
26.745  The Compleat Sarkovski's Theorem
A diagrammatic sketch

Sarkovski's theorem : Let f : !  be continuous with a periodic point of principal period k.  
If k>l in the ordering         3 > 5 > 7 > ... > 3.2n > 5.2n > ... > 2n > 2n-1 > ... > 4 > 2

then f also has a periodic point of period l.

A : Assumptions :  I have sketched proofs of Devaneys assumptions for completeness of discussion.  
         My second proof is sphagetti!!   I bet you can make it much more concise.

[1] Fig 1(a). I, J closed intervals : I J but  f(I) J  then f has a fixed point in I.
Since f(I) J I, we can pick a, b I : f(a) " min (i I),  f(b) # max (i I).
Then g(x) = f(x) - x has g(a) < 0 < g(b), so by the intermediate value theorem $ c : g(c) = f(c) - c = 0.

[2] Fig 1(b,c). I, J closed intervals : f(I) J  then there is a subinterval H of I : f(H) = J.
Let O = f-1(int(J)).  O is a countable union of open intervals (open set in ).  These have end points in 
the boundary of O = f-1(%(J)) = f-1({m,n})).  If any interval has one of each of m, n we choose this one.  
If not we end in contradiction.  All intervals are cups or caps, as in (c).  We must have both types.  
If we have only cups, their inf must be m or f(I) J, but then we have a (countable) set of cups, each with 
min > m having inf m (b).  These contradict continuity because they determine a subsequence in compact I 
whose limit is a discontinuity, since the cups range remains extensive.  If we do have both types, there must be
a pair equivalent to fig 1(b), with no other cups and caps in between (i.e. f outside J).  But by the Intermediate 
value theorem, between b & c there must be every intermediate value between m and n for f to be continuous.

B : The simple case period 3 has periods of all orders
Proof :  Pick the case a > b > c and f(a) = b, f(b) = c, f(c) = a as shown below. 

From the way a, b, c permute, we have f(I2) 1, f(I1) 2 1 . (The minimum makes the second not
equality).

We can say I2 covers I1 and I1 covers both I1 and I2.  I.e.  in diagramatic form  I1 I2 .



Note : while the original points were period 3 this gives the intervals minimum period 2 !!!
Now by [2], f(I1) 1 Ai we can make a sequence of sets  

An-2  ... A1  A0 = I1   : f(An-2) = An-3,  f(A1) = A0 = I1.

i.e. An-2 A1 A0An-3 !! ... ! !
f f f

Now since fn-2(An-2) = I1 and f(I1) I2, we have  fn-1(An-2) I2 so there is An-1 :  f
n-1(An-1) = I2.

But f(I2) I1, so  fn(An-1) I1 An-1.  Hence by [1] An-1 has a fixed point.

Finally this has true principal period n since

 
.
C : A sketch of the full theorem.

(a) Suppose n is an odd number and that there is a periodic point x of prime period n (odd) with no odd periods < n.
Let x1, ..., xn be the points of this orbit and let i be the largest such f(xi)>xi. Let I1 = [xi,xi+1]. This means
f(I1) I1 and because x is not period two I1 must contain at least one other interval. Then a careful analysis of the
structure of the mapping confirms that it must have the above elaboration of the pattern for period 3, or its mirror
image.  This arises from the fact that some xi must change sides of I1 and some must not (see Devaney). 

Suppose I1-I2-...-Ik-I1 is the shortest covering path from I1 to I1. Then one of  I1-I2-...-Ik-I1 and I1-I2-...-Ik-I1-I1
has an ODD number of steps. Moreover the first has k steps and the second k+1. If k < n-1 then these have < n
steps and one is odd. Using the fact that fm(I1) contains I1, we thus have a fixed point x of fm(x) where m=k or
k+1 and m odd. But if k < n-1, we have m<n and odd.  I.e. we have an odd period m point m<n. The prime period
of x must be either m, an odd factor of m or 1. The first two cases will contradict the hypothesis that there are no
odd periods of prime period less than n.  Also x cannot be prime period 1 because f(x) is in I2 and the only point of
intersection of I1 and I2 is the end point, which has prime period n > m. Hence k cannot be less than n-1, so k IS
n-1 (see Discussion on paragraph 2 p 64).
    
Examination of this pattern of coverings gives the following diagram :

(i) All periods larger than n are gained as before going round the lower loop and adding multiple circuits of I1.
(ii) Even periods 2.1, 2.3, 2.5 etc. up to n-1 arise from going round the upper loops.  These include all cases.

(b) n is even.  Then if some points swap sides of I1 there is a period 2 point by the same agruments as before
using  In-1  In-2  .  If all swap sides the same is true by inspection. 

(i) If n = 2m.  Let k = 2h   h < m , then  if g = fk/2 = f2
h-1

 but f has period 2m so g has period 
2m

2h-1
  = 2m-h+1  

even hence by (b) g has period 2,  so f has period 2.2h-1 = k

(ii) If n = o.2m then it can be reduced to the above cases.  Let g = f2
m

 then g has odd period so g has every odd 
period p > o giving f every period  p.2m > o.2m.   f also has every power of 2 (exercise).


