represent the same element of G.

Proposition 4.1. Let {X | R} be a presentation of a group G. Let Y be another

generating set of G, and let Yρ and Xρ be functions which respectively rewrite words

in X to G-equivalent words in Y and words in Y to G-equivalent words in X. Let

S = {Yρ(r) | r ∈ R} ∪ {Yρ(Xρ(y))y
−1 | y ∈ Y }. Then {Y | S} is a presentation of

G.

4.5.2. Rewriting. The construction of the rewriting algorithm for G on its nice
generators from those of G0 and G1 is straightforward. For g ∈ G, we rewrite
θ(g) ∈ G1 as a word w in X1 and define the corresponding word w′ in X ′

1 as
described above. We evaluate w′ to obtain h in G, so gh−1 ∈ G0, and write gh−1 as
a word w0 in X0. Now g is the word w0w in X.

We label as ρ the function that assigns the element gh−1 of G0 to g ∈ G.

5. The composition tree algorithm

Recall that a composition tree for a group is stored as a full binary tree. Each
node describes the represented group of a group pair (G,N), and has various data
attached to it. Its right child, with associated group pair (G1, N1), represents the
image of (G,N) under a group pair morphism θ, which arises from a reduction.
Its left child, with associated group pair (G0, N0), represents the kernel of θ. More
precisely, there is a group pair morphism θ0 from the left child to (G,N) such that
θ0 and θ form an exact sequence. It is often – but not always – true that θ0 is
simply an inclusion map. This flexibility allows us to store the kernel in a different
representation, which may be more efficient. For instance, if θ arises from a tensor
decomposition of a matrix group, then we store both the image and the kernel as
matrix groups of smaller dimension. We allow the represented group of the kernel
or image to be trivial, provided that θ represents some kind of simplification, such
as in the degree of the group or in the field size.

For the group pair (G,N) associated with the node, the null subgroup N is
always cyclic and centralised by G. If G is a permutation group or elementary
abelian, then N is trivial. If G is a matrix group, then N is either trivial, or consists
of scalar matrices. It may also be non-trivial when G is a cyclic group. More details
about the null subgroups, and their definitions for the various reductions, are given
in Section 8. The null subgroup of the root node is trivial by default, but it may
be assigned by the user subject to these constraints.

5.1. Data structures for a node. We list the important data components
stored in a node with associated group pair (G,N). Some of these components are
available only when the construction of the composition tree rooted at that node
is complete.

(1) The input generators of G.
(2) A generator for the null subgroup N .

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 11

(3) The data structure required to execute the product replacement algorithm
for G on its input generators.

(4) A list of algorithms that can be used to construct a reduction homomor-
phism for G, in order of priority. This priority may vary according to the
reduction used to construct G.

(5) The nice generators of G.
(6) A list of SLPs of the nice generators in the input generators.
(7) A rewriting algorithm that expresses g ∈ GN as an SLP in its nice gener-

ators that evaluates to an element in gN .
(8) A list ofmandarins. These are random elements used to test the correctness

of the subtree rooted at the node – see Section 5.2.
(9) A list of SLPs of relators for a presentation of G on its nice generators.
(10) A list of lists of SLPs of elements in the nice generators of G whose images

(in the appropriate sections) generate each composition factor.
(11) The data associated with the composition series described in Section 3.2.

If the node is not a leaf, then there is a reduction epimorphism θ to its right
child and a monomorphism θ0 from its left child. The following additional data is
stored.

(1) The reduction epimorphism θ.
(2) A list of SLPs of the images under θ0 of the input generators of the left

child in the input generators of the node.

If the node is a leaf, then the following additional data is stored.

(1) If G is abelian, then its isomorphism type; otherwise the name of its non-
abelian chief factor.

(2) If G is quasisimple, then an effective epimorphism α : G → S to the
standard copy of the non-abelian composition factor of G, and effective
inverse β.

5.2. The main algorithm. We now describe in more detail the composition
tree algorithm. We apply this initially to the input group G 6 GL(d,Fq) or G 6

Sym(n), but during the application of the algorithm it is applied recursively to
the other node groups. We discuss the reductions as they apply to G, and defer
until Section 8 the details of how we process the null subgroup and define the null
subgroups of the node’s children.

Before describing the algorithm, we discuss the important role played by the
mandarins in establishing the correctness of the construction. When we start to
process a node, the associated group has a generating set and a set of mandarins.
In the root node, the mandarins are random elements of the input group. For every
node, the expectation is that all of the mandarins lie in the associated group. For
leaf nodes we test this immediately after processing the node. For non-leaf nodes,
the successful construction of the subtree rooted at this node enables us to write
the mandarins as SLPs in the nice generating set, which implies their containment
in the group. A failure of a mandarin to lie in the group implies that something

12 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

has gone wrong with our construction of the tree, and this provokes a crisis. Our
method of correcting the mistake is described in Section 5.4.

We explain now how we construct the mandarins of the child nodes of a non-
leaf node. The mandarins of the group G1 of the right child are defined to be the
images of those of G under the reduction epimorphism θ : G→ G1. If these images
cannot be computed, then a crisis is provoked. If no problem is detected during
the construction of the subtree rooted at G1, then the mandarins of G1 lie in G1.
The mandarins of the group G0 of the left child are then obtained by applying the
function ρ, defined in Section 4.5.2, to the mandarins of G.

In summary, the algorithm to construct the composition tree for the input group
G is the following.

(1) Attempt to construct a reduction morphism θ : G → G1. See Sections 6
and 7 for details.

(2) If no reduction is found, then the node is marked as a leaf.
(a) Process the leaf as described in Section 9. This includes identifying

the unique non-abelian composition factor of a non-abelian leaf group,
and applying an appropriate constructive recognition algorithm to it.

(b) If verification is required, then construct a presentation of the leaf
group on its nice generators.

(c) Test the mandarins of the node for membership in the group. If this
fails, then a crisis is provoked. Otherwise, halt.

(3) Set up the data structure for the right child of the node, and try to define
the mandarins for this child. If this fails, then a crisis is provoked. Otherwise
recursively construct a composition tree for the right child.

(4) Construct a putative generating set for Ker θ, define the group G0 of the
left node and the isomorphism θ0 : G0 → Ker θ. See Section 5.3 for details.
Construct the mandarins for this child.

(5) Recursively construct a composition tree for G0. If we construct this sub-
tree without provoking a crisis, then we have established that the man-
darins associated with G0 lie in G0. It then follows from the definition of
the mandarins of the child nodes that the mandarins of G lie in G.

(6) Set up the nice generators and the rewriting algorithm for G as described
in Section 4.4. Apply the rewriting algorithm to the input generators of
G to check that they lie in the group generated by the nice generators. If
not, then a crisis is provoked.

(7) If verification is required, then attempt to construct a presentation of G
on its nice generators from presentations of its children. If we construct
the presentation, then we have verified that the composition tree for G is
correct. If the attempt to construct a presentation fails, then a crisis is
provoked.

Proposition 5.1. If the above algorithm completes successfully without using

verification, and if the number of mandarins at each node is M , then the probability

of an incorrect result being returned is at most 1−(1−2−M)ℓ, where ℓ is the number

of left child nodes in the resulting tree.

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 13

Proof. The only source of possible error is when the left child of a node is
created, and the generating set for this node is inadequate. If this is the case, then
the deficiency will be detected unless the generating set generates a group that
contains the mandarins. If the generating set generates a subgroup of index k, then
the probability that all of the mandarins lie in this subgroup is 1/kM since the
construction of the generating set is independent of the mandarins. Since k ≥ 2 the
result follows. �

5.3. Kernel generation. A critical task is the construction of a generating
set for Ker θ in Step (4) of the main algorithm. The reductions described in Sec-
tions 7.4 and 7.6 provide these generating sets directly, but the others do not. We
now describe two general methods to construct Ker θ: the random element method
introduced in [LG01], and the presentation method introduced in [NS06].

If there are non-trivial null subgroups, then we must construct the kernel of
φ : GN/N → G1N1/N1 rather than of θ, but for the moment we ignore this problem
and describe the computation of the kernel of θ : G → G1. The presence of null
subgroups introduces some technical complications that we discuss in Section 8.
To simplify notation, we identify G0 with Ker θ, whereas in reality Ker θ is the
isomorphic image of G0 under θ0. In all our reductions, images and inverse images
under θ0 are easily computed.

5.3.1. The random element method. This has two ingredients. The first is the
construction of a set of random elements of G0; this set, which may be augmented
from time to time, will be the putative input generating set Y0 of G0. It can only
be carried out when a composition tree for G1 has been constructed. The second,
verification, decides definitively whether Y0 is adequate. It requires that we can
construct a presentation for G1 on its nice generators. In the absence of verification
we have a Monte Carlo algorithm, with a bound to the probability of failure given
by Proposition 5.1.

Constructing random elements of G0. Given a rewriting algorithm for G1, we
define the function ρ : G→ G0 of Section 4.5.2. Observe that ρ(g) = gh−1, where h
depends only on θ(g): namely, on the coset of Ker θ that contains g, and not on the
value of g within this coset. Thus if U = {g1, . . . , gk} is a set of (nearly uniformly
distributed independent) random elements of G, then ρ(U) and θ(U) are such sets
for G0 and G1 respectively.

We use ρ to construct a putative generating set Y0 of random elements of G0.
Various theoretical upper bounds to the size of Y0 required to generate G0 with high
probability are known. Let d(G) be the minimal size of a generating set of a finite
group G. If G 6 Sym(n), then d(G) 6 n/2 for n > 3 by [CST89]. If G 6 GL(d,Fq),
then d(G) 6 3d/2 if G is completely reducible, and d(G/Op(G)) 6 3d/2 in general;
these bounds are sharp [KR91]. Improved bounds for completely reducible groups
over specific fields appear in [HRD13]: also if G is a subnormal subgroup of a
primitive group, then d(G) 6 2 log2 d. Observe that |Op(G)| 6 qd(d−1)/2, so d(G) =
O
(
d2 log q

)
in general; since there are p-groups G < GL(d,Fq) with d(G) = ed2/4,

this is again best possible. Every finite group G is generated with high probability
by d(G) + O

(
log log |G|

)
random elements of G; see, for example, [Lub02]. Thus,

14 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

to ensure that with provably high probability Y0 generates Ker θ, the required value
of |Y0| is O

(
d2 log q

)
in general, O

(
d
)
if Op(G) = 1, or O

(
log d

)
if G0 is a subnormal

subgroup of a primitive group (a condition that holds for many nodes).
As we show in Section 7.2, if the input group G 6 GL(d,Fq), then Op(G)

is always the group of the left child of the root node; so it and its descendants
may need O

(
d2 log q

)
generators. On the other hand, the right child of the input

group and its descendants almost always have Op(G) = 1, and so need at most
3d/2 generators. (The only possible exception is the right child of an extraspecial
normaliser reduction.) If we know that G0 is primitive, then we can use the O

(
log d

)

bound.
Our experience suggests that using large numbers of kernel generators is detri-

mental to the performance of the algorithm, and it is preferable to impose an
absolute upper bound on the initial value of |Y0|. We use different bounds in the
three cases: when Op(G) = 1, when G0 is primitive, and otherwise. If Y0 does not
generate G0, then we double its size. Our implementation allows flexibility in the
initial choice of |Y0|.
Verification. If the procedure to verify that 〈Y0〉 = G0 is carried out, then this
is done at the same time as constructing the presentation for G from those of G0

and G1, as described in Section 4.5.1. In the notation of that section, if we succeed
in rewriting the elements r′ and x−1x0x as words in the set X0 of nice generators
of G0, then we simultaneously check that θ0(〈X0〉) = Ker θ and 〈Y0〉 = G0. (Recall
〈X0〉 ≤ 〈Y0〉 and 〈Y0〉 ≤ Ker θ.) Otherwise verification fails.

If {X1|R1} is the presentation of G1, and X
′
1 is the set of nice generators of G

corresponding to X1, then verification is completed by checking that every r ∈ R,
when evaluated on X ′

1, gives an element of 〈X0〉.
5.3.2. The presentation method. This can be used if a presentation of G1 is

known. Let R′
1 be the set of inverse images in G of the relators R1, as described

in Section 4.5.1, so G0 = 〈R′
1〉G. Note that the relators R1 are words in the nice

generators X1 of G1, so they need to be rewritten as words in the input generators
Y1 in order to obtain the elements of R′

1 as SLPs in Y . We use the Monte Carlo al-
gorithm of [CF93] to construct this normal closure. An upper bound to the number
of generators needed to generate the normal closure is a function of the length, lG,
of the longest subgroup chain in G. If G 6 GL(d,Fq) then lG = O

(
d2 log q

)
[ST91];

if G 6 Sym(n) then lG 6 3n/2 [CST89].
5.3.3. A comparison of the methods. Both methods construct random elements

of the kernel. The random method relies on the use of the product replacement
algorithm to construct random elements of G, and the function ρ to convert these
into random elements of G0. The presentation method requires a set of normal
generatorsR′

1 forG0, as a subgroup ofG, arising from a presentation forG1 onX1. It
initialises Y0 to R

′
1, and augments Y0 by adding random normal subproducts [CF93]

of 〈Y0〉 in 〈Y 〉. While the resulting set generates G0 with a provable probability,
the elements of R′

1 are not uniformly distributed in G0, and so we may require a
large generating set to construct G0. Using the random method, we initialise Y0 to
contain some initial number of random elements of G0 and add more as required;

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 15

we expect that the resulting generating set for Y0 is smaller. Verification using the
presentation method is somewhat easier: since R′

1 is already contained in Y0, there
is no need to check this during verification.

Our experience suggests that the random element method performs better than
the presentation method provided that appropriate choices are made for the initial
values of |Y0|.

5.4. Crisis management. In practice, we use smaller bounds for the sizes of
the generating sets than those demanded by theory. Hence both methods may fail
to find the full kernel. This has consequences for the design of the composition tree
algorithm. As part of the construction of the composition tree rooted at the kernel,
we test the mandarins for membership in the kernel, which entails testing mandarins
for membership of nodes that are descendants of the kernel. If a membership test
for a mandarin fails, then some left child on the path from this node to the root
was not calculated correctly; it need not be the node where the membership test
fails. If this failure occurs, then it is a crisis, and we must discard a part of the
tree and recompute it. If there are several kernel computations on the path from
the node to the root, then we do not know which of them is incorrect. We therefore
introduce the notion of a safe node defined as follows.

• The root node is safe.
• A right child is safe if and only if its parent is safe.
• A left child is never safe unless it is calculated using some method guar-
anteed to construct the full kernel, in which case it is safe if and only if its
parent is safe.

If a crisis occurs during rewriting in a node, then we backtrack along the path from
the node to the root, until we reach a safe node. We discard the left subtree of
this safe node, retaining only the known generators of its left child. We add more
generators to this kernel and try again. The number of random elements selected as
putative generators for a kernel of a node is always at least the number of generators
for the node.

6. Reductions for permutation groups

This and the following section are devoted to Step (1) of the main algorithm
summarised in Section 5.2. The individual algorithms that construct the various
reduction morphisms are described elsewhere. Here, we explain what they do, and
how they fit into the main algorithm.

We provide reductions from general permutation groups to small base groups,
which can be then be studied using standard machinery. These reductions were
introduced in [NS06].

6.1. Intransitivity. If G 6 Sym(n) is intransitive, then it induces an action
on an orbit O. We use standard machinery to construct θ : G→ Sym(O).

16 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

6.2. Imprimitivity. A transitive subgroup of Sym(n) is imprimitive if it pre-
serves a non-trivial partition of Ω = {1, . . . , n}. We use standard machinery to set
up the associated reduction.

6.3. Handling the giants. We use the Monte Carlo algorithm described in
[Ser03, §10.2] to determine whether G is Alt(n) or Sym(n). If so, it is processed as
described in Section 9.5.

6.4. Large base primitive groups. The algorithm of [LNPS06] determines
if a primitive subgroup G of Sym(n) is a subgroup of a wreath product of Sym(m)
and Sym(r) in product action on k-element subsets of {1, . . . ,m}, containing Alt(m)r.
If so, the algorithm constructs a monomorphism θ : G → Sym(mr) whose faithful
image is imprimitive with r blocks of size m.

If none of these reductions applies, then G is a small base group. The leaves of
the composition tree for a permutation group are either simple or soluble.

7. Reductions for matrix groups

The reductions that arise from our constructive version of Aschbacher’s theorem
are described in [LG01, O’B06]. Here we summarise both these and others. The
order in which they are described is the default order in which they are applied; in
particular situations they may be applied in a different order. For the most part, we
defer discussion of the complications introduced by null subgroups until Section 8.

Neunhöffer [Neu09] reformulated the classes introduced by Aschbacher [Asc84]
to facilitate easier membership problems; he and Seress [NS06] adopt these refor-
mulations.

7.1. Unipotent reductions. G 6 GL(d,Fq) is unipotent if and only if every
g ∈ G has order a power of p, the characteristic of Fq. Moreover, G is unipotent
if and only if every composition factor of the FqG-module has dimension 1 and G
acts trivially on every factor.

We first employ a fast negative test: if any generator of G has order not a power
of p, then G is not unipotent. Otherwise we use the MeatAxe [Par84, HR94,

IL00] to decompose the FqG-module and test if its composition factors satisfy the
criteria.

If G is unipotent, then the MeatAxe provides a change-of-basis matrix c such
that Gc is lower unitriangular. The projection of Gc onto its first non-zero subdi-
agonal is a homomorphism. The image of this reduction is elementary abelian and
is treated as a leaf. It has trivial null subgroup and is stored as a PC-group.

7.2. Submodule reductions. Let V be the natural FqG-module of G 6

GL(d,Fq). First we find the indecomposable summands of V , so V ∼= V1⊕ · · ·⊕Vk.
Next we find a composition series of each Vi. This also provides a change-of-basis
matrix ci ∈ GL(Vi) that exhibits this series. We use the change-of-basis matrix

c =
⊕k

i=1 ci (diagonal join) to exhibit both the direct sum decomposition of V and

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 17

the composition series of each Vi. The corresponding composition series of V is

0 = V1,0 < V1,1 < · · · < V1 < V1 ⊕ V2,1 < · · · < V1 ⊕ V2 < · · · < V.

Now Gc is both block lower triangular, corresponding to the composition fac-
tors of V , and block diagonal, corresponding to the direct summands of V . We
obtain a homomorphism by projecting onto the diagonal blocks corresponding to
the composition factors. The kernel of this homomorphism is Op(G). If the input
group G is not unipotent, then this is the first reduction in the composition tree,
so the composition tree has the property that Op(G) is the first kernel. Thus the
composition factors arising from Op(G) are at the bottom of the composition series
determined by the tree; so we avoid later rearranging of the (potentially large num-
ber of) composition factors of Op(G). Furthermore, all node groups arising to the
right of the root node of the tree (almost always) have trivial p-core and so have
generating sets of cardinality O

(
d
)
.

The group G1 of the right child is now contained in GL(V1) × · · · × GL(Vk),
embedded in GL(d,Fq). From this node we obtain a homomorphism onto the first
non-trivial summand block. The right child of this reduction is contained in GL(V1).
From this node we obtain a homomorphism θ1,1 to GL(V1,1), and then a homomor-
phism θ1,2 from Ker θ1,1 to GL(V1,2/V1,1), and so on. Continuing in this way, we
obtain reductions to the groups acting on the composition factors of V .

Of course, we could also obtain a homomorphisms from G1 onto its restriction
to a composition factor of V . If V has n composition factors, then the number of
kernel computations is n− 1 in either case. One argument for proceeding through
summands is that it leads to a reduction of dimension. If we map directly to factors,
then the first kernel is embedded in GL(V/V1,1). If we first map to a summand, then
Ker θ1,1 is embedded in GL(V1/V1,1) which may have much smaller dimension. Since
matrix multiplication has cubic complexity in the dimension, this is desirable.

7.3. Absolute reducibility. Groups that act irreducibly but not absolutely
irreducibly are in the semilinear Aschbacher class. We consider these separately
from the general semilinear case, since we have a faster reduction, an isomorphism,
in this special case. An irreducible group G 6 GL(d,Fq) is not absolutely irreducible
if it is reducible when embedded into GL(d,Fqe) for some e > 1. The smallest e such
that the constituents of the embedding into GL(d,Fqe) are absolutely irreducible
determines the splitting field Fqe for G. Now G has a faithful representation θ :
G→ GL(d/e,Fqe). Holt and Rees [HR94] describe an extension of the MeatAxe

that constructs θ.

7.4. Semilinearity. If G 6 GL(d,Fq) acts absolutely irreducibly and semilin-
early, then there exists K ⊳ G that acts irreducibly but not absolutely irreducibly,
and so has a splitting field Fqe . Moreover, there is a non-scalar C ∈ Z(K) such that

for every g ∈ G there exists ig ∈ {1, . . . , e} where Cg = gCqig .
The Smash algorithm of [HLGOR96a] returns e and C; so we obtain a ho-

momorphism θ : G → Ce, defined by g 7→ ig, with kernel that is not absolutely
irreducible.

18 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

For this reduction, we obtain generators for the kernel G0 as follows. Let G =
〈x1, . . . , xm〉 and let the image G1 = 〈y1, . . . , ym〉 6 Ce.

(1) Use the extended Euclidean algorithm to obtain n = gcd(y1, . . . , ym, e) and
an expression n = a0e+

∑m
i=1 aiyi with ai ∈ Z.

(2) Let x =
∏m

i=1 x
ai
i and hi = xix

−yi/n for i = 1, . . . ,m. Then θ(x) = n,
so each hi ∈ G0. Let k0 = xe/n. Then k0 ∈ G0, and {k0, h1, . . . , hm} is a
normal generating set for G0.

(3) Hence G0 =
〈
{k0} ∪

{
hx

j

i : 1 6 i 6 m, 0 6 j 6 e− 1
}〉

.

7.5. Imprimitivity. G 6 GL(d,Fq) is imprimitive if it permutes a non-trivial
direct sum decomposition of V = F

d
q . Hence V

∼= V1⊕· · ·⊕Vk, where all Vi have the
same dimension. The algorithm of [HLGOR96b] constructs the homomorphism
G→ Sym(k).

The kernel G0 consists of those elements that preserve the decomposition of V ,
so it is reducible. The algorithm provides a change-of-basis matrix that exhibits the
block diagonal structure of G0. When we process G0, we first apply the submodule
reductions.

7.6. Extraspecial and symplectic normalisers. G 6 GL(d,Fq) is in this
Aschbacher class if it normalises an r-group R of order r2m+1 or 22m+2, where r is
prime, rm = d and r|q− 1. If r > 2 then R is extraspecial; if r = 2 then R is either
extraspecial, or a central product of an extraspecial 2-group and a cyclic group of
order 4.

If m = 1 then the algorithm of [Nie05] constructs this homomorphism G →
Sp(2,Fr). If m > 1 then the algorithm of [BNS06] constructs a homomorphism
G → GL(2n,Fr) or G → Sym(rn), where 1 6 n 6 m. (The latter is an action on
blocks of imprimitivity.) The algorithms also construct generators of the kernel of
the homomorphism.

7.7. Smaller fields modulo scalars. G 6 GL(d,Fq) is in this Aschbacher
class if there exists c ∈ GL(d,Fq) such that H 6 GL(d,Fs)Z with Hc = G, where
Z = Z(GL(d,Fq)) and Fs < Fq. We use the Las Vegas polynomial-time algorithm of
[GLGO06] to compute the change-of-basis matrix c. If H 6 GL(d,Fs), then this
conjugation is an isomorphism θ : G → H, in which case H becomes the group of
the right child node, whereas the group of the left child node is trivial.

Otherwise each g ∈ G satisfies g = hcλg with h ∈ H and λg scalar. This
factorisation is not unique: we can replace hc and λg by h

cλs and λ
−1
s λg respectively

for any scalar matrix λs ∈ GL(d,Fs). We define the upper group G1 of the image to
be the subgroup of Z generated by the elements λg for each generator g of G, and
the null subgroup N1 of the image to be the subgroup of Z generated by the null
subgroup N of the node and Z(GL(d,Fs)). These are stored as cyclic groups. While
the map θ : GN → G1N1 defined by g 7→ λg for g ∈ G and n 7→ n for n ∈ N is not
a homomorphism (or even well-defined), it induces a homomorphism from GN to
G1N1/N1. The upper group of the left child is a subgroup of HN ∩GL(d,Fs), with
θ0 : h 7→ hc, and its null subgroup is N ∩GL(d,Fs).

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 19

It is this reduction and that of Section 7.8 that obliges us to introduce the null
subgroup. Further details are presented in Section 8.

The algorithm of [GLGO06] requires that G′, the derived group of G, acts
absolutely irreducibly. Carlson, Neunhöffer & Roney-Dougal [CNRD09] present a
Las Vegas polynomial-time algorithm to find a reduction of an irreducible matrix
group G that satisfies at least one of the following properties:

(1) G acts semilinearly;
(2) G can be written modulo scalars over a smaller field;
(3) G′ does not act absolutely irreducibly.

In particular, the algorithm either (i) finds a reduction of G of type semilinearity,
imprimitivity, smaller field modulo scalars, or tensor product; or (ii) constructs a
non-trivial homomorphism from G to F

×
q .

7.8. Tensor products. G 6 GL(d,Fq) lies in this Aschbacher class if its nat-
ural module V ∼= U ⊗W and G respects this decomposition. It follows that G is
isomorphic to a subgroup of H0 ◦H1 where H0 6 GL(U) and H1 6 GL(W).

We use the algorithm of [LGO97] to obtain a change-of-basis matrix c ∈
GL(d,Fq) such that Gc is an explicit Kronecker product. For g ∈ G, it is now
straightforward to compute g0 ∈ GL(U) and g1 ∈ GL(W) with g = g0 ⊗ g1. This
factorisation is not unique: we can replace g0, g1 by λg0, λ

−1g1 respectively for any
scalar matrix λ ∈ GL(d,Fq). We therefore define the full group of scalars in GL(W)
to be the null subgroup N1 of G1 and define θ : g 7→ g1. While θ is not necessarily
a homomorphism, it induces a homomorphism from G to PGL(W).

7.9. Tensor induction. G 6 GL(d,Fq) is tensor induced if its natural module
V ∼= U1⊗U2⊗· · ·⊗Uk, where all Ui have the same dimension and are permuted by
G. We use the algorithm of [LGO02] to compute the homomorphism G→ Sym(k).

The kernel G0 consists of those elements that preserve the tensor decomposition
of V . When we process G0, we first apply the tensor product reduction.

7.10. Nearly simple reductions. We use the algorithms of [NP98, NP99]
to test if G is contains and normalises a classical group in its natural representa-
tion. If not, then we assume that G is in the Aschbacher class S; this consists of
other irreducible matrix groups that are almost simple modulo scalars and are not
semilinear or defined modulo scalars over a smaller field. In either case G is nearly
simple: it has structure Z.S.E where Z = Z(G) is the scalar subgroup of G, and S
is a non-abelian simple group, and S.E 6 Aut(S).

We apply additional reductions to G. The first three are homomorphisms θ to
cyclic groups. If G normalises a classical group in its natural representation, then
these three reductions construct a quasisimple group Z ′.S with Z ′ ≤ Z. If G is in
class S, then a fourth is required. In both cases, we treat Z ′.S as a leaf.

7.10.1. Determinant. The determinant map for G 6 GL(d,Fq) is g 7→ det(g) ∈
F
×
q , so the image Im(θ) is a cyclic group. Converting det(g) ∈ F

×
q to a power of a

generator of Im(θ) requires an invocation of a discrete log algorithm in Fq.

20 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

7.10.2. Form action. If G 6 GL(d,Fq) normalises a classical group H which
is not SL(d,Fq), then H preserves a non-degenerate bilinear or sesquilinear form
with matrix F . Then hF h̄T = F for every h ∈ H, where h̄ = h unless H is a
unitary group, in which case h̄ = h

√
q (recall q is a square in this case). Elements

of G preserve F up to a scalar, so for each g ∈ G there exists λg ∈ F
×
q such that

gF ḡT = λgF . Hence we obtain a homomorphism g 7→ λg, with cyclic image. Again,
converting λg to a power of a generator of Im(θ) requires a discrete log algorithm
in Fq. To determine whether G preserves a classical form modulo scalars, we use
the MeatAxe [HEO05, §7.5.4].

7.10.3. Spinor norm. If G 6 GL(d,Fq) is an orthogonal group, then the deter-
minant and form action reductions ensure that G 6 SOǫ(d,Fq). But SO

ǫ(d,Fq) is
not perfect, and we obtain a homomorphism G → C2 where g ∈ G maps to its
spinor norm. The kernel of this map is Ωǫ(d,Fq) which is simple modulo scalars for
d ≥ 6. To calculate spinor norms, we use the algorithms of [MRD11].

7.10.4. Naming the non-abelian composition factor. We assume for the remain-
der of this section that G is in class S. The next step is to identify the isomorphism
type of its non-abelian composition factor. We first calculate the stable derivative

D := G(∞) of G, by repeatedly computing commutators, taking normal closures,
and testing whether the resulting group is perfect [O’B06, §2]. Since G/Z is almost
simple, its third derived group is stable.

Since G < SL(d,Fq) and Z(G) is the scalar subgroup of G, we can use the
bound |Z(G)| ≤ gcd(d, q − 1) to calculate |Z(G)| using the Monte Carlo algorithm
of [BS01, Theorem 4.15].

The procedure to name S has four steps.

(1) Decide from |Z(D)| and the (central) orders of a sample of elements whether
D could be isomorphic to either Alt(n) or 2.Alt(n) for some n. If so, at-
tempt to verify the identification by applying the constructive recognition
algorithms of [BP00, JLNP13] to D. If the verification succeeds, then
halt.

(2) Investigate the (central) orders of a sample of elements to decide if D could
be isomorphic to (a covering group of) a sporadic group. If so, attempt
to verify the identification by using the black-box algorithms of [Wil] to
construct its (central) standard generators. If the verification succeeds,
then halt.

(3) We may now assume that S is a group of Lie type. Find the characteristic of
S using the algorithm of [LO07]. (An alternative algorithm for absolutely
irreducible matrix groups appears in [KS09].)

(4) Find the name and defining field of S using the black-box Monte Carlo
polynomial-time algorithm of [BKPS02]; this assumes that the character-
istic is known.

If the naming procedure fails, then we attempt no further reductions on this
node; see Section 9.6 for further details.

7.10.5. Coset action. The final reduction is a mapping to a (small degree) per-
mutation group. After applying the previous three reductions, we obtain a nearly

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 21

simple group with structure Z ′.S.E ′, where Z ′ and E ′ are isomorphic to subgroups
of the original Z and E. We revert to the notation G := Z.S.E for this group. The
determinant reduction ensures that |Z| divides gcd(d, q − 1).

We now construct a homomorphism from G to a permutation group isomorphic
to E. We use the method described in [HS08]. Observe D is simple modulo scalars,
and the scalars in D are restricted to those in the Schur multiplier of S. Let G0 :=
〈Z,D〉. We construct the permutation action of G on the cosets of G0; the image
of this reduction is isomorphic to E. We test two cosets for equality using the rule
G0x1 = G0x2 if and only if x1x

−1
2 ∈ G0. We use the algorithm of [LGO02] to decide

membership in a normal subgroup.
Since we have identified the isomorphism type of S, we can use our knowledge

of Aut(S) to obtain an upper bound to |E| – this provides a useful termination
condition for the reduction. If S is an alternating or sporadic group, then |E| 6 2.
Otherwise S is a known group of Lie type. If S is in defining characteristic p, then
|G : D| 6 dg logp q where d and g are listed in [CCN+85, Table 5, p. xvi]. Since
|G : D| > |E| this provides a useful upper bound to |E|. (We thank Frank Lübeck
for discussion on this point.)

8. The null subgroup

This section discusses the technicalities involved in handling the null subgroups
of nodes, and is probably principally of interest to implementors of the main algo-
rithm. In the GAP implementations [NSa, NSb], the null subgroup is either trivial
or the full group of scalars. Our approach offers greater generality, and potentially
fewer discrete log calculations.

In Section 7 we discuss the types of reduction epimorphisms θ and kernel
monomorphisms θ0 computed for the non-leaf nodes representing matrix groups.
There we usually ignore the fact that the group represented by the node is not just
a matrix group, but is the quotient GN/N for a group pair (G,N). Recall that,
if (G0, N0) and (G1, N1) are the group pairs of the left and right children of the
node, then we need to define maps θ0 : G0N0 → GN and θ : GN → G1N1, with
θ0(N0) 6 N and θ(N) 6 N1, that induce a monomorphism φ0 : G0N0/N0 → GN/N
and an epimorphism φ : GN/N → G1N1/N1 such that Kerφ = Imφ0 or, equiva-
lently, Im(θ0)N = {g ∈ GN | θ(g) ∈ N1} = θ−1(N1).

Let θ be a reduction map defined on a node, and let X and X1 be the nice
generators of G and of G1, so X1 = {θ(x) : x ∈ X} \ {1}. In Section 4.5.2 we define
the map ρ : G→ Ker θ by ρ(g) = gw−1, where w is the result of writing θ(g) as an
SLP in X1 and evaluating that SLP in X.

To carry out the required computations involving the null subgroup, we need
to extend two of our existing techniques:

(i) Our rewriting algorithm at a node must be capable of writing x ∈ GN as
an SLP in X that evaluates to an element of xN .

(ii) We need to extend ρ to a function ρ : GN → θ−1(N1).

22 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

Assume that we can solve (i) in the image node. To achieve (ii), we apply our
rewriting algorithm in G1N1 to θ(x) for x ∈ GN , and define ρ(x) = xw−1, where
w is the result of evaluating the SLP for θ(x) in X.

If we can solve (i) in the leaf nodes, then we use the method described in
Section 4.5.2, together with the extended definition of ρ, to solve (i) in non-leaf
nodes. Only nodes that represent cyclic or matrix groups may have non-trivial null
subgroups. We explain how to solve (i) in cyclic leaf nodes in Section 8.1, and in
non-abelian leaf nodes in Section 9.

8.1. Null subgroups of cyclic group nodes. Nodes with cyclic groups are
leaves so there are no further reductions. We use a single nice generator for the
cyclic upper group G of the node. As explained above, we need the ability to
rewrite x ∈ GN as an SLP in the nice generators of G that evaluates to an element
of N . To achieve this, we first find n ∈ N with xn ∈ G; we then write xn as a
power of the nice generator of G.

As we show in Section 8.2, cyclic node groups with non-trivial null subgroups
occur only as subgroups of F×

q , so both |G| and |N | divide q − 1. We apply the
following proposition (used again in Section 8.2) with C = G and D = N to find
the required n ∈ N with xn ∈ G, and so avoid a discrete log calculation in N .

Proposition 8.1. Let C and D be subgroups of Cm and let x ∈ CD. Given

a list of the primes dividing m, in polynomial time we can find z ∈ D such that

xz ∈ C. (We assume that all elements, including single generators of C and D, are

given as powers of a generator of Cm.)

Proof. Let

|C| =
n∏

i=1

paii , |x| =
n∏

i=1

pbii , |D| =
n∏

i=1

pcii

where each pi is prime, ai, bi, ci > 0, ai+ci > 0 and bi 6 max(ai, ci). From knowledge
of the primes dividing these orders and the fact that the exponents ai, bi, ci are
polynomially bounded, we can compute ai, bi, ci in polynomial time. Let qi = |x| /pbii
for i = 1, . . . , n, and observe that gcd(q1, . . . , qn) = 1. Using the extended Euclidean
algorithm, we find integers mi such that 1 =

∑n
i=1miqi.

Let zi = xmiqi for i = 1, . . . , n. Then

n∏

i=1

zi =
n∏

i=1

xmiqi = x
∑n

i=1
miqi = x,

and |xqi | = pbii . Since zi = (xqi)mi and pi 6 |mi, we deduce that |zi| = pbii .
Now define z := (

∏
bi>ai

zi)
−1 and observe that if bi > ai then bi 6 ci. This

implies that |z| divides |D| and hence z ∈ D. Finally, |xz| = ∏
bi6ai

zi, and since

|zi| = pbii it follows that xz ∈ C. �

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 23

8.2. Null subgroups for matrix group reductions. We now define the null
subgroups for the various reductions, and discuss ensuing complications in the defi-
nitions of θ0 and θ. For reductions of type TensorProduct and SmallerFieldModScalars,
we introduce a non-trivial null subgroup N1 into the image node, even if N is trivial,
so we cannot avoid the use of null subgroups.

In Table 1, we record how the null subgroups N0 and N1 of the kernel and
image nodes are defined for each of the reductions applied to G 6 GL(d,Fq). The
notation used there is the following. The null subgroup of a matrix group node
always consists of scalar matrices. An entry λ in the table denotes an element
of Fq such that the corresponding null subgroup is 〈λId〉, so N0 = 〈λ0Id0〉 and
N1 = 〈λ1Id1〉. If G1 is a cyclic group, it is convenient (for notational purposes) to
identify G1 and N1 with subgroups of F×

q and define λ1 to be a generator of N1. For
the FormAction reduction, t = 2 except in the unitary case, when t =

√
q+1. The

symbol ωq denotes a primitive element of Fq. The smaller field in the SmallerField
and SmallerFieldModScalars reductions is Fs < Fq, so |ωs| = s−1 and |ωq| = q−1.

Reduction λ0 λ1
Unipotent 1 1
Submodule Reduction 1 λ
Absolute Reducibility 1 λ
Semilinearity λ 1
Imprimitivity λ 1
Extraspecial Normaliser λ 1
Smaller Field 1 λ|λ|/ gcd(|λ|,|ωs|)

Smaller Field Mod Scalars λ|λ|/ gcd(|λ|,|ωs|) ω
|ωq |/ lcm(|λ|,|ωs|)
q

Tensor Product λ ωq

Tensor Induction λ 1
Determinant λ|λ|/ gcd(|λ|,d) λd

Form Action λ|λ|/ gcd(|λ|,t) λt

Spinor Norm λ or λ2 θ(λId) = ±1
Coset Action λ 1

Table 1. Definitions of null subgroups for children of a node

We now discuss each reduction in greater detail, listing the more straightforward
cases first.
Unipotent. If G is unipotent, then G∩N = 1, so GN/N ∼= G and the null subgroup
can be ignored. We put N0 = N1 = 1.

AbsoluteReducibility. Here θ is an isomorphism, so both G0 and N0 are trivial.
We put N1 = N .

SmallerField. Again θ is an isomorphism, so both G0 and N0 are trivial. We
define N1 to be the intersection of N with GL(d,Fs).

24 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

Imprimitivity, Semilinearity, TensorInduction, ExtraspecialNormaliser and
CosetAction. In each case, θ is a homomorphism with N < Ker θ, so we set N1 = 1
and N0 = N , define G0 := {ρ(g) | g ∈ G}, and θ0 is the identity map.

TensorProduct. Recall from Section 7.8 that G respects a decomposition V ∼=
U ⊗ W . Let d = d0d1, where d0 = dim(U) and d1 = dim(W). The projection
θ : GN → GL(d1,Fq) is not generally a homomorphism (it is not even well-defined),
but it induces a homomorphism φ : GN → PGL(d1,Fq) with N < Kerφ. We define
N1 to be the full scalar subgroup of GL(d1,Fq). Every element of Kerφ can be
written uniquely as g0⊗ Id1 with g0 ∈ GL(d0,Fq). We define G0 to be the subgroup
of GL(d0,Fq) generated by the elements g0 arising in this way from a generating
set of Kerφ. Recall that N = 〈λId〉. We define N0 := 〈λId0〉, so N = N0 ⊗ Id1 . The
map θ0 : G0N0 → GN is defined by θ(x) = x ⊗ Id1 . The inverse of θ0 is computed
by writing elements in Kerφ as x⊗ Id1 .

SubmoduleReduction. Here θ : GN → GL(d1,Fq) is a homomorphism that restricts
to a monomorphism on N , and we define N1 := θ(N) = 〈λId1〉 and N0 = 1. The
elements ρ(x) with x ∈ GN satisfy θ(ρ(x)) = µxId1 ∈ N1 for some µx ∈ Fq. We
define G0 := {ρ(x)µ−1

x | x ∈ GN} (so G0 6 Ker θ), and θ0 is the identity map.

Determinant and FormAction. In both cases θ : GN → F
×
q is a homomorphism

and we define N1 = θ(N) and N0 = Ker θ|N . If x ∈ GN then θ(ρ(x)) = µx ∈ N1.
To avoid the possibility of infinite recursion, we must ensure that G0 6 Ker θ
(where θ0 is the identity map in these reductions), so we need to find νx ∈ N with
θ(νxId) = µx. We define G0 := {ρ(x)ν−1

x | x ∈ GN}.
For Determinant reductions, θ(νxId) = νdx, so we need to find νx with νdx = µx.

We find the roots in Fq of the polynomial xd − µx in polynomial time [GCL92,
Theorem 8.12]. For each root, νxId ∈ N if and only if |νx| divides |N |, so we use
this test to find νx.

Now consider FormAction reductions. In the non-unitary case θ(νxId) = ν2x, and
we proceed as in the determinant case. The unitary case is more difficult. Recall that

the norm of Fq over F√
q is a homomorphism N : F×

q → F
×√
q defined by ωq 7→ ω

√
q+1

q .

In this case θ(νxId) = N(νx), so we must find νx ∈ F
×
q such that N(νx) = µx. This

is a norm equation, which we solve using [MRD11, Proposition 2.2] to obtain a
solution ν0. Again, we need a solution νx such that νxId ∈ N = 〈λId〉. Each solution

has the form ν0ν1 with N(ν1) = 1. But N(ν1) = ν
√
q+1

1 = 1 if and only if ν1 is in the
subgroup of F×

q of order
√
q+1, so we can find ν1 with ν0ν1 ∈ 〈λ〉 by Proposition 8.1.

SpinorNorm. This is similar to the previous two reductions, but since Im θ has order
1 or 2 in this case, it is straightforward to write down generators of Ker θ directly
(as we do in Section 7.4 for semilinear reductions).

SmallerFieldModScalars. Recall from Section 7.7 that H 6 GL(d,Fs)Z with
Hc = G, where Z = Z(GL(d,Fq)) and Fs < Fq, and θ(x) = λx, where x = hcλx and
x ∈ GN . While θ : GN → F

×
q is not generally a homomorphism (it is not even well-

defined), it induces a homomorphism θ : GN → F
×
q /F

×
s . We define N1 = 〈F×

s , θ(N)〉
and N0 = N ∩Ker θ = N ∩GL(d,Fs).

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 25

We want G0 to be a subgroup of GL(d,Fs) and to define θ0 : G0N0 → GN
by θ0(h) = hc. To find a generator of G0, we first choose random x ∈ GN ; now
θ(ρ(x)) = µx ∈ N1. Using Proposition 8.1, we find νx ∈ Fq satisfying µxν

−1
x ∈ F

×
s .

Observe that (ρ(x)ν−1
x)c

−1 ∈ GL(d,Fs); it is used as a generator of G0.

9. Processing the leaves

It remains to describe Step (2) of the main algorithm summarised in Section
5.2. For the various types of leaf groups, we employ algorithms to construct nice
generators, to solve the rewriting problem, and (possibly) compute a presentation
for the represented groups of each leaf in the composition tree of G. The individual
algorithms are described elsewhere. Here, we describe what they do, and how they
fit into the main algorithm. We also describe how to compute composition series
of the leaf groups which, as we saw in Section 3.2, is necessary if we want to carry
out further structural computations on the input group G.

As usual, we denote the upper group of a leaf node by G and its null subgroup
by N . Recall that the rewriting algorithm must write g ∈ GN as an SLP in the
nice generators of G that evaluates to an element of gN , and the presentation must
be on the nice generators of G and define GN/N .

9.1. Cyclic groups. A single generator of a cyclic group is chosen as its nice
generator. A presentation is straightforward: a single relation is required. The rep-
resented group H := GN/N has presentation {x | x|H|}. The composition factors
are straightforward to obtain using standard machinery. Proposition 8.1 provides
the rewriting algorithm.

9.2. Elementary abelian groups. These arise from unipotent reductions
and we store them as PC-groups. We designate a group’s PC-generators as its nice
generators, the standard collection process as the rewriting algorithm, and use the
corresponding PC-presentation. (Recall that N = 1 in this case.) The composition
factors are straightforward to obtain using standard machinery.

9.3. Permutation groups. These leaves are simple or soluble primitive per-
mutation groups. If G ∼= Alt(n), then we use the black-box algorithms of [BP00,

JLNP13] to solve the constructive recognition and rewriting problems.
Otherwise, depending on the isomorphism type of G, we either use BSGS ma-

chinery or one of the black-box algorithms discussed in Section 9.5.2. If a presenta-
tion is not known, then it is constructed using the algorithm of Cannon [Can73].

9.4. Classical groups in their natural representation. Since GN is in the
kernel of the determinant, form action and spinor norm maps, it is quasisimple and
so N < G. The leaf groups lie in the families SL(d,Fq), Sp(d,Fq), SU(d,Fq) and
Ωǫ(d,Fq) for ǫ ∈ {±, ◦}.

The standard copy of the simple group G/Z(G) is represented by the pair
(H,Z(H)) where Hc = G for some c ∈ GL(d,Fq), and c is readily computed as
the change-of-basis matrix that transforms the form fixed by H to that fixed by G.
The set of nice generators of G is Xc, where X is the set of standard generators

26 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

of H. The algorithms of [LGO09] and [DLGLO13] are used to construct the nice
generators of G as SLPs in its input generators. The algorithms of [Cos09] solve
the rewriting problem for H on X. A presentation on the standard generators is
available from [LGO14].

The composition factors consist of the simple group together with those of Z(G)
modulo N . Since G is a quasisimple classical group in its natural representation,
we can write down an explicit scalar matrix that generates Z(G). We obtain this
matrix as an SLP in Xc using [Cos09]. We construct a PC-presentation for the
centre, compute the quotient by its null subgroup, and then use standard machinery
to obtain its composition factors.

9.5. Groups in class S. If G 6 GL(d,Fq) is a leaf group in class S, then
G = Z.S, where S is a finite simple group and Z = Z(G) is the (cyclic) scalar
subgroup of G. The extension Z.S may not be perfect, so Z need not lie in the Schur
multiplier of S. Since the determinant reduction has been applied, GN 6 SL(d,Fq),
so both |Z| and |N | divide gcd(d, q − 1).

9.5.1. Calculating the centre. To obtain a generating set for Z, we use the Monte
Carlo algorithm of [BS01, Theorem 4.15] and the upper bound gcd(d, q− 1) to its
order. We then obtain a single generator u of Z as an SLP in the generators of G.

9.5.2. Constructive recognition and rewriting. Recall that we have named S
using the algorithm of Section 7.10.4. The constructive recognition algorithm for
S provides an effective homomorphism α : GN → H with kernel ZN , where H is
the standard copy of S. Let Y be the set of input generators of G. By definition
of a constructive recognition algorithm, H has a designated set X of standard
generators, and there are algorithms to find these generators as SLPs in α(Y), and
to rewrite elements in H as SLPs in X. These algorithms enable the construction
of an effective inverse map β : H → G that satisfies β(α(g)) ∈ gZN for all g ∈ GN .
We define the nice generators X of G to be the images under β of the standard
generators X of H, together with the generator u for Z constructed in Section 9.5.1.

We can now describe the algorithm that rewrites x ∈ GN to an SLP in X that
evaluates to an element of xN . For x ∈ GN , we compute z := xβ(α(x−1)) ∈ ZN .
We obtain an SLP in X for β(α(x−1)) by taking the image under β of an SLP in
X for α(x−1), so it remains to obtain an SLP in X for some element of xN . Using
Proposition 8.1, we find n ∈ N with zn ∈ Z, and then we complete the rewriting
process by expressing zn as an SLP in u. Since |u| 6 gcd(d, q − 1), this is easy.

Since a presentation for S on its standard generators is available, by applying
the map β, we obtain a presentation {X | R} for the isomorphic group G/Z on
its generating set {xZ | x ∈ X \ {u}}. We then obtain a presentation for the rep-
resented group GN/N on X as follows. Each relator r ∈ R is regarded as a word
in X, and evaluates in G to ur ∈ ZN . After multiplying by a suitable element of
N (using Proposition 8.1), we express each ur as an SLP wr in u, as above. The
relators for the presentation of GN/N are then

{
rw−1

r : r ∈ R
}
∪ {[x, u] : x ∈ X} ∪

{
u|u|/ gcd(|u|,|N |)} .

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 27

To obtain composition factors for a group in class S is easy, since we know its
centre.

We now list the constructive recognition algorithms available for the various
types of simple groups. Some are also applied to permutation group leaves.

Alternating groups. We use the black-box algorithms of [BP00, JLNP13]. (In fact
we have already done this in verifying our identification of S.)

Sporadic groups.We have already found standard generators of S during the naming
procedure. As a rewriting algorithm, we use either the “reduction” algorithm of
[HLO+08] or BSGS machinery. If we use the latter, then, as described in [O’B06,
§7.6], we choose a base targeted to the given representation of S. This allows us to
define the maps α and β.

Classical groups in defining characteristic. If S ∼= PSL(2, q), then we use the algo-
rithm of [CLGO06].

If S ∼= PSL(3, q), then we use the algorithm of [LMO07] to obtain the maps α
and β. This algorithm applies to GN only if ZN is contained in the Schur multiplier
of S. Instead, we apply it to the stable derivative D of GN , which we computed
earlier, so obtaining X as SLPs in the generators of D, and hence also in Y . This
allows us to define the nice generators as above. Note that the domain of α is D,
not GN . This poses no problem, since for rewriting in GN we use the algorithm of
[Cos09] which only requires GN and X as input.

If S is a projective representation of degree at most n2 for a classical group of
degree at most n, then we use the algorithms of [MOS08, Cor13] to identify the
related homomorphism. These algorithms do not apply to “small” n: for example
n ≥ 4 for linear groups, and n ≥ 8 for orthogonal groups. Otherwise, we use
the constructive recognition algorithms of [DLGO14]. In both cases we use the
rewriting algorithms of [Cos09].

Black-box algorithms for classical groups. We use the algorithms of [DLGO14]
to obtain the maps α and β, and (Schneider’s implementation of) the black-box
rewriting algorithm of Ambrose et al. [AMPS11].

Other available black-box algorithms include those of [KS01] for PSL(d, q);
[Bro08] for PSp(d, q); [Bro03] for PSU(d, q); and [BK06] for Ωǫ(d, q).

Exceptional groups. We use the algorithms of [Bää06, Bää07, Bää14, BB09] to
recognise constructively the Suzuki and Ree groups. The Schur multiplier of 2B2(q)
is 22 for q = 8 and trivial otherwise. The representations of 2B2(q) in (defining)
characteristic 2 have dimension 4n for some n > 1; since |Z| divides gcd(4n, 2k−1),
we deduce that Z = 1. In odd characteristic, the black-box recognition algorithm
for 2B2(q) handles the case when |Z| = 2 and Z 6 [G,G].

The algorithms for 2F4(q) constructively recognise only the smallest represen-
tation of dimension 26, with defining field of size q = 22m+1 for some m > 0. Since
gcd(26, 22m+1− 1) = 1, we deduce that Z = 1. (By exploiting condensation, we can
also work effectively with the 246-dimensional representation.)

The algorithms for 2G2(q) constructively recognise representations in defining
characteristic with field size q = 32m+1 for some m > 0. Such representations have

28 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

dimension 7n33k where n > 0, k > 0 and n + k > 0. Since gcd(21, 32m+1 − 1) = 1,
we deduce that Z = 1.

Let G be an absolutely irreducible representation in defining characteristic of a
finite exceptional groups of Lie type and of rank at least 2. We use the Las Vegas
polynomial-time algorithms of Liebeck & O’Brien [LO14] to construct standard
generators in G; and the generalised row and column reduction algorithm of Cohen,
Murray & Taylor [CMT04] to solve the rewriting problem for such a representation.
The algorithms of [LO14] also apply to black box representations.

Kantor & Magaard [KM13] present alternative black-box Las Vegas algorithms
to recognise constructively the exceptional simple groups of Lie type and rank at
least 2, other than 2F4(q), defined over a field of known size.

Default methods. If (an implementation of) a constructive recognition algorithm is
not available for the simple composition factor of G, then we can use the black-box
algorithm of [HLO+08], which reduces the constructive membership problem to
three instances of the same problem for involution centralisers in G. LetX be the set
of inverse image in G of the standard generators of GZ/Z. For membership testing,
we apply [HLO+08] to GZ; membership testing in the involution centralisers is
done using recursive applications of CompositionTree. We obtain an SLP for the
element in X ∪ {λ} where N = 〈λ〉, and rewrite this to an SLP in X by setting
λ = 1.

As we observed in Section 3.2, we need a constructive recognition algorithm to
compute efficiently a composition series of G; in its absence, we use BSGS machin-
ery. A presentation is found using the algorithm of [Can73].

9.6. Potential failures. We identify various components of the main algo-
rithm which may fail, or return incorrect answers.

(i) One of the membership algorithms for Aschbacher classes fails to deduce
that a group lies in this class.

(ii) The Monte Carlo naming algorithm described in Section 7.10.4 returns an
incorrect answer.

(iii) The constructive recognition algorithm fails.

In practice, these happen infrequently. We do not detect (i), but this rarely
leads to failure, since the group is often also in Aschbacher class S and is processed
as such. If (ii) occurs, it will lead to a failure of type (iii). If (iii) occurs, then
we compute a BSGS of GN using the random Schreier-Sims algorithm [HEO05,
§4.4.5], and (optionally) verify it using the Todd-Coxeter-Schreier-Sims algorithm
[HEO05, §6.2.2]. This allows constructive membership testing in G. As above, we
rewrite an SLP for an element to obtain it in Y . The strong generators of G are
chosen as its nice generators, and a presentation is obtained on these. Composition
factors are found using BSGS machinery.

10. Identifying automorphisms of finite simple groups

As explained in Section 3.2, CompositionTree can compute a composition series
1 = G0 ⊳G1 ⊳G2 ⊳ · · ·⊳Gm = G of G. For 1 6 k 6 m, it also computes effective

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 29

maps τk : Gk → Sk, φk : Sk → Gk, where Sk is the standard copy of the simple
group Gk/Gk−1, and τk is an epimorphism with kernel Gk−1, and, for g ∈ Sk, φk(g)
is an element of Gk with τkφk(g) = g.

As we shall see in the next section, to apply the rearrangement algorithm of
Section 3.3 to this series, we must decide whether an automorphism of a non-abelian
simple factor Sk that normalises A 6 Aut(Sk) lies in A. If so, then we must identify
it as an element of A. More precisely, we solve the following problem.

Problem 10.1. Assume, for some k, that g1, g2, . . . , gt ∈ G normalise Gk and

Gk−1. For 1 6 i 6 t, let αi be the automorphism of Sk induced by conjugation by

gi; namely, αi : x 7→ τk(g
−1
i φk(x)gi).

Let Ai = 〈Inn(Sk), α1, . . . , αi〉 6 Aut(Sk) for 1 6 i 6 t where A0 = Inn(Sk).
For 0 6 i < t, assume that Ai ⊳ Ai+1 and Ai+1/Ai has prime order.

Let g ∈ NG(Gk)∩NG(Gk−1) be such that the automorphism α of Sk induced by

conjugation by g is guaranteed to normalise At and either to lie in At or to generate

a subgroup At+1 := 〈At, α〉 such that At+1/At has prime order.

Decide whether α ∈ At. If so, then compute x ∈ Sk and integers ei such that

α = cxα
e1
1 α

e2
2 · · ·αet

t , where cx ∈ Inn(Sk) is conjugation by x. If α 6∈ At, then set

gt+1 := g and αt+1 := α.

We describe an efficient algorithm to solve Problem 10.1 when Sk is a classical
group in its natural representation. For all other Sk, we currently solve this problem
using standard automorphism group algorithms [HEO05, Chapter 10].

10.1. Classical groups in their natural representation. To ease exposi-
tion, we postpone discussion of the triality automorphism of Ω+(8,Fq) to Section
10.1.5. The notation used is local to this section, and may not be consistent with
that used in the remainder of the paper.

10.1.1. Automorphism groups of classical groups. Let Ω = Sk be a non-abelian
simple group isomorphic to one of PSL(d, q) (d ≥ 2), PSp(d, q) (d ≥ 4), PSU(d,

√
q)

(d ≥ 3), or PΩǫ(d, q) (d ≥ 7). Here Ω is represented by the group pair (Ω̃,Z(Ω̃))

with Ω̃ = SL(d,Fq), Sp(d,Fq), SU(d,Fq), or Ω
ǫ(d,Fq), in its natural representation

as a subgroup of GL(d,Fq). If Ω 6= PSL(d, q), then let F be the bilinear, sesquilinear

or quadratic form preserved by Ω̃, and used to define Ω̃.
Denote Aut(Ω) by A. Following [KL90, Chapter 2], observe that A has a chain

of normal subgroups

1 < Ω ∼= Inn(Ω) 6 S 6 I 6 ∆ 6 Γ 6 A,

which are defined as follows.

(i) S = Inn(Ω) except when Ω = PΩǫ(d, q), in which case S is the group of
automorphisms induced by conjugation by elements of SOǫ(d,Fq).

(ii) I consists of automorphisms induced by conjugation by all elements of
GL(d,Fq) when Ω = PSL(d, q), and by the elements of GL(d,Fq) that
preserve F in the other cases.

(iii) ∆ = I when Ω = PSL(d, q), and consists of automorphisms induced by
conjugation by elements of GL(d,Fq) that preserve F modulo scalars in

30 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

the other cases. Equivalently, ∆ consists of automorphisms induced by the

elements of the normaliser of Ω̃ in GL(d,Fq).
(iv) Γ is the subgroup of A generated by ∆ and the field automorphisms.
(v) A is generated by Γ and a graph automorphism of order 2 when Ω =

PSL(d, q) with d ≥ 3, or Ω = PSp(4, 2n). Otherwise A = Γ.

Let L := (S/Ω, I/S,∆/I,Γ/∆, A/Γ). All members of L are cyclic and three of
them, S/Ω, ∆/I, and A/Γ, have order at most 2.

10.1.2. Data structures for the algorithm. The algorithm to solve Problem 10.1
performs membership testing in a subgroup At = 〈Inn(Ω), α1, . . . , αt〉 of A, which
is initialised to A0 = Inn(Ω), where the αi are represented by gi ∈ G that induce
αi by conjugation.

For each cyclic quotient X/Y ∈ L, we store the projection (At ∩X)/(At ∩ Y).
If αi ∈ X \ Y , then we record this. For those αi that lie in ∆, we also store

xi ∈ GL(d,Fq) that induces αi in its conjugation action on Ω̃.
For those X/Y that may have order greater than 2, namely I/S and Γ/∆, we

store a cyclic group isomorphic to (At ∩ X)/(At ∩ Y) together with the elements
of this cyclic group that correspond to those αi ∈ X \ Y . This enables us to write
a new automorphism α ∈ X with αY ∈ (At ∩ X)Y as a word in these αi that
evaluates to an element of αY . It is trivial to do this when |X/Y | 6 2.

To perform membership testing of α ∈ A in At, we consider the five quotients
X/Y in reverse order. For each non-trivial quotient, we test membership of α in
(At ∩X)Y . Assume for the moment that we can do this.

If α ∈ (At ∩ X)Y , then we multiply α by suitable elements of At ∩ X to get
α ∈ Y (more precisely, we modify the g ∈ G that induces α), and then proceed to
the next quotient X/Y . If this process succeeds for each X/Y , then the modified
α lies in Inn(Ω), and hence α ∈ At. We also need to identify x ∈ Ω where α is
induced by conjugation by x but, as we see below, x is already calculated during
the membership testing in the quotients X/Y .

If α 6∈ (At ∩ X)Y for one of X/Y , then we define gt+1 := g, αt+1 := α and
At+1 := 〈At, α〉. We also record that α ∈ X \ Y . If X/Y is Γ/∆ or I/S, then we
modify the stored cyclic group that represents this quotient to make it isomorphic
to (At+1 ∩X)/(At+1 ∩ Y). Since we assume that 〈At, α〉/At is either trivial or has
prime order, at most one of the intersections At ∩X changes.

10.1.3. Lifting automorphisms from Ω to Ω̃. It remains to describe how to
perform membership testing of automorphisms α in (At ∩ X)Y in the quotients
X/Y ∈ L. Before doing this, we discuss an additional technicality.

The automorphism α of Ω is defined by g ∈ G that induces α in its conjuga-
tion action on Gk/Gk−1. The maps τk and φk enable us to calculate the image of
elements of Ω = Sk under α. In all cases under consideration, α lifts uniquely to an

automorphism α̃ of Ω̃. (This is not true for the triality automorphism of Ω+(8,Fq)
when q is odd.) As we shall see later, for the membership tests to work, we need to

be able to calculate the action of α̃ on elements of Ω̃.
To achieve this, we proceed as follows. Observe Ω = Ω̃/Z(Ω̃). Thus, if x, y ∈ Ω̃,

then α̃([x, y]) = [a, b] for all inverse images a, b of α(xZ), α(yZ) in Ω̃. Hence we

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 31

can calculate the action of α̃ on commutators. Since Ω̃ is perfect, it is generated

by commutators, so we choose a set of random commutators that generate Ω̃; that
these generate can be verified using the Monte Carlo algorithm of [NP98]. Since
we know the action of α̃ on a generating set, we can compute random elements of

Ω̃ as SLPs in these generators and then calculate their images under α̃.
10.1.4. The membership tests. We now describe the membership tests for α in

each of the five quotients X/Y ∈ L.
Membership testing in A/Γ and Γ/∆. These tests use characteristic polynomi-

als. Fix x ∈ Ω̃, and suppose that the characteristic polynomial of x is

Xd + cd−1X
d−1 + · · ·+ c1X + c0.

(i) If γ is the graph automorphism of SL(d,Fq) (d ≥ 3) induced by the inverse-
transpose map, then γ(x) has characteristic polynomial Xd + c1X

d−1/c0 +
· · ·+ cd−1X/c0 + 1/c0.

(ii) If φ̃ is the field automorphism of Ω̃ induced by φ ∈ Aut(K), where K = Fq,

then φ̃(x) has characteristic polynomial Xd + φ(cd−1)X
d−1 + · · ·φ(c1)X +

φ(c0).

We call x ∈ Ω̃ full if the coefficients of its characteristic polynomial generate K.

Assume for the moment that Ω̃ 6= Sp(4,Fq) with q even. By finding a small number

of full x ∈ Ω̃ and calculating the characteristic polynomials of both x and α̃(x), the
two properties listed above enable us quickly to decide whether α̃ ∈ Γ; if so, we use
the isomorphism between Γ/∆ and Aut(K) to identify the coset of ∆ in which it
lies. Hence we can perform membership testing in A/Γ and in Γ/∆.

Now consider the case Ω̃ = Sp(4,Fq) with q even. If, after calculating the char-
acteristic polynomials of both x and α̃(x) for a small number of full elements x, we
fail to identify α as an element of Γ, then we conclude that α ∈ A\Γ. If we conclude
incorrectly that α ∈ Γ, then the module isomorphism test described below will fail,
and we again conclude that α ∈ A \ Γ.
Identifying a conjugating element. We now assume that α ∈ ∆; thus, α̃ is
induced by conjugation by some x ∈ GL(d,Fq). We perform a module isomor-

phism test between the natural module V for Ω̃ and the module V α̃ defined by
applying α̃ to the action matrices of V , and obtain x as the matrix describing
the explicit isomorphism. This test can be carried out efficiently using Meataxe

methods [HEO05, §7.5.3]. Since Ω̃ is absolutely irreducible, x is determined up to
multiplication by a scalar.

Membership testing in ∆/I. If Ω = PSL(d, q), then I = ∆. Otherwise x pre-
serves the form F modulo scalars: it transforms F to λF for some λ ∈ K. If the
result of the membership test is positive, then we ensure that the (possibly modi-
fied) element x fixes F .

If Ω = PSU(d,
√
q), PSp(d, q) (q even) or PΩ±(d, q) (d odd or q even), then

∆ = I, so α ∈ I, but we still need to multiply x by a scalar to make it fix F . If
Ω = PSU(d,

√
q), then λ must lie in the subfield of K of order q, and we solve a

32 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

norm equation to find µ ∈ K with µ1+q = λ; now µ−1x preserves F , and we replace
x by µ−1x. In the other cases, λ must be a square in K, and we find a square root
µ of λ in F and replace x by µ−1x.

It remains to consider the cases Ω = PSp(d, q) or PΩ±(d, q) for even d and odd
q, when |∆/I| = 2. We first test whether λ has a square root µ ∈ K. If so, then
α ∈ I, and we replace x by µ−1x to make x preserve F . If λ is a non-square in
K, then α ∈ ∆ \ I. If there is already an automorphism αi ∈ At (i 6 t) with
αi ∈ ∆ \ I, then we replace α by ααi (or rather g by ggi) and x by xxi, where xi is
the stored element of GL(d,Fq) associated with αi. We then multiply x by a scalar
to make it preserve F . If λ is a non-square in K and there is no existing αi ∈ At

with αi ∈ ∆ \ I, then the result of the membership test is negative.

Membership testing in I/S and S/Ω. Now α ∈ I and x preserves F . The de-
terminant of x determines the coset of S in which α lies, so the membership test in
I/S is straightforward. If we find that α ∈ AtS, then we multiply α by a suitable
word in the stored αi and x by the same word in the associated xi to get α ∈ S.
We can then multiply x by a scalar to get det(x) = 1.

In the orthogonal case, the membership test in S/Ω is carried out by calculating
the spinor norm of x, using [MRD11].

This concludes the description of the membership tests in the quotients X/Y ∈
L. As explained earlier, if the result of all of these tests is positive, then the modified

α lies in Inn(Ω), and we have computed x ∈ Ω̃ where α is induced by conjugation
by x.

10.1.5. PΩ+(8, q). The general algorithm does not address the triality automor-
phism τ of Ω := PΩ+(8, q). In this case, we define the subgroups Ω, S, I,∆,Γ = A of
Aut(Ω) as for the other classical groups. Now Aut(Ω) = 〈A, τ〉 and |Aut(Ω) : A| =
3. If we encounter an automorphism α that is not in A, then we store it, and view
it as a coset representative of A in Aut(Ω). We can test whether automorphisms lie
in A or in the same coset as α and, if not, then we store a second automorphism
representing the other non-trivial coset. This is similar to the method employed for
the graph automorphism of PSp(4, 2e).

11. The rearranging algorithm

The method of identifying automorphisms of classical groups presented in Sec-
tion 10 is one of the major components of the rearranging algorithm which we now
describe in detail.

The non-abelian Sk may be represented either as permutation groups, or as
absolutely irreducible matrix groups over finite fields. In the latter case, Sk may
be represented by a group pair (S̃k, Z), where the null subgroup Z is the scalar
subgroup of S̃k.

CompositionTree returns generating sets Xk of Sk that are guaranteed not to
contain the identity element, together with functions ψk that express elements of
Sk as SLPs in Xk. If Sk is cyclic, then |Xk| = 1. CompositionTree also returns a
function δ that rewrites elements of G as SLPs in the nice generators of G.

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 33

We start the rearranging process by using the maps φk to compute and store
sets Wk of inverse images in Gk of the elements of Xk. Since 1 6∈ Xk, we know
that g 6∈ Gk−1 for all g ∈ Wk. We use δ to compute sets W k of SLPs in the nice
generators of G that represent the elements of Wk.

We define the height h(g) of g ∈ G to be the smallest k such that g ∈ Gk. The

maps τk, φk and ψk allow us to compute both h(g) and an SLP for g in ∪h(g)
k=1Wk.

The algorithm proceeds by considering each set Wk, for k = 1, 2, . . . ,m in turn
and, when appropriate, replacing each g ∈ Wk by gh for some suitable h ∈ Gk−1,
while also making the corresponding changes to the elements of W k. These changes
do not affect the property that τk maps Wk to Xk. After completing the process,
each term of the characteristic series 1 6 L 6 M 6 K 6 G discussed in Section
3.3 is generated by the union of some of the adjusted sets Wk.

More precisely, for g ∈ Wk, we first attempt to find h ∈ Gk−1 with gh ∈ K.
If we succeed, then we replace g by gh and attempt to find a new h ∈ Gk−1 with
gh ∈M . If that also succeeds, then we attempt to find h ∈ Gk−1 with gh ∈ L.

It is straightforward to show that GkK = Gk−1K is equivalent to the following
condition: for each g ∈ Wk, there exists h ∈ Gk−1 with gh ∈ K. Since Gk−1K is a
normal subgroup of GkK and Gk/Gk−1 is simple, Gk ∩ Gk−1K must equal either
Gk or Gk−1. Since we assume that g 6∈ Gk−1 for all g ∈ Wk, the elements h exist
either for all g ∈ Wk or for none of them. Hence, to decide this question, we need
only consider one g ∈ Wk. Of course, if h exists, then we must compute such for
every g ∈ Wk.

Since the result of a positive outcome of these tests is to replace the elements of
Wk by elements that lie in K,M , or L, we frequently refer (with considerable abuse
of language) to these processes as testing the composition factors for membership
of K, M and L.

After their completion, K is generated by those Wk for which we successfully
replaced the g ∈ Wk by gh ∈ K, and similarly for M and L. Thus we can rearrange
the composition series so that it passes through L, M and K.

If we test a non-abelian composition factor Gk/Gk−1 for membership of M ,
then, since K/M is soluble, we know a priori that the answer must be positive.
In this situation, we replace the g ∈ Wk by elements gh that generate one of the
simple direct factors of M/L.

11.1. Auxiliary data required. Before explaining how we test for the exis-
tence of suitable h with gh ∈ K, M or L, we describe some extra data maintained
during the rearranging process.

When we consider the composition factor Gk/Gk−1, the (adjusted) generators
Wj of some of the non-abelian factors Gj/Gj−1 with j < k that we have already
considered may generate simple factors ofM/L. Let these factors (if any) be indexed
by j1, j2, . . . , jr, where 0 6 r < k and j1 < j2 < · · · < jr < k, and let ∆ =
{j1, j2, . . . , jr}.

Let P 6 Sym(∆) be generated by the conjugation action of the generators Wi

of those factors Gi/Gi−1 with i < k that do not lie in K on the simple factors

34 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

〈Wj〉L/L of M/L with j ∈ ∆. We keep track of the correspondence between the
generators of P and the corresponding elements of the Wi.

Initially, r = 0 and P is the trivial group acting on the empty set ∆. The factor
Gk/Gk−1 under consideration may be a new simple factor of M/L, in which case
we adjoin k to ∆. This new factor is fixed under conjugation by the elements of Wi

for all i < k in the induced permutation action of G on the complete set of simple
factors of M/L. Thus the only change needed to P when we adjoin k to ∆ is to
extend the definition of its generators by making them fix the new point k.

On completion of the algorithm, ∆ can be identified with the set of all simple
factors of M/L (also named ∆ in Section 3.3), and P = Imφ, where φ : G →
Sym(∆) is the homomorphism with kernel K.

During the course of the algorithm, we carry out membership testing in P ,
and rewrite elements as words in its generators, using standard permutation group
algorithms.

For each j ∈ ∆, we maintain a subgroup Aj of Aut(Sj). It is generated by
automorphisms induced by conjugation by the generatorsWi of certain composition
factors Gi/Gi−1 that lie in K but not in M . As with P , we keep track of the
correspondence between the generators of Aj and the corresponding sets Wi. More
precisely, immediately before we consider the composition factor Gk/Gk−1, Aj is
the group of automorphisms of Sj induced by those elements of Gk−1 ∩ K that
centralise all of the simple factors 〈Wj′〉L of M/L with j < j′ ∈ ∆.

When Gj/Gj−1 is first identified as a direct factor of M/L, we initialise Aj to
Inn(Sj). Suppose that the factor Gk/Gk−1 with k > j under consideration turns
out to lie in K but not in M . Since Gk/Gk−1 must be cyclic, Wk = {g} for some
g. As we explain in more detail in Section 11.2.2, we now adjust g such that, for
some specific j ∈ ∆, it centralises all factors 〈Wj′〉L with j < j′ ∈ ∆, but the
automorphism α of Sj induced by conjugation by g does not lie in Aj. We then
append α to Aj. The computations required in Aj are described in Section 10.

As was the case with P , this setup is not disturbed by later composition factors
Gk/Gk−1 that are simple factors ofM/L. The elements in earlier factors that induce
the generators of the groups Aj automatically induce the identity automorphism
on all such later factors.

11.2. The rearrangement algorithm in detail. Observe that non-abelian
composition factors cannot belong to K/M , and abelian composition factors cannot
belong toM/L. We first list the three main steps of the algorithm and then describe
them in greater detail.

Initialise ∆ to {} and P to Sym(∆).

For k = 1, 2, . . . ,m, do the following, with Wk = {g1, g2, . . . , gs}, or Wk = {g} if Sk

is cyclic.

(i) Decide whether there exist hi ∈ Gk−1 (1 6 i 6 s) with gihi ∈ K. If so,
replace gi by gihi. If not, then adjoin the permutations of ∆ induced by
conjugation by the elements of Wk as new generators of P , and proceed to
the next value of k.

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 35

(ii) If Sk is cyclic, then decide whether there exists h ∈ Gk−1 with gh ∈ L. If
so, replace g by gh. If not, then there exists h ∈ Gk−1 with the following
property: there exists j ∈ ∆ such that gh centralises 〈Wj′〉L/L for all
j′ ∈ ∆ with j′ > j, but the automorphism α of Sj induced by gh does not
lie in Aj. Replace g by gh and adjoin α to the set of generators of Aj.

(iii) If Sk is insoluble, then find hi ∈ Gk−1 such that, for 1 6 i 6 s, each gihi
centralises each factor Gj/Gj−1 with j ∈ ∆, and replace each gi by gihi.
(The adjusted elements gi generate a new simple factor of M/L.) Adjoin
k to ∆ and initialise Ak to Inn(Sk).

11.2.1. Does Gk/Gk−1 lie in K? If r 6 1, then there is nothing to do in Step
(i), since Gk/Gk−1 must already lie inM . Suppose that r > 1. We consider the first
generator g1 in Wk, and calculate its permutation action σ1 on ∆ = {j1, j2, . . . , jr}.
To do this, we let xi be the first generator in Wji for 1 6 i 6 r, and calculate x′i :=
xg1i and its height hi := h(x′i). Since xi and hence also x′i lie inM , each composition
factor Ghi

/Ghi−1 must lie in M . If Shi
is non-abelian then, since conjugation by g1

permutes the simple factors of M/L, it follows that hi ∈ ∆ and hi is the required
image jσ1

i that we are attempting to calculate. If Shi
is cyclic, then Ghi

/Ghi−1 must
lie in L. In that case, we replace x′i by x

′
iφi(τi(x

′
i))

−1, which reduces the height of
x′i without changing x′iL, and try again. Eventually, x′i must lie in a non-abelian
composition factor, which enables us to compute the required image jσ1

i .
Thus we compute σ1, and it is easily seen that the composition factor Gk/Gk−1

lies in K if and only if σ1 ∈ P , which we can test. Irrespective of the result of this
test, we then proceed to calculate σi for 2 6 i 6 jr. As explained above, σ1 ∈ P
if and only if σi ∈ P for all i. If so, then we rewrite each σi as a word in the
generators of Pi. Since these generators correspond to elements of Wi for i < k, we
then multiply gi (for 1 6 i 6 t) by the inverse of the corresponding elements of Gi

to yield elements gihi that induce the identity permutation on ∆, and hence lie in
K, as required.

If σi 6∈ P , then we define P ∗ := 〈P, σi〉. Since Gk/Gk−1 is simple, P ∗/P is
simple and isomorphic to Gk/Gk−1. We now replace P by P ∗. When the algorithm
completes, we know a composition series for P .

11.2.2. Does cyclic Gk/Gk−1 lie in L? Suppose thatGk/Gk−1 is cyclic and lies in
K, so we must test it for membership ofM . SinceM/L has no abelian composition
factors, this is equivalent to membership of L. Since Gk/Gk−1 is cyclic, Wk = {g}
for some g.

Since g is in K, it normalises each simple factor 〈Wj〉L/L of M/L with j ∈ ∆.
For each such j, let αj be the automorphism of Sj induced by conjugation by g;
that is, xαj = τ(g−1φ(x)g) for x ∈ Sj.

We proceed as follows. We consider 〈Wj〉L/L in turn for j = jr, jr−1, . . . , j1.
We first use the methods described in Section 10 to test whether αj ∈ Aj and,
if so, express αj as a product of an inner automorphism of Sj and a word in
the generators of Aut(Sj) that have been adjoined to Aj when considering earlier
composition factors of G.

36 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

If αj ∈ Aj, then we use the calculated word to find h ∈ Gk−1 such that the auto-
morphism induced by gh centralises 〈Wj〉L/L. We then replace g by gh, recalculate
the αj′ for j

′ ∈ ∆ with j′ < j, and proceed to the next value of j.
If αj ∈ Aj for all j ∈ ∆, then the automorphism α induced by conjugation by

the new element g centralises M/L, so g ∈ L, and we have achieved our objective.
On the other hand, if αj 6∈ Aj for some j, then we adjoin αj as a new generator

of Aj and proceed to the next value of k.
We consider the factors 〈Wj〉L/L in reverse order because the property that the

elements g that induce the automorphisms that generate Aj centralise all factors
〈Wj′〉L/L with j′ > j is not affected by new factors of M/L discovered later.

As we observed for P , if A∗ = 〈Aj, αj〉, then A∗
j/Aj

∼= Gk/Gk−1, which is cyclic
of prime order. The algorithm described in Section 10 assumes that this property
holds.

11.2.3. Processing insoluble Gk/Gk−1 in K. Finally, suppose that Gk/Gk−1 is
insoluble and lies in K. Since K/M is soluble, Gk/Gk−1 must lie inM , and we wish
to replace the elements of Wk by elements that generate a simple direct factor of
M/L.

For gi ∈ Wk and j ∈ ∆, let αij be the automorphism of Sj induced by conju-
gation by gi. As above, we consider the j ∈ ∆ in decreasing order. Since we know
already that Gk/Gk−1 lies in M , it is guaranteed that αij ∈ Aj at each step. For
each j in turn, we replace gi by suitable gihi with hi ∈ Gk−1 such that gihi cen-
tralises 〈Wj〉L/L, recalculate the αij′ for j

′ ∈ ∆ with j′ < j, and then proceed to
the next j. After doing this for all j ∈ ∆, the resulting elements of Wj centralise
all of the factors 〈Wj〉L/L, and hence generate a simple direct factor of M/L as
required.

12. Algorithms exploiting the Soluble Radical Model

After rearranging the composition series to pass through L, M and K, we com-
pute representations of the soluble layers L and K/M as PC-groups, together with
effective maps that enable us to move between L orK/M and its PC-representation.
We do this also for the unipotent radical Op(G) of G which, from the design of
CompositionTree, is guaranteed to be at the bottom of the composition series.
Doing this is straightforward using the available functions for rewriting elements of
the simple factors Sk as SLPs in their generators. For each cyclic factor, the SLPs
are in a single generator.

We now briefly discuss examples of computations that can be carried out in
G 6 GL(d,Fq) by exploiting CompositionTree and the Soluble Radical Model.

12.1. A chief series. Computing a chief series that refines the characteris-
tic series can be subdivided into producing those factors that lie in G/K, K/M ,
M/L and L. Since G/K is represented as a permutation group P , we use standard
permutation group machinery to find a chief series. For M/L there is essentially
nothing further to do: the chief factors within this layer correspond to the orbits of
P .

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 37

This leaves the two soluble factors K/M and L. We use standard PC-group
machinery to find chains of characteristic subgroups ofK/M and L with elementary
abelian layers, set up the layers as FrG-modules for the appropriate primes r, and
calculate composition series for these modules. The terms in these series correspond
to terms in a chief series of G.

12.2. The centre. First we compute Z(L) (which contains Z(G)) in the PC-
representation of L. Next we calculate the conjugation action of the generators of G
on Z(L). Now Z(G) is the subgroup of Z(L) fixed under this action. We set up Z(L)
under the action of G as a ZG-module and find the fixed subgroup via a matrix
nullspace computation.

12.3. Sylow subgroups. Let r be a prime. Our method for computing a Sylow
r-subgroup of G assumes that we can find Sylow r-subgroups of the simple direct
factors of M/L, and also that we can solve the conjugacy problem for two such
Sylow r-subgroups. For classical groups in their natural representation, algorithms
(with Magma implementations) to solve both problems are described in [Sta07].
For other types of simple groups, we use BSGS machinery.

Here is a brief outline of our algorithm to construct R ∈ Sylr(G). If G = L then
we use its PC-representation to find R, so assume not, in which case M/L is non-
trivial. First we find Sylow r-subgroups R1, R2, R3 and R4 of L, M/L, K/M and
G/K. We do this using the PC-representations for L and forK/M , the permutation
representation of G/K, and the methods of [Sta07] for M/L. If R2 is trivial, then
we also find a Sylow 2-subgroup T of M/L; as we see below, the fact that T is
non-trivial reduces the problem to a computation in a smaller group.

By solving the conjugacy problem for Sylow r-subgroups ofK/M , we find inverse
images in G of the generators of R4 which (moduloM) normalise R3 and have order
a power of r. We combine these with generators of R3 to produce generators of a
subgroup R5 of G/M which normalises R3.

Similarly, by solving the conjugacy problem for Sylow r-subgroups of M/L (or
for Sylow 2-subgroups if R2 = 1), we find inverse images in G of the generators of
R5 which (modulo L) normalise R2 (or T if R2 = 1) and have order a power of r.
We combine these with generators of R2 to produce generators of a subgroup R6 of
G/L which normalises R2 (or T if R2 = 1).

Finally, by solving the conjugacy problem for Sylow r-subgroups of L, we find
inverse images in G of the generators of R6 which normalise R1 and have order
a power of r. We combine these with generators of R1 to produce generators of a
subgroup R of G which normalises R1. Since RL/L normalises R2 or T , it is a proper
subgroup of G, and contains a Sylow r-subgroup of G. We compute its order (either
using CompositionTree or BSGS machinery); in practice, usually R ∈ Sylr(G) but,
if not, then we apply the algorithm recursively to R.

As we demonstrate in Example 5 below, a Sylow 2-subgroup can often be found
as a subgroup of an appropriate involution centraliser.

12.4. Other algorithms. We have also implemented algorithms which exploit
both CompositionTree and the Soluble Radical Model to perform the following

38 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

computations in G 6 GL(d,Fq): test for its nilpotency and solubility; determine
its derived group; determine the normal closure in G of a subgroup; determine the
unipotent and soluble radicals and Fitting subgroup of G.

Hulpke [Hul13] describes algorithms that use a combination of BSGS methods
and the GAP recog package to compute centralisers and conjugacy classes in matrix
groups; we have implemented these using CompositionTree in Magma.

13. Implementation and performance

We briefly discuss our implementation of the algorithms in Magma and report
their performance on some examples.

13.1. Implementation. The CompositionTree intrinsic in Magma has a
large number of options. Most are technical, we describe just a few of the signifi-
cant ones. The kernel of a reduction can be constructed using the random element
or presentation method. Short presentations for the classical groups on standard
generators are incorporated. The user can verify the correctness of the tree using
presentations at each node during the construction of the tree. Alternatively, the
complete tree can be verified after its construction. The initial number of kernel
generators used in the random element method of Section 5.3.1 can significantly
affect the performance. It can be specified as a function, depending on factors such
as the degree, the field, and reduction type being used. The number of mandarins
can be set by the user.

Our package for structural computations in matrix groups over finite fields de-
cides initially whether to use CompositionTree or BSGS machinery on a given
group G. To do so, it carries out irreducibility and imprimitivity tests on G, as
described in Section 7, and then makes a base change to reflect the submodule or
block structure of the associated module. This assists the search for a base with
short basic orbits. If the BSGS algorithm encounters a basic orbit of length exceed-
ing some (user-supplied) upper limit, then we use CompositionTree. The resulting
decision is not always optimal, and the user can opt to apply CompositionTree to
G.

The package uses a large body of code, developed both as part of this work and
independently. These contributions are noted in the online documentation.

13.2. Examples. There are some situations in which the rearranging algo-
rithm described in Section 11 does not perform well. For example, we can construct
soluble matrix groups of moderately small degree and a large number of composition
factors by starting with Sym(4) as a subgroup of GL(2,Fp) for some prime p, and
then repeatedly taking wreath products with Sym(4). Usually CompositionTree

produces a composition series that requires much rearranging to obtain a chief
series. The implementations of [HS08, Sta06] perform better on such examples.
Wreath products of small degree matrix groups with transitive permutation groups
of moderately high degree are also demanding. Such examples of degree up to about
50 can typically be processed easily using BSGS machinery (see Example 3 below).

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 39

We now discuss some illustrative examples. All computations were carried out
on a Dell Latitude E6510 with 4GB of RAM using the implementation publicly
available as part of Magma 2.20-4. Since most of the algorithms are randomised,
individual timings may vary. Lübeck & Müller [LM], Parker and Wilson have pro-
vided challenge problems. Our machinery can identify the composition factors of
each challenge group.

(1) One such challenge is the sporadic simple group J4 given as a 2-generator
subgroup of GL(112, 4). CompositionTree completed for this group in 50
seconds; the first reduction writes the group over a smaller field.

(2) A second challenge is an irreducible 4-generator subgroup of GL(168, 612).
CompositionTree completed for this group in 1100 seconds. It is a ten-
sor product of 12- and 14-dimensional groups. The composition factors,
obtained in 50 seconds, are PSL(12, 612), Ω−(14, 61), and cyclic groups of
order 2 (six times), 3 (twice), 5 and 31. A chief series was computed in 270
seconds and an Sylow 3-subgroup in 165 seconds.

(3) A third challenge is a 2-generator subgroup of GL(84, 7): an imprimitive
wreath product of a 4-dimensional matrix representation of SL(2, 7) with
a permutation representation of PSL(2, 7) of degree 21. CompositionTree
completed in 5 seconds, and the chief factors were obtained in 45 seconds.
This example illustrates well the cost of the rearrangement algorithm. By
contrast, the BSGS machinery for the same tasks completed in 10 seconds,
following an initial change to a basis compatible with the 21 blocks.

(4) One priority is to provide a wide range of functionality for carrying out
computations reasonably quickly in matrix groups of moderately small de-
gree. We have extensively tested maximal subgroups of classical groups,
which can be obtained using the Magma intrinsic ClassicalMaximals.
For example, SU(12, 5) has 26 classes of maximal subgroups (up to conjuga-
tion in its automorphism group), of which eleven are reducible (with unipo-
tent radical of order dividing 548); six imprimitive (block sizes 6, 6, 4, 3, 2, 1);
one semilinear; two tensor products (2 × 6 and 3 × 4); two defined over
proper subfields modulo scalars (orthogonal and symplectic groups over
F5); and three in the Aschbacher class S (extensions of SL(2, 23), 6.Suz
and 6.A7). Chief series and all non-trivial Sylow p-subgroups were found
for all of these subgroups in a total of 1760 seconds.

(5) As one example of a problem that arose naturally in some research work, we
were asked to find a Sylow 2-subgroup of the simple exceptional Lie type
group G := F4(3). The constructive membership problem for G can be
solved using the technique described in [HLO+08], and CompositionTree

successfully completed in 35 seconds, so confirming that the order of its
Sylow 2-subgroup is 215. We cannot yet construct the Sylow subgroups di-
rectly. Instead, we used our Magma intrinsic CentraliserOfInvolution,
based on the Monte Carlo algorithm of [Bra00], to compute CG(t) for
an involution t ∈ G. We did this for random involutions t until we found
CG(t) with order divisible by 215. (This may occur with CG(t) ∼= 2.O9(3) or

40 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

2.O−
8 (3).) It was now a 1-second computation, using the method described

in Section 12.3, to find the Sylow 2-subgroup of G as a subgroup of CG(t).

14. Future directions

14.1. Aschbacher reductions. Algorithms with better theoretical and prac-
tical performance are desirable for certain of the reductions based on Aschbacher’s
theorem. The existing algorithms sometimes have polynomial time complexity, sub-
ject to certain conditions not always satisfied. While usually their implementations
run efficiently in practice, they sometimes fail to complete.

14.2. Processing Op(G). It seems likely that any algorithm for processing
Op(G) of a matrix group G defined over a field Fq of characteristic p has complexity
O
(
d7 log3p q

)
in field operations over Fp. Constructing a generating set for Op(G)

remains a bottleneck, since its rank may be large. It may be possible to improve
our treatment of Op(G) by first constructing a normal series for this group, where
the corresponding factors consist of rectangular blocks arising from a composition
series for the natural module for G, and then applying representation theory to
these blocks to improve the way in which they are processed.

14.3. Subgroups and factor groups. Further developments will improve the
functionality of the package. For example, subgroups, normal subgroups and quo-
tient groups should be built into the package. If H 6 G is defined by a generating
set, and its relationship with G is to be ignored, then there is nothing to say. But in
general this relationship should be respected. In this case the composition tree for
H could be constructed by refining the composition tree for G. The reorganisation
of the composition tree for G to refine a chief series passing through the soluble
radical and other characteristic subgroups of G would induce a rearranged com-
position tree for H that would not, in general, pass through the soluble radical or
other characteristic subgroups of H. A normal subgroup N of G could be similarly
processed. Then N would cover certain chief factors of G, and avoid others. It would
be possible to use the resultant data structure to compute in G/N . To combine the
twin goals of having, on the one hand, a computational model for a finite group G
as being defined by a chief series that passes through the soluble radical and other
characteristic subgroups of G, and on the other hand having a model that passes
readily to subgroups and quotient groups, would require complex data structures.
However, the fact that we have a platform from which one can consider computing
in quotients of a matrix group may be of interest.

References

[AMPS11] S. Ambrose, S. Murray, C.E. Praeger, and C. Schneider. Constructive membership
testing in black-box classical groups. In Proceedings of The Third International
Congress on Mathematical Software, volume 6327 of Lecture Notes in Computer
Science, pages 54–57, 2011.

[Asc84] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent.
Math., 76(3):469–514, 1984.

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 41

[Bää06] Henrik Bäärnhielm. Recognising the Suzuki groups in their natural representations.
J. Algebra, 300(1):171–198, 2006.

[Bää07] Henrik Bäärnhielm. Algorithmic problems in twisted groups of Lie type. PhD thesis,
Queen Mary, University of London, 2007.

[Bää14] Henrik Bäärnhielm. Recognising the Ree groups in their natural representations.
Preprint, 2014.

[Bab91] László Babai. Local expansion of vertex-transitive graphs and random generation in
finite groups. In STOC ’91: Proceedings of the twenty-third annual ACM Symposium
on Theory of Computing, pages 164–174, New York, NY, USA, 1991. ACM Press.

[BB99] László Babai and Robert Beals. A polynomial-time theory of black box groups. I.
In Groups St. Andrews 1997 in Bath, I, volume 260 of London Math. Soc. Lecture
Note Ser., pages 30–64. Cambridge Univ. Press, Cambridge, 1999.

[BB09] John N. Bray and Henrik Bäärnhielm. Black-box constructive recognition for the
Suzuki groups. Preprint, 2009.

[BBS09] László Babai, Robert Beals, and Ákos Seress. Polynomial-time theory of matrix
groups. In Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, pages 55–64, 2009.

[BCLGO11] John Bray, M.D.E. Conder, C.R. Leedham-Green, and E.A. O’Brien. Short presen-
tations for alternating and symmetric groups. Trans. Amer. Math. Soc., 363:3277–
3285, 2011.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[BGK+97] L. Babai, A.J. Goodman, W.M. Kantor, E.M. Luks, and P.P. Pálfy. Short presen-
tations for finite groups. J. Algebra, 194:79–112, 1997.

[BK06] Peter A. Brooksbank and William M. Kantor. Fast constructive recognition of black
box orthogonal groups. J. Algebra, 300(1):256–288, 2006.

[BKPS02] László Babai, William M. Kantor, Péter P. Pálfy, and Ákos Seress. Black-box recog-
nition of finite simple groups of Lie type by statistics of element orders. J. Group
Theory, 5(4):383–401, 2002.

[BNS06] Peter Brooksbank, Alice C. Niemeyer, and Ákos Seress. A reduction algorithm for
matrix groups with an extraspecial normal subgroup. In Finite geometries, groups,
and computation, pages 1–16. Walter de Gruyter, Berlin, 2006.

[BP00] Sergey Bratus and Igor Pak. Fast constructive recognition of a black box group iso-
morphic to Sn or An using Goldbach’s conjecture. J. Symbolic Comput., 29(1):33–
57, 2000.

[Bra00] John N. Bray. An improved method for generating the centralizer of an involution.
Arch. Math. (Basel), 74(4):241–245, 2000.

[Bro03] Peter A. Brooksbank. Fast constructive recognition of black-box unitary groups.
LMS J. Comput. Math., 6:162–197 (electronic), 2003.

[Bro08] Peter A. Brooksbank. Fast constructive recognition of black box symplectic groups.
J. Algebra, 320(2):885–909, 2008.

[BS84] László Babai and Endre Szemerédi. On the complexity of matrix group problems,
I. In Proc. 25th IEEE Sympos. Foundations Comp. Sci., pages 229–240, 1984.

[BS01] László Babai and Aner Shalev. Recognizing simplicity of black-box groups and the
frequency of p-singular elements in affine groups. In Groups and computation, III
(Columbus, OH, 1999), volume 8 of Ohio State Univ. Math. Res. Inst. Publ., pages
39–62. de Gruyter, Berlin, 2001.

[BY13] Alexandre Borovik and S. Yalçınkaya. Fifty shades of black. http://arxiv.org/
abs/1308.2487, 2013.

42 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

[Can73] John J. Cannon. Construction of defining relators for finite groups. Discrete Math,
5:105–129, 1973.

[CCN+85] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson. Atlas of
finite groups. Oxford University Press, 1985.

[CF93] Gene Cooperman and Larry Finkelstein. Combinatorial tools for computational
group theory. In Groups and computation (New Brunswick, NJ, 1991), volume 11
of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 53–86. Amer. Math.
Soc., Providence, RI, 1993.

[CLG97] Frank Celler and C.R. Leedham-Green. Calculating the order of an invertible ma-
trix. In Groups and computation, II (New Brunswick, NJ, 1995), volume 28 of
DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 55–60. Amer. Math.
Soc., Providence, RI, 1997.

[CLGM+95] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer,
and E.A. O’Brien. Generating random elements of a finite group. Comm. Algebra,
23(13):4931–4948, 1995.

[CLGO06] M.D.E. Conder, C.R. Leedham-Green, and E.A. O’Brien. Constructive recognition
of PSL(2, q). Trans. Amer. Math. Soc., 358(3):1203–1221, 2006.

[CMT04] Arjeh M. Cohen, Scott H. Murray, and D. E. Taylor. Computing in groups of Lie
type. Math. Comp., 73(247):1477–1498, 2004.

[CNRD09] Jon F. Carlson, Max Neunhöffer, and Colva M. Roney-Dougal. A polynomial-time
reduction algorithm for groups of semilinear or subfield class. J. Algebra, 322:613–
637, 2009.

[Cor13] Brian Corr. Estimation and Computation with Matrices Over Finite Fields. PhD
thesis, University of Western Australia, 2013.

[Cos09] Elliot Costi. Constructive membership testing in classical groups. PhD thesis, Queen
Mary, University of London, 2009.

[CST89] Peter J. Cameron, Ron Solomon, and Alexandre Turull. Chains of subgroups in
symmetric groups. J. Algebra, 127:340–352, 1989.

[DFO11] A.S. Detinko, D.L. Flannery, and E. A. O’Brien. Algorithms for the Tits alternative
and related problems. J. Algebra, 344:397–406, 2011.

[DFO13] A. S. Detinko, D. L. Flannery, and E. A. O’Brien. Recognizing finite matrix groups
over infinite fields. J. Symbolic Comput., 50:100–109, 2013.

[DLGLO13] Heiko Dietrich, C. R. Leedham-Green, Frank Lübeck, and E. A. O’Brien. Construc-
tive recognition of classical groups in even characteristic. J. Algebra, 391:227–255,
2013.

[DLGO14] Heiko Dietrich, C.R. Leedham-Green, and E.A. O’Brien. Effective black-box con-
structive recognition of classical groups. Preprint, 2014.

[GCL92] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

[GKKL08] R.M. Guralnick, W.M. Kantor, M. Kassabov, and A. Lubotzky. Presentations of
finite simple groups: a quantitative approach. J. Amer. Math. Soc., 21(3):711–774,
2008.

[GLGO06] S.P. Glasby, C.R. Leedham-Green, and E.A. O’Brien. Writing projective represen-
tations over subfields. J. Algebra, 295(1):51–61, 2006.

[Gro14] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.4.
(http://www.gap-system.org), 2014.

[HEO05] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational
group theory. Discrete Mathematics and its Applications (Boca Raton). Chapman
& Hall/CRC, Boca Raton, FL, 2005.

[HLGOR96a] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien, and Sarah Rees. Comput-
ing matrix group decompositions with respect to a normal subgroup. J. Algebra,
184(3):818–838, 1996.

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 43

[HLGOR96b] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien, and Sarah Rees. Testing matrix
groups for imprimitivity. J. Algebra, 184:795–817, 1996.

[HLO+08] P.E. Holmes, S.A. Linton, E.A. O’Brien, A.J.E. Ryba, and R.A. Wilson. Construc-
tive membership in black-box groups. J. Group Theory, 11(6):747–763, 2008.

[HR94] Derek F. Holt and Sarah Rees. Testing modules for irreducibility. J. Aust. Math.
Soc. Ser. A, 57(1):1–16, 1994.

[HRD13] Derek F. Holt and Colva M. Roney-Dougal. Minimal and random generation of
permutation and matrix groups. J. Algebra, 387:195–214, 2013.

[HRT01] R. B. Howlett, L. J. Rylands, and D. E. Taylor. Matrix generators for exceptional
groups of Lie type. J. Symbolic Comput., 31(4):429–445, 2001.

[HS08] Derek F. Holt and Mark J. Stather. Computing a chief series and the soluble radical
of a matrix group over a finite field. LMS J. Comput. Math., 11:223–251, 2008.

[Hul13] A. Hulpke. Computing conjugacy classes of elements in matrix groups. J. Algebra,
387:268–286, 2013.

[IL00] Gábor Ivanyos and Klaus Lux. Treating the exceptional cases of the MeatAxe.
Experiment. Math., 9(3):373–381, 2000.

[JLNP13] Sebastian Jambor, Martin Leuner, Alice C. Niemeyer, and Wilhelm Plesken. Fast
recognition of alternating groups of unknown degree. J. Algebra, 392:315–335, 2013.

[Joh90] D.L. Johnson. Presentations of Groups, volume 15 of London Math. Soc. Stud.
Texts. Cambridge University Press, Cambridge, 1990.

[KK13] W.M. Kantor and M. Kassabov. Black box groups isomorphic to PGL(2, 2e). http:
//arxiv.org/abs/1309.3715, 2013.

[KL90] Peter Kleidman and Martin Liebeck. The Subgroup Structure of the Finite Clas-
sical Groups, volume 129 of Lecture Notes of the London Mathematical Society.
Cambridge University Press, Cambridge, 1990.

[KM13] W. M. Kantor and K. Magaard. Black box exceptional groups of Lie type. Trans.
Amer. Math. Soc., 365(9):4895–4931, 2013.

[KR91] L.G. Kovács and Geoffrey R. Robinson. Generating finite completely reducible lin-
ear groups. Proc. Amer. Math. Soc., 112:357–364, 1991.

[KS01] William M. Kantor and Ákos Seress. Black box classical groups. Mem. Amer. Math.
Soc., 149(708):viii+168, 2001.

[KS09] William M. Kantor and Ákos Seress. Large element orders and the characteristic
of Lie-type simple groups. J. Algebra, 322:802–832, 2009.

[LG01] Charles R. Leedham-Green. The computational matrix group project. In Groups
and computation, III (Columbus, OH, 1999), volume 8 of Ohio State Univ. Math.
Res. Inst. Publ., pages 229–247. de Gruyter, Berlin, 2001.

[LGO97] C.R. Leedham-Green and E.A. O’Brien. Recognising tensor products of matrix
groups. Internat. J. Algebra Comput., 7(5):541–559, 1997.

[LGO02] C.R. Leedham-Green and E.A. O’Brien. Recognising tensor-induced matrix groups.
J. Algebra, 253(1):14–30, 2002.

[LGO09] C.R. Leedham-Green and E.A. O’Brien. Constructive recognition of classical groups
in odd characteristic. J. Algebra, 322:833–881, 2009.

[LGO14] C.R. Leedham-Green and E.A. O’Brien. Short presentation for the classical groups
on their standard generators. Preprint, 2014.

[LM] Frank Lübeck and Jürgen Müller. Challenge problems. www.math.rwth-aachen.
de:8001/~Frank.Luebeck/data/MatrixChallenges/index.html.

[LMO07] F. Lübeck, K. Magaard, and E.A. O’Brien. Constructive recognition of SL3(q). J.
Algebra, 316(2):619–633, 2007.

[LNPS06] Maska Law, Alice C. Niemeyer, Cheryl E. Praeger, and Ákos Seress. A reduction
algorithm for large-base primitive permutation groups. LMS J. Comput. Math.,
9:159–173 (electronic), 2006.

44 HENRIK BÄÄRNHIELM, DEREK HOLT, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

[LO07] Martin W. Liebeck and E.A. O’Brien. Finding the characteristic of a group of Lie
type. J. Lond. Math. Soc. (2), 75(3):741–754, 2007.

[LO14] Martin W. Liebeck and E.A. O’Brien. Recognition of finite exceptional groups of
Lie type. Trans. Amer. Math. Soc., 2014.

[Lub02] Alexander Lubotzky. The expected number of random elements to generate a finite
group. J. Algebra, 257:452–459, 2002.

[MOS08] Kay Magaard, E.A. O’Brien, and Ákos Seress. Recognition of small dimensional
representations of general linear groups. J. Aust. Math. Soc., 85:229–250, 2008.

[MRD11] Scott H. Murray and Colva M. Roney-Dougal. Constructive homomorphisms for
classical groups. J. Symbolic Comput., 46:371–384, 2011.

[Neu09] Max Neunhöffer. Constructive recognition of finite groups. Habilitationsschrift,
RWTH Aachen, 2009.

[Nie05] Alice C. Niemeyer. Constructive recognition of normalizers of small extra-special
matrix groups. Internat. J. Algebra Comput., 15(2):367–394, 2005.

[NP98] Alice C. Niemeyer and Cheryl E. Praeger. A recognition algorithm for classical
groups over finite fields. Proc. London Math. Soc. (3), 77(1):117–169, 1998.

[NP99] Alice C. Niemeyer and Cheryl E. Praeger. A recognition algorithm for non-generic
classical groups over finite fields. J. Aust. Math. Soc. Ser. A, 67(2):223–253, 1999.

[NP08] Max Neunhöffer and Cheryl E. Praeger. Computing minimal polynomials of matri-
ces. LMS J. Comput. Math., 11:252–279, 2008.

[NSa] Max Neunhöffer and Ákos Seress. recogbase - a framework for constructive
recognition. www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/

Gap/recogbase.html.

[NSb] Max Neunhöffer and Ákos Seress et al. recog - methods for constructive recognition.
www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/recog.

html.
[NS06] Max Neunhöffer and Ákos Seress. A data structure for a uniform approach to

computations with finite groups. In ISSAC 2006, pages 254–261. ACM, New York,
2006.

[O’B06] E.A. O’Brien. Towards effective algorithms for linear groups. In Finite geometries,
groups, and computation, pages 163–190. Walter de Gruyter, Berlin, 2006.

[O’B11] E.A. O’Brien. Algorithms for matrix groups. In Martyn Quick and Colva Roney-
Dougal, editors, Groups – St Andrews 2009, volume 388 of Lecture Notes of the
London Mathematical Society, pages 297–323. Cambridge University Press, 2011.

[Pak00] Igor Pak. The product replacement algorithm is polynomial. In FOCS ’00: Proceed-
ings of the 41st Annual Symposium on Foundations of Computer Science, pages
476–485, Washington, DC, USA, 2000. IEEE Computer Society.

[Par84] R.A. Parker. The computer calculation of modular characters (the meat-axe). In
Computational group theory (Durham, 1982), pages 267–274. Academic Press, Lon-
don, 1984.

[Ser03] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2003.

[Shp99] Igor E. Shparlinski. Finite fields: theory and computation. The meeting point of
number theory, computer science, coding theory and cryptography, volume 477 of
Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1999.

[ST91] Ron Solomon and Alexandre Turull. Chains of subgroups in groups of Lie type. III.
J. London Math. Soc., 44:437–444, 1991.

[Sta06] Mark James Stather. Algorithms for Computing with Finite Matrix Groups. PhD
thesis, University of Warwick, August 2006.

[Sta07] Mark Stather. Constructive Sylow theorems for the classical groups. J. Algebra,
316:536–559, 2007.

A PRACTICAL MODEL FOR COMPUTATION WITH MATRIX GROUPS 45

[Wil] R.A. Wilson et al. Atlas of Finite Group Representations. brauer.maths.qmul.
ac.uk/Atlas.

[Wil96] Robert A. Wilson. Standard generators for sporadic simple groups. J. Algebra,
184(2):505–515, 1996.

Department of Mathematics, University of Auckland, Auckland, New Zealand

URL: http://www.math.auckland.ac.nz/~henrik/
E-mail address : henrik@math.auckland.ac.nz

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United

Kingdom

URL: http://www.warwick.ac.uk/staff/D.F.Holt
E-mail address : D.F.Holt@warwick.ac.uk

School of Mathematical Sciences, Queen Mary, University of London, Mile

End Road, London, United Kingdom

URL: http://www.maths.qmul.ac.uk/~crlg/
E-mail address : c.r.leedham-green@qmul.ac.uk

Department of Mathematics, University of Auckland, Auckland, New Zealand

URL: http://www.math.auckland.ac.nz/~obrien/
E-mail address : e.obrien@auckland.ac.nz

