
Geometric analysis of transient bursts

Hinke M. Osinga∗ and Krasimira T. Tsaneva-Atanasova†

Abstract

We consider the effect of a brief stimulation from the rest state of a minimal
neuronal model with multiple time scales. Such transient dynamics brings out
the intrisic bursting capabilities of the system. Our main goal is to show that a
minimum of three dimensions is enough to generate spike-adding phenomena
in transient responses, and that the onset of a new spike can be tracked using
existing continuation packages. We take a geometric approach to illustrate
how the underlying fast subsystem organises the spike adding in much the
same way as for spike adding in periodic bursts, but the bifurcation analysis
for spike onset is entirely different. By using a generic model, we further
strengthen claims made in our earlier work that our numerical method for
spike onset can be used for a broad class of systems.

Cellular responses are often characterised in terms of the sets of stimuli
that increase or decrease their activity. The mathematical framework
employed in studying such responses has put most emphasis on the stable
states (point or periodic attractors) of a cellular system. In contrast,
its transient (non-stationary) temporal behaviour has been given much
less attention. Here we focus on computational ideas that allow us to
study the transient dynamics of cellular systems. Indeed there are many
situations in which the transient cellular behaviour manifests most of
its functional significance, for example, while switching between different
stable attractors. In order to understand better the relationship between
response dynamics and system function we need to investigate transient
dynamics and not just the asymptotically stable states. In this paper, we
focus on the generation of bursts, consisting of one or more spikes, as a
result of a brief external stimulus. We use a simple polynomial model of
bursting to illustrate our analysis. In particular, we show the geometry of
the mathematical framework used to generate a new spike and we discuss
how to detect numerically the onset of a new spike by continuation of a
two-point boundary value problem. This means that we can compute and
present transitions between topologically different transient responses in
a bifurcation diagram.
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1 Introduction

The activity of a single neurone, recorded electrophysiologically in vitro, is usually
characterised in terms of its response to a current injection of particular duration
and/or wave form. Such approaches allow to verify experimentally the external and
internal conditions, which affect intrinsic neuronal excitability. For certain sets of
current-injection stimuli, such as long and short current injections, the firing activity
of neurones may be enhanced, while for others there is no or little response [3, 4, 5].
Hence, neurones (and more generally, excitable cells) come with a specific intrinsic
set of properties, which in turn characterises the set of stimuli or conditions to which
the cell is most responsive. It is important to understand such intrinsic properties
of neurones in order to identify when they may be malfunctioning. While variations
in bursting rythms occur widely even for the same types of cells, our investigation
shows how these may be linked to changes in the conditions internal to the cell;
this means that any deviation from normal behaviour can be identified in terms of
parameter variations that help point to the cause of the abnormal dynamics. In
terms of mathematical modelling and theoretical analysis, relatively little attention
has been given to the fact that the activity of many excitable cells may follow a
certain time course during their response to a brief perturbation, such as a short
current injection [4, 21, 22]. Here, we argue that theoretical analysis of the tran-
sient behaviour of excitable cells not only helps to shed light on biophysical and
geometrical features of the generating dynamics, but it may also provide valuable
insights into important functional processes as they evolve in time and pass through
different stages.

Dynamical systems theory traditionally considers primarily asymptotic behaviour
and explains long-term dynamics; however, this theory can also be used to study
transient effects. For example, in the context of neuronal or cellular models, Rinzel
considered singular limits of slow and fast time scales in the model and used bifurca-
tion theory to classify periodic bursting patterns [25, 26]. This geometric approach
in his work and that of others has led to an active research area in dynamical
systems called geometric singular perturbation theory (GSPT); see also [6] for an
overview. These ideas have been used successfully to study spike adding for pe-
riodic bursting behaviour. Pioneering work by Terman [29] provides a thorough
analysis of transitions between bursting and tonic (continuous) spiking, and relates
classical slow-fast analysis to the bifurcation analysis of the full system. Other stud-
ies [12, 13, 14] have focussed on the spike-adding mechanism directly. In general,
this analysis demonstrates that the spike-adding mechanism is mediated by a pair
of saddle-node bifurcations of periodic orbits of the full system; bursts with different
numbers of spikes are, in fact, different periodic attractors of the full system that
may co-exist [29]. Furthermore, in the case of periodic bursting, a spike-adding
transition occurs over an exponentially small parameter interval [30]; see also [24].

Recently, we developed a biophysical model of a pyramidal CA1/3 excitable
(neurone) cell [20] and analysed its transient response to a short current injection [21,
22]. In its minimal form the model is five dimensional, which we used to present
a slow-fast analysis of its non-stationary behaviour. We showed how so-called slow
manifolds of saddle type play an important role in generating additional spikes in
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the transient response [21]. However, due to its five-dimensional nature, it was
not possible to provide a full analysis of the geometric properties that organise the
spike adding, and it remains unclear whether this type of transient response is a
truly five-dimensional phenomenon. In [22], we discussed how to set up a two-
point boundary value problem to detect the transient firing patterns in the system
numerically. There, we also suggested that our proposed set-up is quite general and
can be applied to other systems as well.

The goal of this paper is to provide a second case study of spike adding in a
transient response. As can be expected from spike-adding transitions for periodic
bursts, we are able to replicate the spike-adding behaviour for transient response
as reported in [21, 22] by using a model with only one slow and two fast variables.
We use the numerical method from [22] to compute a two-parameter bifurcation
diagram that provides an overview of how transient bursting depends on parame-
ters. Our model is a generic three-dimensional polynomial model that is based on
the classical Hindmarsh-Rose system [16]; our polynomial formulation is such that
the system can exhibit both square-wave and pseudo-plateau bursting, depending
on the choice of parameters. An extensive bifurcation analysis for this system in
the periodic bursting regime has been reported in [23, 31]. Here, we choose the
parameters such that the system is quiescent unless a current is applied that per-
turbs it from its globally attracting equilibrium state; moreover, we ensure that the
underlying structure is similar to the model for CA1/CA3 neurones used in [21, 22].
We present a geometric analysis of the effects of an applied current and provide
a detailed numerical study of how the number of spikes in the response to such a
perturbation changes as a result of interaction with the underlying slow manifolds
of the system. The results in this paper not only confirm that spike adding as a
transient phenomenon is essentially three dimensional, but also highlight the simi-
larities with spike adding for periodic bursting, because the transients are organised
by the same underlying geometric structure.

This paper is organised as follows. We introduce the model in Section 2 and pro-
vide a brief summary of the underlying dynamics that forms the basis for generating
transient bursts. Here, we also explain briefly the numerical set-up of a two-point
boundary value problem in the continuation package Auto [8, 9] for the numerical
detection of spike onsets. Section 3 illustrates how spikes are generated as a transient
response and shows that the transition from an n-spike to an (n+ 1)-spike response
occurs via a crossing of the stable manifold associated with the saddle-type slow
manifold; we analyse this transition both for the one-to-two- and three-to-four-spike
response. The numerical detection and continuation of the different spike onsets for
our model are presented in Section 4. We compute the boundaries between regions
with n-spike responses for n = 1 to 8 in a two-parameter bifurcation diagram. We
end with a discussion in Section 5.

2 The three-dimensional polynomial model

We illustrate the geometry of spike adding for transient bursts using the three-
dimensional model introduced in [23, 31] that is given by the following system of
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Figure 1: Bifurcation diagram plotted in (z, y, x)-space of system (1) in the singular
limit ε → 0. We used b = 0.75 and h = 1.0. The fast subsystem has a Z-shaped
family of equilibria containing the saddle-node bifurcation points SN1 and SN2. The
family also contains a subcritical Hopf bifurcation point H on the upper branch that
gives rise to the family of periodic orbits that exhibits a saddle-node bifurcation of
periodic orbits SNP before it ends in a homolinic bifurcation.

three ordinary differential equations
ẋ = s a x3 − s x2 − h y − b z,
ẏ = φ(x2 − y),
ż = ε(s a1 x+ b1 − k z).

(1)

The polynomial form of the equations makes it more amenable to algebraic analysis,
but note the similarities with Hindmarsh-Rose systems [16, 27, 28]. Indeed, despite
its simplicity, system (1) exhibits dynamics that are characteristic for neurophysio-
logical models; the variable x acts like a membrane potential and y corresponds to a
gating variable, while z plays the role of a slow variable representing, e.g., cytosolic
Ca2+. System (1) can produce many different periodic bursting patterns, including
both square-wave and pseudo-plateau bursting [23, 31]. We choose the parameters
such that the behaviour of system (1) resembles that exhibitied by the model for
pyramidal neurones used in [21, 22]. That is, we fix s = −2.0, a = 0.55, a1 = −0.1,
b1 = 0.01, and k = 0.2 with time-scale ratios φ = 1.0 and ε = 0.01. The parameters
b and h are our bifurcation parameters, which mimic the conductance parameter
used in [22]; note that we had h = 1 in [23, 31]. The parameter h could represent
the contribution of a delayed rectifier-like potassium current that is voltage depen-
dent, while b controls the contribution of a slower (i.e. calcium sensitive) potassium
current that depends on the slow variable z in the model.

System (1) offers the possibility of three different time scales, but spike adding
for transient bursts can be generated using only two of them; by setting φ = 1, the
variables x and y change on a similar time scale that is faster than the time scale
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Figure 2: Bifurcation diagram in the (b, h)-plane near b = 0. Additional equilibria
of system (1) exist due to fold bifurcations, labelled SNFP and SNtop, which can
become stable due to a Hopf bifurcation, labelled Htop.

for z, with a ratio of ε = 0.01. The expected behaviour can then be explained by
studying the system in the singular limit ε→ 0; the variable z effectively becomes a
parameter in this limit and motion in the z-direction is frozen. Figure 1 shows the
bifurcation diagram of the so-called fast subsystem using only the (x, y)-variables
and treating z as the bifurcation parameter; here, z lies along a horizontal axis and
x along the vertical axis. We fixed b = 0.75 and h = 1.0 here, but this choice is
representative for the entire range of (b, h)-values considered in this paper. The
fast subsystem has a Z-shaped family of equilibria that contain two saddle-node
bifurcation points, denoted SN1 and SN2; the equations are formulated such that
the left-most saddle-node bifurcation SN1 is always at the origin. The equilibria
on the lower branch, that is, for low values of x, are all stable; the middle branch
in between SN1 and SN2 consists entirely of saddle equilibria; the equilibria on the
upper branch, for high x-values, are stable if z is small, but they are repelling
for z-values past a Hopf bifurcation point, denoted H. Our choice of parameters is
such that H is subcritical, so that the emanating family of periodic orbits is unstable.
This family becomes stable past a saddle-node bifurcation of periodic orbits, denoted
SNP, and ends in a homoclinic bifurcation with the middle equilibrium branch.

Equilibria of the full three-dimensional system (1) lie on the Z-shaped family of
equilibria of the fast subsystem. Their location is determined by the nullcline of z,
which is given by the equation

z =
s a1 x+ b1

k
,

and does not depend on y. We have chosen a1 = −0.1, b1 = 0.01 and k = 0.2 such
that there exists a unique stable equilibrium FP on the lower branch. The location
of FP depends on our bifurcation parameters b and h, but the effect is rather small
in our region of interest (b, h) ∈ [0, 3]× [0.9, 1.1]; in particular, FP is located on the
lower branch provided b > 0. However, there exist other equilibria of system (1) if
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b is close to 0, namely, when the z-nullcline also intersects the upper and middle
branches of the Z-shaped family of equilibria of the fast subsystem. An overview of
when this occurs is shown in Figure 2, which presents an enlarged view near b = 0.
The equilibrium FP exists to the right of the curve SNFP at b = 0 in the (b, h)-plane.
At SNFP, it disappears in a fold bifurcation with a saddle equilibrium located on the
middle branch that is created in another fold bifurcation curve, denoted SNtop. This
other fold curve SNtop also gives rise to an equilibrium on the upper branch, which is
a source immediately to the left of SNtop, but becomes stable in a Hopf bifurcation,
denoted Htop. A single equilibrium exists on the upper branch if b < 0, which is
illustrated here for clarity. Inside our region of interest (b, h) ∈ [0, 3]×[0.9, 1.1], there
exists a relatively small region of bistability, where both FP and the equilibrium on
the upper branch are stable. However, the transient response is also influenced
by the presence of unstable equilibria. Therefore, we consider only the region to
the right of SNtop, in which FP is a unique and globally attracting equilibrium of
system (1).

A transient response of system (1) is generated by applying a perturbation while
the system is in its equilibrium state, that is, we assume that the initial condition is
at FP before perturbation. The perturbation is generated for a finite time-duration
of TON = 15 via the modified x-equation

ẋ = s a x3 − s x2 − h y − b z + Iapp. (2)

Here, Iapp = 0.02 is constant from t = 0 to t = 15 and reset (abruptly and discontin-
uously) to Iapp = 0 afterward. The effect of this perturbation is shown in Figure 3,
where we used b = 0.75 and h = 1.0 as in Figure 1. Figure 3(a) shows the response
overlayed on the bifurcation diagram of the fast subsystem; see also Figure 1. The
time series of the x-coordinate over the time interval [−50, 500] are shown in Fig-
ure 3(b); the segment of the response during which Iapp = 0.02 is highlighted in
grey. We include a short segment t ∈ [−50, 0) in the time series to highlight the fact
that system (1) is at FP before the perturbation is applied.

We are interested in how the number of additional spikes after the given per-
turbation depends on the parameters b and h. To this end, we want to detect the
onset of a new spike and consider curves of such spike onsets in the (b, h)-plane.
The numerical detection of spike onsets can be done with the continuation package
Auto [8, 9] using a two-point boundary value problem (2PBVP) set-up; the precise
details are described in [22]. We provide a brief overview of the main set-up in
the remainder of this section and discuss the other steps as part of the results in
Section 4.

2.1 Basic set-up of the 2PBVP in Auto

The numerical detection and continuation of the onset of a new spike is explained in
detail in [22], where it is used for a five-dimensional pyramidal neurone model. The
computations are done using a two-point boundary value problem set-up, which is
solved and continued with the software package Auto [8, 9]. As explained in [22],
the set-up is rather general and can be used for other models as well. Here, we
briefly describe how to use the two-point boundary value problem set-up in the
specific context of our model.
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Figure 3: Transient response generated for system (1) with b = 0.75 and h = 1.0. A
perturbation with amplitude Iapp = 0.02 and duration TON = 15 takes the system
away from its equilibrium FP (grey segment). The relaxation back to FP (black
segment) exhibits three additional spikes before reaching FP. The response is shown
in (z, y, x)- space in panel (a), with the underlying bifurcation diagram of the fast
subsystem for reference; see also Figure 1. Panel (b) shows the corresponding time
series for x with t ∈ [−50, 500].
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The main idea is to track the evolution of system (1) from t = 0, past the applied
perturbation up to the maximum of the last spike; this last spike could have a very
small amplitude, but it is defined as the last local maximum before the solution
relaxes back to equilibrium. In the context of system (1), the maximum of a spike
is in terms of x. Hence, we track the evolution from t = 0, with Iapp = 0.02,
up to t = 15 and then extend the orbit segment by integrating system (1), that
is, Iapp = 0, until the last local maximum in x is reached. The set-up in Auto
considers two orbit segments, one for the first perturbed segment with Iapp = 0.02,
and one for the second segment with Iapp = 0. Hence, the problem is solved in a six-
dimensional phase space with state vector (uON,uOFF) ∈ R6, where uON = (x, y, z) ∈
R3 represents the orbit segment integrated for a total integration time TON = 15
with an applied current Iapp = 0.02, and uOFF = (x, y, z) ∈ R3 represents the orbit
segment integrated for a total integration time TOFF with no applied current, that is,
Iapp = 0. The value for TOFF is defined implicitly as the time when the appropriate
(local) maximum is achieved. As is customary in Auto, the solution intervals for
uON and uOFF are scaled by TON and TOFF, respectively, so that the orbit segment
always starts at t = 0 and ends at t = 1. The boundary conditions of the two-point
boundary value problem are chosen such that uON starts at FP and uOFF starts at
the point where uON ends; furthermore, we require that uOFF ends at an extremum
of x.

2.2 Computing spike-adding transitions

In order to find the spike-adding transitions, we initially vary a single parameter.
Here, we begin our analysis by keeping h = 1 fixed and varying only b. As shown
in Figure 3, for b = 0.75, system (1) produces a four-spike response to an applied
current of strength Iapp = 0.02 for a duration of TON = 15; the number of spikes
in response to the same perturbation changes if we vary b. In order to capture
these spike additions (or deletions), we consider the main two-point boundary value
problem set-up, but define TOFF = 685 fixed, instead of the implicit definition given
in Section 2.1; see also [21]. This means that we consider orbit segments that
respond to the given perturbation computed up to a total integration time of TON +
TOFF = 700; the total integration time is chosen long enough so that we can expect
(approximate) convergence back to FP. We can continue this set-up in Auto [8, 9],
but note that there is no detection of the actual spike-adding events.

The results of the continuation in Auto are shown in Figure 4(a) using the L2

integral norm along orbit segments as a measure of the solution versus b. This norm
is weighted with respect to the two integration times TON and TOFF and computed
over the full state space as follows:

||(uON,uOFF) ||2=
∫ 1

0

√
||uON(t) ||2 + ||uOFF(t)) ||2 dt,

where || · || denotes the usual Euclidean vector norm. Note that, effectively, a lot of
weight is given to the TON-interval, while the size and shape of the solution uON(t)
is actually relatively independent of b over such a short time interval; the location of
FP hardly changes and the evolution with Iapp = 0.02 has virtually the same effect
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Figure 4: As b decreases, the response changes from 1 spike to more and more
spikes, with each spike-adding transition characterised by a strong increase in the
L2 integral norm. Responses for h = 1 and b = 1.15 (one spike), b = 1.0 (two
spikes), b = 0.85 (three spikes) and b = 0.43 (nine spikes) are highlighted and their
corresponding time series for x are shown in panels (b)–(e), respectively.
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for all b values considered. As a result, the contribution of uON to the solution norm
is almost constant and any variations are due to variations in the transient response
represented by uOFF. However, the contribution of uOFF is also almost constant
from the moment that uOFF(t) (approximately) equals FP; hence, variations in the
solution norm indicate a deviation from FP during the TOFF-interval, which will be
larger as the deviation lasts longer. As shown in Figure 4(a), the solution norm is
slowly increasing as b decreases, but does so in a plateau-like fashion. Each plateau
corresponds to a solution family with a particular number of spikes. We marked
solutions on four plateaus and plot the time series for x in Figures 4(b)–(e); the
labels in panel (a) indicate the panels in which the corresponding time series are
shown. We do not plot the entire solution up to t = 700, but crop the time series at
t = 500 for clarity; we also include a short time segment −50 ≤ t < 0 to illustrate
the location at FP before the perturbation is applied. The response of system (1)
with b = 1.15 is shown in Figure 4(b) and shows a transient burst with only a
single spike; this spike is generated while Iapp = 0.02 and the system immediately
relaxes back to FP as soon as the applied current is turned off. The solution norm
for this response is relatively small, because there is only one spike, which only
exists, approximately, for 0 ≤ t < 50. The responses in Figures 4(c) and (d) are for
b = 1.0 and b = 0.85, taken from the next two plateaus in panel (a), respectively; as
expected, these responses contain two and three spikes, respectively, but note that
the duration of these spikes is rather similar to the single spike in panel (a) and
the total width of the burst creeps up only slowly. We invite the reader to verify
that the response for b = 0.43 in Figure 4(e), based on its location in panel (a), is
expected to contain nine spikes.

3 Spike onset along saddle-type slow manifold

We focus in this section on the transitions between the plateaus in Figure 4(a), where
the number of spikes in the response increases by one as b decreases. Each time,
from one plateau to the next, the L2 integral norm increases abruptly and equally
abruptly drops back down to a slightly higher value than before. Considering our
observations in Figure 4, such an increase in norm must be due to the fact that the
time interval during which the response is not at FP lengthens drastically for only
an (extremely) short b-parameter interval. We made this same observation in [21]
for a different model, which indicates that it may be characteristic for a spike-adding
event.

Such abrupt variations in the L2-integral norm are also present for periodic
bursts; for example, see [24]. Spike adding for periodic bursts is mediated by
saddle-node bifurcations of periodic orbits (SNP), which occur in pairs and gen-
erate an (exponentially) small parameter interval with three co-existing periodic
solutions [12, 24, 30]. In contrast, the non-periodic nature of a transient response
prohibits co-existence of solutions, which means that the continuation branch shown
in Figure 4 is a function over b and the spike-adding mechanism cannot involve SNP
bifurcations. However, it seems that the underlying geometric structure that organ-
ises the spike adding is the same as for periodic bursts: Each time a new spike is
added, the response includes a segment during which the trajectory follows a slow
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manifold of saddle type. In our context, this means that the response not only traces
attracting states of the fast subsystem, but also includes a segment that traces the
middle branch of saddle equilibria. We illustrate this behaviour using the transition
from one to two spikes in Section 3.1 and consider the transition from three to four
spikes in Section 3.2.

3.1 Transition from one- to two-spike response

The transition from a one- to a two-spike response at h = 1 occurs for b ≈ 1.07256.
In an exponentially small interval around this value of b, the L2-integral norm varies
dramatically; see Figure 4(a). Similar to what happens for periodic bursting pat-
terns, the response in this exponentially small b-parameter interval includes a seg-
ment that traces a slow manifold of saddle type. This slow manifold of saddle type
is associated with the saddle branch of the Z-shaped family of equilibria for the fast
subsystem of (1). Let us introduce some notation. We denote by eM the (middle)
saddle branch of equilibria, that is, the z-dependent family of equilibria of the fast
subsystem of (1) bounded by the fold points SN1 and SN2. The saddle slow manifold
of the full system (1) is denoted SM. The manifold SM is well approximated by eM
(away from the folds SN1 and SN2), because it lies O(ε) close to it [7, 10]; in fact,
in the limit limε→0 SM = eM.

The geometric picture that we have in mind is as follows: Each saddle equi-
librium on eM has a one-dimensional stable manifold that acts as a separatrix in
the fast (x, y)-subspace. Together, these one-dimensional stable manifolds form a
z-dependent two-dimensional surface, denoted W s(eM), which also acts as a separa-
trix in the full (x, y, z)-space because there is no flow in the z-direction for the fast
subsystem of (1). The fast subsystem provides information about the nature of the
transient response by describing what happens if z would not change: as soon as
the applied current is turned off, the response has reached a state associated with
a particular z-value; the fast subsystem predicts what happens based on the state
at this value of z. A spike will follow if this state lies in the basin of attraction of
the equilibrium on the upper branch. Otherwise, the system relaxes back to the
fixed point FP, which is represented by attraction to the equilibrium on the lower
branch. The fast subsystem predicts that a spike-adding transition occurs when the
response lies exactly on the basin boundary W s(eM): namely, in this case, the fast
subsystem cannot decide whether to predict a spike or relaxation to FP.

Unfortunately, the invariant manifolds of the fast subsystem are not invariant
manifolds of the full three-dimensional system (1). The true nature of events involves
the saddle slow manifold SM and its associated stable manifold, denoted F(SM),
which are only finite-time invariant manifolds; due to this finite-time nature, F(SM)
does not separate phase space in the same way as W s(eM) and the full system (1)
eventually always relaxes back to FP. Let us define SM and F(SM) more precisely.
We think of SM as the finite-time invariant manifold that exists until the fast time
scales take over. More precisely, SM is an orbit segment, contained in a trajectory,
that remains O(ε) close to eM for O(1) time; see also [6] for further details. The
start and end points of SM are ill defined: one could start and end O(ε) close to
almost any point on eM as long as the slow epoch lasts O(1) time. Hence, SM is not
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unique, though it is often defined as the maximal orbit segment, that is, the one that
remains O(ε) close to eM for the longest O(1) time. Note that all possible choices for
SM lie exponentially close together. Each such SM has a finite-time stable manifold
F(SM). Locally, in a tubular neighbourhood of SM, this stable manifold is uniquely
defined as the manifold tangent at SM to the linear stable normal bundle of SM;
the linear stable normal bundle of a finite-time manifold is again not unique, but all
possible choices lie exponentially close together. Outside the tubular neighbourhood
of SM, the finite-time stable manifold F(SM) can be viewed as a family of fast orbit
segments. To the best of our knowlege, there is no numerical method to compute
F(SM); we refer to [14] for ideas on how one might go about this. We use W s(eM)
as an approximation of F(SM), because in the limit

lim
ε→0
F(SM) = W s(eM).

We remark here that the infinite-time invariant manifold W s(eM) of the fast sub-
system is a good approximation of the finite-time invariant manifold F(SM) of the
full system (1) only locally near SM, because z should not drift too much before
reaching SM.

Let us now illustrate the geometry behind the transition from one to two spikes.
We fix h = 1 and b = 1.07256 and consider the Z-shaped family of equilibria the fast
subsystem; as for b = 0.75 in Figure 1, we also compute the family of periodic orbits
emanating from the Hopf bifurcation on the upper branch. The saddle branch eM of
the Z-shaped family lies in between the saddle-node bifurcation points SN1 and SN2,
and contains a homoclinic point HC at which the family of periodic orbits ends. We
focus on the stable manifolds associated with the saddle equilibria in between SN1,
at z = 0, and HC, at z ≈ 0.03433, that is, we compute only a subset of W s(eM). We
select 11 z-values uniformly distributed in the interval [0.003, 0.033] and consider
the associated saddle equibrilia on eM. For each saddle equilibrium, we compute
its stable manifold as the two orbit segments that end at distance 10−6 from the
equilibrium along the positive and negative directions of the stable eigenvector; the
computation is done by integration backward in time from these two points until
the orbit segments reached the plane {x = −0.5}.

Figure 5 shows these invariant manifolds of the fast subsystem from two different
viewpoints in panels (a) and (b). The Z-shaped branch of equilibria and the family of
periodic orbits emanating from the Hopf bifurcation is similar to the case for b = 0.75
shown in Figure 1. In Figure 5, we also include the part of W s(eM) that is associated
with the selected equilibria on eM, which is rendered as the two-dimensional light-
blue surface and labelled W s(eM) for convenience. The two view points illustrate
how one side (the negative side) of W s(eM), goes straight down (in backward time)
to the plane {x = −0.5}, while the other (positive) side of W s(eM) folds around the
upper branch and the family of periodic orbits, before it also goes down to the plane
{x = −0.5}. Overlayed in black is the transient response that we consider to be the
one at the moment of onset of the second spike; as in Figure 3 the segment of the
response during which Iapp = 0.02 is highlighted in grey. The overlayed response has
the longest time interval during which it is not (approximately) at FP; we can see
this in the phase portraits in (x, y, z)-space shown in Figures 5(a) and (b), because
the orbit follows eM all the way up to SN2. The delayed relaxation back to FP can
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Figure 5: Two viewpoints in panels (a) and (b) of the transient response at the onset
from one to two spikes; we also show the bifurcation diagram of the fast subsystem,
along with a subset of the family W s(eM) of stable manifolds associated with saddle
equilibria on the middle branch eM in between SN1 and the homoclinic bifurcation
(not labelled). The response for b ≈ 1.07256 traces eM up to the fold point at SN2;
panel (c) shows the corresponding time series for x with t ∈ [−50, 500].
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also clearly be seen in the time series in Figure 5(c), which shows the x-coordinate
of the response on the time interval [−50, 500] in panel (c); it takes until t ≈ 181.8
before the response exhibits a rapid drop to the equilibrium value at x ≈ −0.0481.

Figure 5 illustrates that the perturbation due to a short current application
(Iapp = 0.02), for this special value of b ≈ 1.07256, has the effect that the overlayed
transient response lands on F(SM). Indeed, for the transition from one to two spikes,
W s(eM) is a very good approximation of F(SM), because the segment that starts
at the moment when the applied current is switched off (Iapp = 0) follows W s(eM)
despite the slow drift in z and clearly converges to eM, after which it traces eM
until it almost reaches SN2. Before this transition, that is, for slightly larger values
of b, the transient response lands ‘behind’ W s(eM) with respect to the viewpoint
in Figure 5(a); this region corresponds to the basins of attraction of equilibria on
the lower branch and the fast subsystem predicts relaxation back to FP. For slightly
smaller values of b, after the transition, the transient response lands ‘in between’ the
first local part and the folded part of W s(eM); this region corresponds to the basins
of attraction of equilibria on the upper branch and the fast subsystem predicts a
spike.

3.2 Transition from three- to four-spike response

Let us now consider the transition from a three- to a four-spike response, which
occurs at b ≈ 0.778355 if h = 1; see the dramatic variation of the L2-integral norm
at this value in Figure 4(a). As in Section 3.1, we fix h = 1 and b = 0.778355 and
consider the Z-shaped family of equilibria along with the family of periodic orbits
that emanates from the Hopf bifurcation. In fact, these invariant manifolds of the
fast subsystem are very similar to the ones shown for b = 1.07256 in Section 3.1 or
for b = 0.75 in Section 2; they share the same bifurcations and stability properties.
The branch eM of saddle equilibria lies again in between the saddle-node bifurcation
points SN1 and SN2, and it also contains a homoclinic point HC at which the family
of periodic orbits ends. As for the case with b = 1.07256, we select a range of z-
coordinates for which we compute the stable manifolds of the corresponding saddle
equilibria. Each manifolds is again computed by backward integration from the two
points at distance 10−6 from the equilibrium along the positive and negative direc-
tions of the stable eigenvector. However, for the transition from three to four spikes,
we also consider z-values past HC, which occurs at z ≈ 0.0473. We compute stable
manifolds to the left and to the right of the homoclinic bifurcation by selecting 11
z-values uniformly distributed in the interval [0.003, 0.047] and 3 z-values uniformly
distributed in the interval [0.0476, 0.0564], respectively. The stable manifolds for
saddle equilibria in between SN1 and HC are computed up to their intersection with
the plane {x = −0.5}. The stable manifolds for the saddle equilibria to the right
of HC, for z ∈ [0.0476, 0.0564], are of a different nature: the negative side is similar
to the negative side for z ∈ [0.003, 0.0473] and the combined family forms a smooth
manifold that is part of W s(eM); the positive side for each z ∈ [0.0476, 0.0564], on
the other hand, spirals around the unstable (source) equilibrium on the upper branch
that corresponds to the same z-vale, and accumulates (backward in time) onto this
equilibrium. The positive sides of the family to the left of HC fold only once and
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Figure 6: Two viewpoints in panels (a) and (b) of the transient response at the
onset from three to four spikes; we also show the bifurcation diagram of the fast
subsystem, along with a subset of the family W s(eM) of stable manifolds associated
with saddle equilibria on the middle branch eM in between SN1 and just past the
homoclinic bifurcation (not labelled). The response for b ≈ 0.778355 traces eM up
to the fold point at SN2; panel (c) shows the corresponding time series for x with
t ∈ [−50, 500].

15



accumulate onto the negative sides of manifolds in W s(eM) that correspond to the
same z-value. The homoclinic orbit itself separates the two families and is the only
manifold with finite arclength; In order to render the surface W s(eM) from these
different families, we compute the spiralling positive sides up to arclength 2.6.

Figure 6 shows the Z-shaped critical manifold and the family of periodic orbits
from two different viewpoints in panels (a) and (b), together with the part of W s(eM)
that is associated with the selected saddle equilibria on eM. The geometric structure
is qualitatively very similar to that shown in Figure 5, which did not show the stable
manifolds to the right of HC. Figure 6 also shows, overlayed in black, the transient
response with the longest time interval during which it is not (approximately) at
FP; as before, the segment during which Iapp = 0.02 is highlighted in grey. As was
the case for b = 1.07256, the transient response follows eM all the way up to SN2,
and only relaxes back to FP at t ≈ 223.6; see Figure 6(c).

The interpretation of Figure 6 is not as straightforward as for the one- to two-
spike transition shown in Figure 5, because W s(eM) is not a good global approxima-
tion of F(SM). The ‘convergence’ to SM after the short current application involves
a drift in z over too large a z-interval and W s(eM) cannot be used as an approxi-
mation of F(SM) immediately after the applied current is switched off. This means
that we should not expect that the transient response follows W s(eM) from the be-
ginning. As shown in Figure 6, as soon as the applied current is switched off, the
transient response lies very close to W s(eM), ‘in between’ the first local part and the
folded part of W s(eM). Hence, the fast subsystem predicts a spike. If we follow the
trajectory to the maximum of this second spike, the transient response lies again in
between the first local part and the folded part of W s(eM), so that a third spike is
predicted. The fast orbit segment past this third spike lies approximately on the
computed family of stable manifolds in W s(eM). Despite the slow drift in z, this
last segment of the transient response does follow W s(eM), and clearly converges to,
and subsequently traces eM until it almost reaches SN2.

The two transitions, from one to two spikes as described in Section 3.1, and from
three to four spikes as described in this section, are representative for the other
transitions observed in system (1), and can be seen as the general scenario for a
transition from n to n+ 1 spikes in a transient response.

4 Two-parameter curves of spike onsets

As illustrated in Section 3, the onset of a new spike is accompanied by a dramatic
increase in TOFF, due to the fact that the last local maximum occurs at the end
of a very slow epoch, initiated by a convergence to and subsequent tracking of a
saddle-unstable slow manifold. We view this as characteristic behaviour and define
the moment of spike onset as the parameter value that corresponds to a solution pair
(uON,uOFF) for which TOFF is (locally) maximal; see also [21]. Since TOFF is possibly
unbounded, we argue in [22] that a (local) maximum of TOFF must be accompanied
by a local extremum of the slow variable(s). For system (1), the slow variable z
will reach a (local) maximum each time when TOFF is (locally) maximal. Therefore,
numerically, we detect the onset of a spike as a fold bifurcation with respect to the
z-coordinate at the end point uOFF(1); we refer to [22] for the precise details on how
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to set this up in Auto.
The first detection of the onset of a new spike is done using a one-parameter

continuation, say, by varying b, while h remains fixed. As an illustration, let us
assume that we want to detect the onset of the second spike; the generalisation to
onset of the n-th spike is straightforward. We fix h = 1 and start the continuation
with a first solution pair (uON,uOFF) at b = 1 for which the response consists of two
spikes before it relaxes back to FP. As described in Section 2.1, (uON,uOFF) is only
generated up to the second local maximum in x. We then run the continuation by
increasing b towards the moment of spike onset and simultaneously monitoring the
z-coordinate at the end point uOFF(1), which we denote by zend. The results are
illustrated in Figure 7(a) with a waterfall diagram showing the time series of x; here,
we again included a first segment of the time series with t ∈ [−50, 0) to highlight
that uON(0) = FP. The waterfall diagram is drawn with respect to the index N of
the continuation steps taken, which provides some measure of the variation in the
L2-integral norm between successive solutions of the two-point BVP. Observe that
each time series stops at an extremum of x, which is the second local maximum at
the start of the continuation, but turns into a local minimum as the continuation
progresses past the point of spike onset.

For the first solution pair (uON,uOFF) at (b, h) = (1, 1), the integration time of
the second orbit segment satisfies TOFF ≈ 15.4078, and for the last solution pair
in this continuation it is TOFF ≈ 11.5609. However, during this transition from
local maximum to local minimum, the integration time of the second orbit segment
reaches a maximum of TOFF ≈ 166.8252; compare also the time series in Figure 5(c),
for which the fast drop back to FP occurs at TON + TOFF ≈ 181.8. This solution
pair with the largest value for TOFF is highlighed as a slightly thicker curve in
Figure 7(a). The continuation run in Auto also detects a fold, denoted LP, at
precisely this solution pair; hence, the (local) maximum in TOFF coincides with a
(local) maximum in zend.

Figure 7(b) illustrates how b varies during the continuation. We show both TOFF

(left axis) and b (right axis) in the same plot with the index N of the continuation
steps on the horizontal axis; the moment of spike onset is indicated by the vertical
dotted line labelled LP. Note that b initially increases, but then levels off before
the spike onset and remains approximately constant at b ≈ 1.072563 for most of
the continuation run. Indeed, the increase in b during the spike-adding transition is
exponentially small. Figure 7(c) shows both TOFF (left axis) and zend (right axis) in
the same plot as functions of N ; the moment of spike onset is again indicated as in
panel (b). Note that TOFF and zend are both maximal at the moment of spike onset.

We generate an entire set of spike onsets for the nth spike with n = 2, 3, . . . , 9
by following the above set-up. That is, for each n we select a suitable value for b,
with h = 1 fixed, such that the transient response exhibits a total of n additional
spikes, ending at the maximum (in x) of the nth spike. We then vary b and detect
the moment when zend is maximal as a fold bifurcation with Auto [8, 9]. These
fold points can subsequently be continued in two parameters. Figure 8 shows the
bifurcation diagram of spike onsets in the (b, h)-plane using a dark-to-light colour
gradient with increasing numbers of spikes. Here b ranges from 0.1 to 3 and h from
0.9 to 1.1. We halt the continuation at b = 0.1, because all curves have crossed
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Figure 7: Deformation of an orbit segment pair (uON,uOFF) through the moment of
the second spike onset. Here, h = 1 is fixed and b = 1 at the start of the continuation.
Note how the end point transforms from a local maximum into a local minimum,
which is detected as a fold bifurcation. Panel (a) shows a waterfall diagram of the
orbit segments computed as part of the continuation; panel (b) shows the variation
of TOFF (black) and b (grey), while panel (c) plots TOFF (black) and z (grey) as a
function of N . The spike onset is detected at LP.
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the saddle-node bifurcation curve SNtop before reaching this value. Two additional
equilibria exist in the region to the left of SNtop and the response is influenced
by the existence of a (perturbation-induced) heteroclinic connection from FP to a
different equilibrium of saddle type; the effect of this heteroclinic connection on the
bifurcation diagram is beyond the scope of this paper. In particular, the computed
curves all accumulate in this region, but we did not further pursue the investigation
of the possible existence of an accumulation point near b = 0.1.

The (b, h)-parameter bifurcation diagram is very similar to the two-parameter
bifurcation diagram computed for the model in [22]. This is perhaps not surprising,
because system (1) has the same qualitative behaviour. Furthermore, the parameters
b and h can be viewed as conductances, which were the parameters varied in [22].
As h decreases, the curves of spike onset fan out and form well-defined regions inside
which the numbers of spikes in the transient response are constant. For b and h both
large, the system immeditately relaxes back to FP without producing additional
spikes. As b decreases, we successively cross bifurcation curves that correspond
to the onset of an additional spike in the transient burst. We refer back to the
responses shown in Figures 3 and 4. The response in Figure 3 corresponds to the
point (b, h) = (0.75, 1) in Figure 8, which is exactly in the regime where we expect
to see a transient burst with four spikes. Similarly the responses in Figure 4(b)-
(e) correspond to points (b, h) = (1.15, 1), (b, h) = (1.0, 1), (b, h) = (0.85, 1), and
(b, h) = (0.43, 1) in Figure 8, which lie, as expected, in the regimes for one, two,
three, and at least nine spikes, respectively.

We remark here that the computation of curves of spike onset is more efficient
than a two-parameter brute-force simulation approach to determine the regions in-
side which the transient bursts have an equal number of spikes. Furthermore, as
h increases, these curves accumulate and a brute-force method will have difficulty
determining the region boundaries. Our continuation method does not have this
problem, because the solution pairs (uON,uOFF) for different spike numbers are well
separated in phase space, so that the two-point BVP continuation is not affected by
the parameter accumulation.
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5 Discussion

In this paper, we analysed transient dynamics arising due to a brief perturbation
from equilibrium state in a generic (polynomial) bursting cell model. We focussed
on the transient bursting behaviour following a short-time current injection. In our
analysis, we utilised the separation of time scales in the system. The spike-adding
process is characterised by the fact that orbit segments trace the slow manifold of
saddle type associated with the saddle branch of the Z-shaped family of equilibria
for the fast subsystem. We obtained an approximation of the local stable manifold
of this saddle slow manifold by computing the family of one-dimensional stable man-
ifolds of the fast subsystem; we showed that a spike-adding transition is organised
by this family and the branch of saddle equilibria in the fast subsystem.

We have previously shown that such invariant objects are responsible for the
spike-adding transition in a five-dimensional pyramidal neurone model [21]. The
analysis presented in this paper demonstrates that spike adding in a transient burst
can already occur in a three-dimensional system with one slow and two fast variables.
Hence, our three-dimensional generic model system is an ideal low-dimensional
model for further research into the mechanisms of transient bursting dynamics,
which offers qualitative insight into transient bursting for higher-dimensional de-
tailed neuronal models.

Based on our earlier work [22], the onset of a new spike coincides with a maximum
in the time TOFF, but such a maximum is accompanied by an extremum in the slow
variables of the model. This means that the onset of a new spike can be detected
as a fold bifurcation with respect to this intrinsically bounded slow variable. With
the present study we confirm our conjecture and use fold detection and continuation
with respect to the slow variable z in a suitable two-parameter boundary value
problem to compute the curves of spike onset in a two-parameter plane. For our
three-dimensional generic model system, the parameter value at which the system
exhibits a local maximum in z is indistinguishable from the value at which it achieves
a local maximum in the associated integration time.

We note the similarities between spike adding for periodic bursting and spike
adding in a transient burst in regard to mechanisms (key model parameters) that
control the number of spikes within a burst. We show that the number of spikes in
a transient burst depends on the parameter b that couples the dynamics of the slow
variable z to the fast subsystem dynamics in the model. Interestingly, a decrease
in this parameter decreases the number of spikes in the transient burst (Figure 8),
in accordance with the effect that a decrease in b has on the number of spikes in
the periodic bursting regime (unpublished observations). Since b could roughly be
interpreted as proportional to the large-conductance calcium-activated potassium
(BK) current, the effect of blocking this channel (i.e., decreasing b) on the number
of spikes (or the duration of the active phase) in the case of periodic bursting [19, 32]
is also consistent with the results presented in this paper.

The (b, h)-parameter diagram shown in Figure 8 corresponds to a short-current
application with amplitude Iapp = 0.02 and duration TON = 15. The choice for Iapp
and TON determines how the response is perturbed away from the full-system equi-
librium FP. These parameters must be such that a first spike is triggered; otherwise,
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the transient response exhibits no bursts at all. In particular, Iapp should be large
enough. On the other hand, we are interested in the intrisic bursting behaviour
of (1) and the applied current should give rise to no more than one spike. This
means that it is best to choose TON as small as possible for any given Iapp. Despite
these constraints, Iapp and TON can be varied, and one may wonder how this affects
the (b, h)-parameter diagram, or other parameter variation. Indeed, the position
uON(1) in phase space as the applied current is switched off controls the number of
spikes in the transient burst. However, we find that uON(1) hardly changes as b and
h vary. Hence, the variation in the number of spikes for the (b, h)-parameter diagram
is primarily determined by the relative changes of the invariant manifolds in the fast
subsystem of (1), which are independent of Iapp and TON. This means that any
curve of spike onset depends continuously on Iapp and TON and the (b, h)-parameter
diagram will change only qualitatively with small variations of Iapp and/or TON.

We limited our analysis to the case of spike adding in a transient burst when there
are no additional equilibria present in the unperturbed system. An investigation of
all possibilities remains an interesting and challenging project for future work.
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