Lectures on quantum graphs, ideal, leaky, and generalized

Pavel Exner

exner@ujf.cas.cz

Doppler Institute
for Mathematical Physics and Applied Mathematics
Prague

Course overview

The aim to review some recent results in the theory of quantum graphs, standard as well as non-standard

- Lecture I

Ideal graphs - their nontrivial aspect, or what is the meaning of the vertex coupling

Course overview

The aim to review some recent results in the theory of quantum graphs, standard as well as non-standard

- Lecture I

Ideal graphs - their nontrivial aspect, or what is the meaning of the vertex coupling

- Lecture II

Leaky graphs - what they are, and their spectral and resonance properties

Course overview

The aim to review some recent results in the theory of quantum graphs, standard as well as non-standard

- Lecture I

Ideal graphs - their nontrivial aspect, or what is the meaning of the vertex coupling

- Lecture II

Leaky graphs - what they are, and their spectral and resonance properties

- Lecture III

Generalized graphs - or what happens if a quantum particle has to change its dimension

Quantum graphs

The idea of investigating quantum particles confined to a graph is rather old. It was first suggested by L. Pauling and worked out by Ruedenberg and Scherr in 1953 in a model of aromatic hydrocarbons

Quantum graphs

The idea of investigating quantum particles confined to a graph is rather old. It was first suggested by L. Pauling and worked out by Ruedenberg and Scherr in 1953 in a model of aromatic hydrocarbons
Using "textbook" graphs such as

with "Kirchhoff" b.c. in combination with Pauli principle, they reproduced the actual spectra with a $\lesssim 10 \%$ accuracy
A caveat: later naive generalizations were less successful

Ideal quantum graph concept

The beauty of theoretical physics resides in permanent oscillation between physical anchoring in reality and mathematical freedom of creating concepts
As a mathematically minded person you can imagine quantum particles confined to a graph of arbitrary shape

Hamiltonian: $-\frac{\partial^{2}}{\partial x_{j}^{2}}+v\left(x_{j}\right)$
on graph edges, boundary conditions at vertices

and, lo and behold, this turns out to be a practically important concept - after experimentalists learned in the last 15-20 years to fabricate tiny graph-like structure for which this is a good model

Remarks

- Most often one deals with semiconductor graphs produced by combination of ion litography and chemical itching. In a similar way metallic graphs are prepared

Remarks

- Most often one deals with semiconductor graphs produced by combination of ion litography and chemical itching. In a similar way metallic graphs are prepared
- Recently carbon nanotubes became a building material, after branchings were fabricated cca five years ago: see [Papadopoulos et al.'00], [Andriotis et al.'01], etc.

Remarks

- Most often one deals with semiconductor graphs produced by combination of ion litography and chemical itching. In a similar way metallic graphs are prepared
- Recently carbon nanotubes became a building material, after branchings were fabricated cca five years ago: see [Papadopoulos et al.'00], [Andriotis et al.'01], etc.
- Moreover, from the stationary point of view a quantum graph is also equivalent to a microwave network built of optical cables - see [Hul et al.'04]

Remarks

- Most often one deals with semiconductor graphs produced by combination of ion litography and chemical itching. In a similar way metallic graphs are prepared
- Recently carbon nanotubes became a building material, after branchings were fabricated cca five years ago: see [Papadopoulos et al.'00], [Andriotis et al.'01], etc.
- Moreover, from the stationary point of view a quantum graph is also equivalent to a microwave network built of optical cables - see [Hul et al.'04]
- In addition to graphs one can consider generalized graphs which consist of components of different dimensions, modelling things as different as combinations of nanotubes with fullerenes, scanning tunneling microscopy, etc. - we will do that in Lecture III

More remarks

- The vertex coupling is chosen to make the Hamiltonian self-adjoint, or in physical terms, to ensure probability current conservation. This is achieved by the method based on s-a extensions which everybody in Pavlov class has to know

More remarks

- The vertex coupling is chosen to make the Hamiltonian self-adjoint, or in physical terms, to ensure probability current conservation. This is achieved by the method based on s-a extensions which everybody in Pavlov class has to know
- We consider mostly Schrödinger operators on graphs, often free ones, $v_{j}=0$. Naturally one can add external electric and magnetic fields, spin, etc.

More remarks

- The vertex coupling is chosen to make the Hamiltonian self-adjoint, or in physical terms, to ensure probability current conservation. This is achieved by the method based on s-a extensions which everybody in Pavlov class has to know
- We consider mostly Schrödinger operators on graphs, often free ones, $v_{j}=0$. Naturally one can add external electric and magnetic fields, spin, etc.
- Graphs can support also Dirac operators, see e.g. [Bulla-Trenckler'90], although this remains so far a theoretical possibility only.

More remarks

- The vertex coupling is chosen to make the Hamiltonian self-adjoint, or in physical terms, to ensure probability current conservation. This is achieved by the method based on s-a extensions which everybody in Pavlov class has to know
- We consider mostly Schrödinger operators on graphs, often free ones, $v_{j}=0$. Naturally one can add external electric and magnetic fields, spin, etc.
- Graphs can support also Dirac operators, see e.g. [Bulla-Trenckler'90], although this remains so far a theoretical possibility only.
- The graph literature is extensive; let us refer just to a review [Kuchment'04] and other references in the recent topical issue of "Waves in Random Media"

Wavefunction coupling at vertices

The most simple example is a star graph with the state Hilbert space $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and the particle Hamiltonian acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}$

Wavefunction coupling at vertices

The most simple example is a star graph with the state Hilbert space $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and the particle Hamiltonian acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}$

Since it is second-order, the boundary condition involve $\Psi(0):=\left\{\psi_{j}(0)\right\}$ and $\Psi^{\prime}(0):=\left\{\psi_{j}^{\prime}(0)\right\}$ being of the form

$$
A \Psi(0)+B \Psi^{\prime}(0)=0 ;
$$

by [Kostrykin-Schrader'99] the $n \times n$ matrices A, B give rise to a self-adjoint operator if they satisfy the conditions

- $\operatorname{rank}(A, B)=n$
- $A B^{*}$ is self-adjoint

Unique boundary conditions

The non-uniqueness of the above b.c. can be removed: Proposition [Harmer'00, K-S'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

$$
A=U-I, \quad B=i(U+I)
$$

Unique boundary conditions

The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer'00, K-S'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

$$
A=U-I, \quad B=i(U+I)
$$

One can derive them modifying the argument used in [Fülöp-Tsutsui'00] for generalized point interactions, $n=2$ Self-adjointness requires vanishing of the boundary form,

$$
\sum_{j=1}^{n}\left(\bar{\psi}_{j} \psi_{j}^{\prime}-\bar{\psi}_{j}^{\prime} \psi_{j}\right)(0)=0
$$

which occurs iff the norms $\left\|\Psi(0) \pm i \ell \Psi^{\prime}(0)\right\|_{\mathbb{C}^{n}}$ with a fixed $\ell \neq 0$ coincide, so the vectors must be related by an $n \times n$ unitary matrix; this gives $(U-I) \Psi(0)+i \ell(U+I) \Psi^{\prime}(0)=0$

Remarks

- The length parameter is not important because matrices corresponding to two different values are related by

$$
U^{\prime}=\frac{\left(\ell+\ell^{\prime}\right) U+\ell-\ell^{\prime}}{\left(\ell-\ell^{\prime}\right) U+\ell+\ell^{\prime}}
$$

The choice $\ell=1$ just fixes the length scale

Remarks

- The length parameter is not important because matrices corresponding to two different values are related by

$$
U^{\prime}=\frac{\left(\ell+\ell^{\prime}\right) U+\ell-\ell^{\prime}}{\left(\ell-\ell^{\prime}\right) U+\ell+\ell^{\prime}}
$$

The choice $\ell=1$ just fixes the length scale

- The unique b.c. help to simplify the analysis done in [Kostrykin-Schrader'99], [Kuchment'04] and other previous work. It concerns, for instance, the null spaces of the matrices A, B

Remarks

- The length parameter is not important because matrices corresponding to two different values are related by

$$
U^{\prime}=\frac{\left(\ell+\ell^{\prime}\right) U+\ell-\ell^{\prime}}{\left(\ell-\ell^{\prime}\right) U+\ell+\ell^{\prime}}
$$

The choice $\ell=1$ just fixes the length scale

- The unique b.c. help to simplify the analysis done in [Kostrykin-Schrader'99], [Kuchment'04] and other previous work. It concerns, for instance, the null spaces of the matrices A, B
- or the on-shell scattering matrix for a star graph of n halflines with the considered coupling which equals

$$
S_{U}(k)=\frac{(k-1) I+(k+1) U}{(k+1) I+(k-1) U}
$$

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,

$$
\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)
$$

with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,

$$
\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)
$$

with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$

- $\alpha=0$ corresponds to the "free motion", the so-called free boundary conditions (better name than Kirchhoff)

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,
$\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)$
with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$
- $\alpha=0$ corresponds to the "free motion", the so-called free boundary conditions (better name than Kirchhoff)
- Similarly, $U=I-\frac{2}{n-i \beta} \mathcal{J}$ describes the δ_{s}^{\prime} coupling $\psi_{j}^{\prime}(0)=\psi_{k}^{\prime}(0)=: \psi^{\prime}(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}(0)=\beta \psi^{\prime}(0)$ with $\beta \in \mathbb{R}$; for $\beta=\infty$ we get Neumann decoupling

Further examples

- Another generalization of $1 \mathrm{D} \delta^{\prime}$ is the δ^{\prime} coupling:

$$
\sum_{j=1}^{n} \psi_{j}^{\prime}(0)=0, \quad \psi_{j}(0)-\psi_{k}(0)=\frac{\beta}{n}\left(\psi_{j}^{\prime}(0)-\psi_{k}^{\prime}(0)\right), 1 \leq j, k \leq n
$$ with $\beta \in \mathbb{R}$ and $U=\frac{n-i \alpha}{n+i \alpha} I-\frac{2}{n+i \alpha} \mathcal{J}$; the infinite value of β refers again to Neumann decoupling of the edges

Further examples

- Another generalization of $1 \mathrm{D} \delta^{\prime}$ is the δ^{\prime} coupling:
$\sum_{j=1}^{n} \psi_{j}^{\prime}(0)=0, \quad \psi_{j}(0)-\psi_{k}(0)=\frac{\beta}{n}\left(\psi_{j}^{\prime}(0)-\psi_{k}^{\prime}(0)\right), 1 \leq j, k \leq n$
with $\beta \in \mathbb{R}$ and $U=\frac{n-i \alpha}{n+i \alpha} I-\frac{2}{n+i \alpha} \mathcal{J}$; the infinite value of β refers again to Neumann decoupling of the edges
- Due to permutation symmetry the U 's are combinations of I and \mathcal{J} in the examples. In general, interactions with this property form a two-parameter family described by $U=u I+v \mathcal{J}$ s.t. $|u|=1$ and $|u+n v|=1$ giving the b.c.

$$
\begin{aligned}
(u-1)\left(\psi_{j}(0)-\psi_{k}(0)\right)+i(u-1)\left(\psi_{j}^{\prime}(0)-\psi_{k}^{\prime}(0)\right) & =0 \\
(u-1+n v) \sum_{k=1}^{n} \psi_{k}(0)+i(u-1+n v) \sum_{k=1}^{n} \psi_{k}^{\prime}(0) & =0
\end{aligned}
$$

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]
- More recently, the same system has been proposed as a way to realize a qubit, with obvious consequences: cf. "quantum abacus" in [Cheon-Tsutsui-Fülöp'04]

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]
- More recently, the same system has been proposed as a way to realize a qubit, with obvious consequences: cf. "quantum abacus" in [Cheon-Tsutsui-Fülöp'04]
- Recall also that in a rectangular lattice with δ coupling of nonzero α spectrum depends on number theoretic properties of model parameters [E.'95]

More on the lattice example

Basic cell is a rectangle of sides ℓ_{1}, ℓ_{2}, the δ coupling with parameter α is assumed at every vertex

More on the lattice example

Basic cell is a rectangle of sides ℓ_{1}, ℓ_{2}, the δ coupling with parameter α is assumed at every vertex

Spectral condition for quasimomentum $\left(\theta_{1}, \theta_{2}\right)$ reads

$$
\sum_{j=1}^{2} \frac{\cos \theta_{j} \ell_{j}-\cos k \ell_{j}}{\sin k \ell_{j}}=\frac{\alpha}{2 k}
$$

Lattice band spectrum

Recall a continued-fraction classification, $\alpha=\left[a_{0}, a_{1}, \ldots\right]$:

- "good" irrationals have $\limsup _{j} a_{j}=\infty$ (and full Lebesgue measure)
- "bad" irrationals have $\lim \sup _{j} a_{j}<\infty$ (and $\lim _{j} a_{j} \neq 0$, of course)

Lattice band spectrum

Recall a continued-fraction classification, $\alpha=\left[a_{0}, a_{1}, \ldots\right]$:

- "good" irrationals have $\lim \sup _{j} a_{j}=\infty$ (and full Lebesgue measure)
- "bad" irrationals have $\lim \sup _{j} a_{j}<\infty$ (and $\lim _{j} a_{j} \neq 0$, of course)

Theorem [E.'95]: Call $\theta:=\ell_{2} / \ell_{1}$ and $L:=\max \left\{\ell_{1}, \ell_{2}\right\}$.
(a) If θ is rational or "good" irrational, there are infinitely many gaps for any nonzero α
(b) For a "bad" irrational θ there is $\alpha_{0}>0$ such no gaps open above threshold for $|\alpha|<\alpha_{0}$
(c) There are infinitely many gaps if $|\alpha| L>\frac{\pi^{2}}{\sqrt{5}}$

Lattice band spectrum

Recall a continued-fraction classification, $\alpha=\left[a_{0}, a_{1}, \ldots\right]$:

- "good" irrationals have $\limsup \sin _{j} a_{j}=\infty$ (and full Lebesgue measure)
- "bad" irrationals have $\lim \sup _{j} a_{j}<\infty$ (and $\lim _{j} a_{j} \neq 0$, of course)

Theorem [E.'95]: Call $\theta:=\ell_{2} / \ell_{1}$ and $L:=\max \left\{\ell_{1}, \ell_{2}\right\}$.
(a) If θ is rational or "good" irrational, there are infinitely many gaps for any nonzero α
(b) For a "bad" irrational θ there is $\alpha_{0}>0$ such no gaps open above threshold for $|\alpha|<\alpha_{0}$
(c) There are infinitely many gaps if $|\alpha| L>\frac{\pi^{2}}{\sqrt{5}}$

This all illustrates why it is desirable to understand vertex couplings. This will be our main task in Lecture I

A head-on approach

Take a more realistic situation with no ambiguity, such as branching tubes and analyze the squeezing limit:

Unfortunately, it is not so simple as it looks because

A head-on approach

Take a more realistic situation with no ambiguity, such as branching tubes and analyze the squeezing limit:

Unfortunately, it is not so simple as it looks because

- after a long effort the Neumann-like case was solved [Kuchment-Zeng'01], [Rubinstein-Schatzmann'01], [Saito'01], [E.-Post'05], [Post'06] giving free b.c. only
- there is a recent progress in Dirichlet case [Post'05], [Molchanov-Vainberg'06], [Grieser'06]?, but the full understanding has not yet been achieved here

Recall the Neumann-like case

The simplest situation in [KZ'01, EP'05] (weights left out)
Let M_{0} be a finite connected graph with vertices $v_{k}, k \in K$ and edges $e_{j} \simeq I_{j}:=\left[0, \ell_{j}\right], j \in J$; the state Hilbert space is

$$
L^{2}\left(M_{0}\right):=\bigoplus_{j \in J} L^{2}\left(I_{j}\right)
$$

and in a similar way Sobolev spaces on M_{0} are introduced

Recall the Neumann-like case

The simplest situation in [KZ'01, EP'05] (weights left out)
Let M_{0} be a finite connected graph with vertices $v_{k}, k \in K$ and edges $e_{j} \simeq I_{j}:=\left[0, \ell_{j}\right], j \in J$; the state Hilbert space is

$$
L^{2}\left(M_{0}\right):=\bigoplus_{j \in J} L^{2}\left(I_{j}\right)
$$

and in a similar way Sobolev spaces on M_{0} are introduced
The form $u \mapsto\left\|u^{\prime}\right\|_{M_{0}}^{2}:=\sum_{j \in J}\left\|u^{\prime}\right\|_{I_{j}}^{2}$ with $u \in \mathcal{H}^{1}\left(M_{0}\right)$ is associated with the operator which acts as $-\Delta_{M_{0}} u=-u_{j}^{\prime \prime}$ and satisfies free b.c.,

$$
\sum_{j, e_{j} \text { meets } v_{k}} u_{j}^{\prime}\left(v_{k}\right)=0
$$

On the other hand, Laplacian on manifold

Consider a Riemannian manifold X of dimension $d \geq 2$ and the corresponding space $L^{2}(X)$ w.r.t. volume $\mathrm{d} X$ equal to $(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$ in a fixed chart. For $u \in C_{\text {comp }}^{\infty}(X)$ we set

$$
q_{X}(u):=\|\mathrm{d} u\|_{X}^{2}=\int_{X}|\mathrm{~d} u|^{2} \mathrm{~d} X,|\mathrm{~d} u|^{2}=\sum_{i, j} g^{i j} \partial_{i} u \partial_{j} \bar{u}
$$

The closure of this form is associated with the s-a operator $-\Delta_{X}$ which acts in fixed chart coordinates as

$$
-\Delta_{X} u=-(\operatorname{det} g)^{-1 / 2} \sum_{i, j} \partial_{i}\left((\operatorname{det} g)^{1 / 2} g^{i j} \partial_{j} u\right)
$$

On the other hand, Laplacian on manifold

Consider a Riemannian manifold X of dimension $d \geq 2$ and the corresponding space $L^{2}(X)$ w.r.t. volume $\mathrm{d} X$ equal to $(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$ in a fixed chart. For $u \in C_{\text {comp }}^{\infty}(X)$ we set

$$
q_{X}(u):=\|\mathrm{d} u\|_{X}^{2}=\int_{X}|\mathrm{~d} u|^{2} \mathrm{~d} X,|\mathrm{~d} u|^{2}=\sum_{i, j} g^{i j} \partial_{i} u \partial_{j} \bar{u}
$$

The closure of this form is associated with the s-a operator $-\Delta_{X}$ which acts in fixed chart coordinates as

$$
-\Delta_{X} u=-(\operatorname{det} g)^{-1 / 2} \sum_{i, j} \partial_{i}\left((\operatorname{det} g)^{1 / 2} g^{i j} \partial_{j} u\right)
$$

If X is compact with piecewise smooth boundary, one starts from the form defined on $C^{\infty}(X)$. This yields $-\Delta_{X}$ as the Neumann Laplacian on X and allows us in this way to treat "fat graphs" and "sleeves" on the same footing

Fat graphs and sleeves: manifolds

We associate with the graph M_{0} a family of manifolds M_{ε}

We suppose that M_{ε} is a union of compact edge and vertex components $U_{\varepsilon, j}$ and $V_{\varepsilon, k}$ such that their interiors are mutually disjoint for all possible $j \in J$ and $k \in K$

Manifold building blocks

Manifold building blocks

However, M_{ε} need not be embedded in some \mathbb{R}^{d}.
It is convenient to assume that $U_{\varepsilon, j}$ and $V_{\varepsilon, k}$ depend on ε only through their metric:

- for edge regions we assume that $U_{\varepsilon, j}$ is diffeomorphic to $I_{j} \times F$ where F is a compact and connected manifold (with or without a boundary) of dimension $m:=d-1$
- for vertex regions we assume that the manifold $V_{\varepsilon, k}$ is diffeomorphic to an ε-independent manifold V_{k}

Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that $\mathcal{H}, \mathcal{H}^{\prime}$ are separable Hilbert spaces. We want to compare ev's λ_{k} and λ_{k}^{\prime} of nonnegative operators Q and Q^{\prime} with purely discrete spectra defined via quadratic forms q and q^{\prime} on $\mathcal{D} \subset \mathcal{H}$ and $\mathcal{D}^{\prime} \subset \mathcal{H}^{\prime}$. Set $\|u\|_{Q, n}^{2}:=\|u\|^{2}+\left\|Q^{n / 2} u\right\|^{2}$.

Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that $\mathcal{H}, \mathcal{H}^{\prime}$ are separable Hilbert spaces. We want to compare ev's λ_{k} and λ_{k}^{\prime} of nonnegative operators Q and Q^{\prime} with purely discrete spectra defined via quadratic forms q and q^{\prime} on $\mathcal{D} \subset \mathcal{H}$ and $\mathcal{D}^{\prime} \subset \mathcal{H}^{\prime}$. Set $\|u\|_{Q, n}^{2}:=\|u\|^{2}+\left\|Q^{n / 2} u\right\|^{2}$.
Lemma: Suppose that $\Phi: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ is a linear map such that there are $n_{1}, n_{2} \geq 0$ and $\delta_{1}, \delta_{2} \geq 0$ such that

$$
\|u\|^{2} \leq\|\Phi u\|^{\prime 2}+\delta_{1}\|u\|_{Q, n_{1}}^{2}, q(u) \geq q^{\prime}(\Phi u)-\delta_{2}\|u\|_{Q, n_{2}}^{2}
$$

for all $u \in \mathcal{D} \subset \mathcal{D}\left(Q^{\max \left\{n_{1}, n_{2}\right\} / 2}\right)$. Then to each k there is an $\eta_{k}\left(\lambda_{k}, \delta_{1}, \delta_{2}\right)>0$ which tends to zero as $\delta_{1}, \delta_{2} \rightarrow 0$, such that

$$
\lambda_{k} \geq \lambda_{k}^{\prime}-\eta_{k}
$$

Eigenvalue convergence

Let thus $U=I_{j} \times F$ with metric g_{ε}, where cross section F is a compact connected Riemannian manifold of dimension $m=d-1$ with metric h; we assume that $\operatorname{vol} F=1$. We define another metric \tilde{g}_{ε} on $U_{\varepsilon, j}$ by

$$
\tilde{g}_{\varepsilon}:=\mathrm{d} x^{2}+\varepsilon^{2} h(y) ;
$$

the two metrics coincide up to an $\mathcal{O}(\varepsilon)$ error
This property allows us to treat manifolds embedded in \mathbb{R}^{d} (with metric \tilde{g}_{ε}) using product metric g_{ε} on the edges

Eigenvalue convergence

Let thus $U=I_{j} \times F$ with metric g_{ε}, where cross section F is a compact connected Riemannian manifold of dimension $m=d-1$ with metric h; we assume that $\operatorname{vol} F=1$. We define another metric \tilde{g}_{ε} on $U_{\varepsilon, j}$ by

$$
\tilde{g}_{\varepsilon}:=\mathrm{d} x^{2}+\varepsilon^{2} h(y) ;
$$

the two metrics coincide up to an $\mathcal{O}(\varepsilon)$ error
This property allows us to treat manifolds embedded in \mathbb{R}^{d} (with metric \tilde{g}_{ε}) using product metric g_{ε} on the edges

The sought result now looks as follows.
Theorem [E.-Post'05]: Under the stated assumptions $\lambda_{k}\left(M_{\varepsilon}\right) \rightarrow \lambda_{k}\left(M_{0}\right)$ as $\varepsilon \rightarrow 0$ (giving thus free b.c.!)

Sketch of the proof

Proposition: $\lambda_{k}\left(M_{\varepsilon}\right) \leq \lambda_{k}\left(M_{0}\right)+o(1)$ as $\varepsilon \rightarrow 0$
To prove it apply the lemma to $\Phi_{\varepsilon}: L^{2}\left(M_{0}\right) \rightarrow L^{2}\left(M_{\varepsilon}\right)$,

$$
\Phi_{\varepsilon} u(z):=\left\{\begin{array}{ll}
\varepsilon^{-m / 2} u\left(v_{k}\right) & \text { if } z \in V_{k} \\
\varepsilon^{-m / 2} u_{j}(x) & \text { if } z=(x, y) \in U_{j}
\end{array} \quad \text { for } u \in \mathcal{H}^{1}\left(M_{0}\right)\right.
$$

Sketch of the proof

Proposition: $\lambda_{k}\left(M_{\varepsilon}\right) \leq \lambda_{k}\left(M_{0}\right)+o(1)$ as $\varepsilon \rightarrow 0$

To prove it apply the lemma to $\Phi_{\varepsilon}: L^{2}\left(M_{0}\right) \rightarrow L^{2}\left(M_{\varepsilon}\right)$,

$$
\Phi_{\varepsilon} u(z):=\left\{\begin{array}{ll}
\varepsilon^{-m / 2} u\left(v_{k}\right) & \text { if } z \in V_{k} \\
\varepsilon^{-m / 2} u_{j}(x) & \text { if } z=(x, y) \in U_{j}
\end{array} \quad \text { for } u \in \mathcal{H}^{1}\left(M_{0}\right)\right.
$$

Proposition: $\lambda_{k}\left(M_{0}\right) \leq \lambda_{k}\left(M_{\varepsilon}\right)+o(1)$ as $\varepsilon \rightarrow 0$
Proof again by the lemma. Here one uses averaging:

$$
N_{j} u(x):=\int_{F} u(x, \cdot) \mathrm{d} F, C_{k} u:=\frac{1}{\operatorname{vol} V_{k}} \int_{V_{k}} u \mathrm{~d} V_{k}
$$

to build the comparison map by interpolation:

$$
\left(\Psi_{\varepsilon}\right)_{j}(x):=\varepsilon^{m / 2}\left(N_{j} u(x)+\rho(x)\left(C_{k} u-N_{j} u(x)\right)\right)
$$

with a smooth ρ interpolating between zero and one

More general b.c.? Recall RS argument

[Ruedenberg-Scher'53] used the heuristic argument:

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

The surface term dominates in the limit $\varepsilon \rightarrow 0$ giving formally free boundary conditions

More general b.c.? Recall RS argument

[Ruedenberg-Scher'53] used the heuristic argument:

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

The surface term dominates in the limit $\varepsilon \rightarrow 0$ giving formally free boundary conditions
A way out could thus be to use different scaling rates of edges and vertices. Of a particular interest is the borderline case, $\operatorname{vol}_{d} V_{\varepsilon} \approx \operatorname{vol}_{d-1} \partial V_{\varepsilon}$, when the integral of $\langle\mathrm{d} \phi, \mathrm{d} u\rangle$ is expected to be negligible and we hope to obtain

$$
\lambda_{0} \phi_{0}\left(v_{k}\right)=\sum_{j \in J_{k}} \phi_{0, j}^{\prime}\left(v_{k}\right)
$$

Scaling with a power α

Let us try to do the same properly using different scaling of the edge and vertex regions. Some technical assumptions needed, e.g., the bottlenecks must be "simple"

Two-speed scaling limit

Let vertices scale as ε^{α}. Using the comparison lemma again (just more in a more complicated way) we find that

- if $\alpha \in\left(1-d^{-1}, 1\right]$ the result is as above: the ev's at the spectrum bottom converge the graph Laplacian with free b.c., i.e. continuity and

$$
\sum_{\text {edges meeting at } v_{k}} u_{j}^{\prime}\left(v_{k}\right)=0
$$

Two-speed scaling limit

Let vertices scale as ε^{α}. Using the comparison lemma again (just more in a more complicated way) we find that

- if $\alpha \in\left(1-d^{-1}, 1\right]$ the result is as above: the ev's at the spectrum bottom converge the graph Laplacian with free b.c., i.e. continuity and

$$
\sum_{\text {edges meeting at } v_{k}} u_{j}^{\prime}\left(v_{k}\right)=0 ;
$$

- if $\alpha \in\left(0,1-d^{-1}\right)$ the "limiting" Hilbert space is $L^{2}\left(M_{0}\right) \oplus \mathbb{C}^{K}$, where K is \# of vertices, and the "limiting" operator acts as Dirichlet Laplacian at each edge and as zero on \mathbb{C}^{K}

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$
- finally, if vertex regions do not scale at all, $\alpha=0$, the manifold components decouple in the limit again,

$$
\bigoplus_{j \in J} \Delta_{I_{j}}^{\mathrm{D}} \oplus \bigoplus_{k \in K} \Delta_{V_{0, k}}
$$

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$
- finally, if vertex regions do not scale at all, $\alpha=0$, the manifold components decouple in the limit again,

$$
\bigoplus_{j \in J} \Delta_{I_{j}}^{\mathrm{D}} \oplus \bigoplus_{k \in K} \Delta_{V_{0, k}}
$$

- Hence such a straightforward limiting procedure does not help us to justify choice of appropriate s-a extension Hence the scaling trick does not work: one has to add either manifold geometry or external potentials
©

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Consider once more star graph with $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and Schrödinger operator acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}+V_{j} \psi_{j}$

Potential approximation

A more modest goal: let us look what we can achieve with potential families on the graph alone

Consider once more star graph with $\mathcal{H}=\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and Schrödinger operator acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}+V_{j} \psi_{j}$

We make the following assumptions:

- $V_{j} \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right), j=1, \ldots, n$
- δ coupling with a parameter α in the vertex

Then the operator, denoted as $H_{\alpha}(V)$, is self-adjoint

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$
W_{\varepsilon, j}:=\frac{1}{\varepsilon} W_{j}\left(\frac{x}{\varepsilon}\right), \quad j=1, \ldots, n
$$

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$
W_{\varepsilon, j}:=\frac{1}{\varepsilon} W_{j}\left(\frac{x}{\varepsilon}\right), \quad j=1, \ldots, n
$$

Theorem [E.'96]: Suppose that $V_{j} \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$are below bounded and $W_{j} \in L^{1}\left(\mathbb{R}_{+}\right)$for $j=1, \ldots, n$. Then

$$
H_{0}\left(V+W_{\varepsilon}\right) \longrightarrow H_{\alpha}(V)
$$

as $\varepsilon \rightarrow 0+$ in the norm resolvent sense, with the parameter
$\alpha:=\sum_{j=1}^{n} \int_{0}^{\infty} W_{j}(x) d x$

Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

$$
W_{\varepsilon, j}:=\frac{1}{\varepsilon} W_{j}\left(\frac{x}{\varepsilon}\right), \quad j=1, \ldots, n
$$

Theorem [E.'96]: Suppose that $V_{j} \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$are below bounded and $W_{j} \in L^{1}\left(\mathbb{R}_{+}\right)$for $j=1, \ldots, n$. Then

$$
H_{0}\left(V+W_{\varepsilon}\right) \longrightarrow H_{\alpha}(V)
$$

as $\varepsilon \rightarrow 0+$ in the norm resolvent sense, with the parameter $\alpha:=\sum_{j=1}^{n} \int_{0}^{\infty} W_{j}(x) d x$

Proof: Analogous to that for δ interaction on the line. \square

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ_{s}^{\prime}

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ_{s}^{\prime} Inspiration: Recall that δ^{\prime} on the line can be approximated by δ 's scaled in a nonlinear way [Cheon-Shigehara'98] Moreover, the convergence is norm resolvent and gives rise to approximations by regular potentials [Albeverio-Nizhnik'00], [E.-Neidhardt-Zagrebnov'01]

More singular couplings

The above scheme does not work for graph Hamiltonians with discontinuous wavefunctions such as δ_{s}^{\prime}
Inspiration: Recall that δ^{\prime} on the line can be approximated by δ 's scaled in a nonlinear way [Cheon-Shigehara'98] Moreover, the convergence is norm resolvent and gives rise to approximations by regular potentials [Albeverio-Nizhnik'00], [E.-Neidhardt-Zagrebnov'01]
This suggests the following scheme:

δ_{s}^{\prime} approximation

Theorem [Cheon-E.'04]: $H^{b, c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$
b(a):=-\frac{\beta}{a^{2}}, \quad c(a):=-\frac{1}{a}
$$

δ_{s}^{\prime} approximation

Theorem [Cheon-E.'04]: $H^{b, c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$
b(a):=-\frac{\beta}{a^{2}}, \quad c(a):=-\frac{1}{a}
$$

Proof: Green's functions of both operators are found explicitly be Krein's formula, so the convergence can be established by straightforward computation

δ_{s}^{\prime} approximation

Theorem [Cheon-E.'04]: $H^{b, c}(a) \rightarrow H_{\beta}$ as $a \rightarrow 0+$ in the norm-resolvent sense provided b, c are chosen as

$$
b(a):=-\frac{\beta}{a^{2}}, \quad c(a):=-\frac{1}{a}
$$

Proof: Green's functions of both operators are found explicitly be Krein's formula, so the convergence can be established by straightforward computation
Remark: Similar approximation can be worked out also for the other couplings mentioned above - cf. [E.-Turek'06]. For "most" permutation symmetric ones, e.g., one has

$$
b(a):=\frac{i n}{a^{2}}\left(\frac{u-1+n v}{u+1+n v}+\frac{u-1}{u+1}\right)^{-1}, \quad c(a):=-\frac{1}{a}-i \frac{u-1}{u+1}
$$

Summarizing Lecture I

- The (ideal) graph model is easy to handle and useful in describing a host of physical phenomena

Summarizing Lecture I

- The (ideal) graph model is easy to handle and useful in describing a host of physical phenomena
- Vertex coupling: to employ the full potential of the graph model, it is vital to understand the physical meaning of the corresponding boundary conditions

Summarizing Lecture I

- The (ideal) graph model is easy to handle and useful in describing a host of physical phenomena
- Vertex coupling: to employ the full potential of the graph model, it is vital to understand the physical meaning of the corresponding boundary conditions
- "Fat manifold" approximations: using the simplest geometry only we get free b.c. in the Neumann-like case, the Dirichlet case is under study

Summarizing Lecture I

- The (ideal) graph model is easy to handle and useful in describing a host of physical phenomena
- Vertex coupling: to employ the full potential of the graph model, it is vital to understand the physical meaning of the corresponding boundary conditions
- "Fat manifold" approximations: using the simplest geometry only we get free b.c. in the Neumann-like case, the Dirichlet case is under study
- Potential approximation to δ : well understood

Summarizing Lecture I

- The (ideal) graph model is easy to handle and useful in describing a host of physical phenomena
- Vertex coupling: to employ the full potential of the graph model, it is vital to understand the physical meaning of the corresponding boundary conditions
- "Fat manifold" approximations: using the simplest geometry only we get free b.c. in the Neumann-like case, the Dirichlet case is under study
- Potential approximation to δ : well understood
- Potential approximation to more singular coupling: there are particular results showing the way, a deeper analysis needed

Some literature to Lecture I

[CE04] T. Cheon, P.E.: An approximation to δ^{\prime} couplings on graphs, J. Phys. A:
Math. Gen. A37 (2004), L329-335
[E95] P.E.: Lattice Kronig-Penney models, Phys. Rev. Lett. 75 (1995), 3503-3506
[E96] P.E.: Weakly coupled states on branching graphs, Lett. Math. Phys. 38 (1996), 313-320
[E97] P.E.: A duality between Schrödinger operators on graphs and certain Jacobi matrices, Ann. Inst. H. Poincaré: Phys. Théor. 66 (1997), 359-371
[EHŠ06] P.E., P. Hejčík, P. Šeba: Approximations by graphs and emergence of global structures, Rep. Math. Phys. 57 (2006), 445-455
[ENZ01] P.E., H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ^{\prime} : an inverse Klauder phenomenon with norm-resolvent convergence, CMP 224 (2001), 593-612
[EP05] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys. 54 (2005), 77-115
[ET06] P.E., O. Turek: Approximations of permutation-symmetric vertex couplings in quantum graphs, Proceedings Snowbird 2005, to appear; math-ph/0508046, and in preparation
and references therein, see also http://www.ujf.cas.cz/^exner

Lecture II

Leaky graphs - what they are, and their spectral and resonance properties

Lecture overview

- Why we might want something better than the ideal graph model of the previous lecture

Lecture overview

- Why we might want something better than the ideal graph model of the previous lecture
- A model of "leaky" quantum wires and graphs, with Hamiltonians of the type $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$

Lecture overview

- Why we might want something better than the ideal graph model of the previous lecture
- A model of "leaky" quantum wires and graphs, with Hamiltonians of the type $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties of leaky wires and graphs

Lecture overview

- Why we might want something better than the ideal graph model of the previous lecture
- A model of "leaky" quantum wires and graphs, with Hamiltonians of the type $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties of leaky wires and graphs
- How to find spectrum numerically: an approximation by point interaction Hamiltonians

Lecture overview

- Why we might want something better than the ideal graph model of the previous lecture
- A model of "leaky" quantum wires and graphs, with Hamiltonians of the type $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties of leaky wires and graphs
- How to find spectrum numerically: an approximation by point interaction Hamiltonians
- A solvable resonance model: interaction supported by a line and a family of points - a caricature but solvable

Drawbacks of ideal graphs

- Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: fit these using an approximation procedure, e.g.

As we have seen in Lecture I it is possible but not quite easy and a lot of work remains to be done

Drawbacks of ideal graphs

- Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: fit these using an approximation procedure, e.g.

As we have seen in Lecture I it is possible but not quite easy and a lot of work remains to be done

- More important, quantum tunneling is neglected in ideal graph models - recall that a true quantum-wire boundary is a finite potential jump - hence topology is taken into account but geometric effects may not be

Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where Γ is the graph in question.

Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where Γ is the graph in question.
A proper definition of $H_{\alpha, \Gamma}$: it can be associated naturally with the quadratic form,

$$
\psi \mapsto\|\nabla \psi\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}-\alpha \int_{\Gamma}|\psi(x)|^{2} \mathrm{~d} x
$$

which is closed and below bounded in $W^{2,1}\left(\mathbb{R}^{n}\right)$; the second term makes sense in view of Sobolev embedding. This definition also works for various "wilder" sets Γ

Leaky graph Hamiltonians

For Γ with locally finite number of smooth edges and no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\text {loc }}^{2,1}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

Leaky graph Hamiltonians

For Γ with locally finite number of smooth edges and no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\text {loc }}^{2,1}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

Remarks:

- for graphs in \mathbb{R}^{3} we use generalized b.c. which define a two-dimensional point interaction in normal plane
- one can combine "edges" of different dimensions as long as codim Γ does not exceed three

Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha, \Gamma}$. Consider a piecewise C^{1}-smooth $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterized by its arc length, and assume:

Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha, \Gamma}$. Consider a piecewise C^{1}-smooth
$\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterized by its arc length, and assume:

- $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right| \geq c\left|s-s^{\prime}\right|$ holds for some $c \in(0,1)$
- Γ is asymptotically straight: there are $d>0, \mu>\frac{1}{2}$ and $\omega \in(0,1)$ such that

$$
1-\frac{\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|}{\left|s-s^{\prime}\right|} \leq d\left[1+\left|s+s^{\prime}\right|^{2 \mu}\right]^{-1 / 2}
$$

in the sector $S_{\omega}:=\left\{\left(s, s^{\prime}\right): \omega<\frac{s}{s^{\prime}}<\omega^{-1}\right\}$

- straight line is excluded, i.e. $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|<\left|s-s^{\prime}\right|$ holds for some $s, s^{\prime} \in \mathbb{R}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ and $H_{\alpha, \Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4} \alpha^{2}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ and $H_{\alpha, \Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4} \alpha^{2}$

- The same for curves in \mathbb{R}^{3}, under stronger regularity, with $-\frac{1}{4} \alpha^{2}$ is replaced by the corresponding 2D p.i. ev
- For curved surfaces $\Gamma \subset \mathbb{R}^{3}$ such a result is proved in the strong coupling asymptotic regime only
- Implications for graphs: let $\tilde{\Gamma} \supset \Gamma$ in the set sense, then $H_{\alpha, \tilde{\Gamma}} \leq H_{\alpha, \Gamma}$. If the essential spectrum threshold is the same for both graphs and Γ fits the above assumptions, we have $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ by minimax principle

Proof: generalized BS principle

Classical Birman-Schwinger principle based on the identity

$$
\begin{aligned}
& \left(H_{0}-V-z\right)^{-1}=\left(H_{0}-z\right)^{-1}+\left(H_{0}-z\right)^{-1} V^{1 / 2} \\
& \times\left\{I-|V|^{1 / 2}\left(H_{0}-z\right)^{-1} V^{1 / 2}\right\}^{-1}|V|^{1 / 2}\left(H_{0}-z\right)^{-1}
\end{aligned}
$$

can be extended to generalized Schrödinger operators $H_{\alpha, \Gamma}$ [BEKŠ'94]: the multiplication by $\left(H_{0}-z\right)^{-1} V^{1 / 2}$ etc. is replaced by suitable trace maps. In this way we find that $-\kappa^{2}$ is an eigenvalue of $H_{\alpha, \Gamma}$ iff the integral operator $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ on $L^{2}(\mathbb{R})$ with the kernel

$$
\left(s, s^{\prime}\right) \mapsto \frac{\alpha}{2 \pi} K_{0}\left(\kappa\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|\right)
$$

has an eigenvalue equal to one

Sketch of the proof

We treat $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ as a perturbation of the operator $\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ referring to a straight line. The spectrum of the latter is found easily: it is purely ac and equal to $[0, \alpha / 2 \kappa)$

Sketch of the proof

We treat $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ as a perturbation of the operator $\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ referring to a straight line. The spectrum of the latter is found easily: it is purely ac and equal to $[0, \alpha / 2 \kappa)$
The curvature-induced perturbation is sign-definite: we have $\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}\right)\left(s, s^{\prime}\right) \geq 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a variational argument with a suitable trial function we can check the inequality $\sup \sigma\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right)>\frac{\alpha}{2 \kappa}$

Sketch of the proof

We treat $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ as a perturbation of the operator $\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ referring to a straight line. The spectrum of the latter is found easily: it is purely ac and equal to $[0, \alpha / 2 \kappa)$
The curvature-induced perturbation is sign-definite: we have $\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}\right)\left(s, s^{\prime}\right) \geq 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a variational argument with a suitable trial function we can check the inequality $\sup \sigma\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right)>\frac{\alpha}{2 \kappa}$
Due to the assumed asymptotic straightness of Γ the perturbation $\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ is Hilbert-Schmidt, hence the spectrum of $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ in the interval $(\alpha / 2 \kappa, \infty)$ is discrete

Sketch of the proof

We treat $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ as a perturbation of the operator $\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ referring to a straight line. The spectrum of the latter is found easily: it is purely ac and equal to $[0, \alpha / 2 \kappa)$
The curvature-induced perturbation is sign-definite: we have $\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}\right)\left(s, s^{\prime}\right) \geq 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a variational argument with a suitable trial function we can check the inequality $\sup \sigma\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right)>\frac{\alpha}{2 \kappa}$
Due to the assumed asymptotic straightness of Γ the perturbation $\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ is Hilbert-Schmidt, hence the spectrum of $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ in the interval $(\alpha / 2 \kappa, \infty)$ is discrete
To conclude we employ continuity and $\lim _{\kappa \rightarrow \infty}\left\|\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right\|=0$. The argument can be pictorially expressed as follows:

Pictorial sketch of the proof

More geometrically induced properties

(b) Perturbation theory for punctured manifolds:
let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, C^{2}-smooth, and let Γ_{ε} differ by ε-long hiatus around a fixed point $x_{0} \in \Gamma$. Let φ_{j} be the ef of $H_{\alpha, \Gamma}$ corresponding to a simple ev $\lambda_{j} \equiv \lambda_{j}(0)$ of $H_{\alpha, \Gamma}$.
Theorem [E.-Yoshitomi, 2003]: The j-th ev of $H_{\alpha, \Gamma_{\varepsilon}}$ is

$$
\lambda_{j}(\varepsilon)=\lambda_{j}(0)+\alpha\left|\varphi_{j}\left(x_{0}\right)\right|^{2} \varepsilon+o\left(\varepsilon^{n-1}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

More geometrically induced properties

(b) Perturbation theory for punctured manifolds:
let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, C^{2}-smooth, and let Γ_{ε} differ by ε-long hiatus around a fixed point $x_{0} \in \Gamma$. Let φ_{j} be the ef of $H_{\alpha, \Gamma}$ corresponding to a simple ev $\lambda_{j} \equiv \lambda_{j}(0)$ of $H_{\alpha, \Gamma}$.
Theorem [E.-Yoshitomi, 2003]: The j-th ev of $H_{\alpha, \Gamma_{\varepsilon}}$ is

$$
\lambda_{j}(\varepsilon)=\lambda_{j}(0)+\alpha\left|\varphi_{j}\left(x_{0}\right)\right|^{2} \varepsilon+o\left(\varepsilon^{n-1}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Remarks: Similarly one can express perturbed degenerate ev's. Analogous results hold for ev's for punctured compact, ($d-1$)-dimensional, $C^{1+[d / 2]}$-smooth manifolds in \mathbb{R}^{d}. Formally a small hole acts as repulsive δ interaction with coupling α times $(d-1)$-Lebesgue measure of the hole

Strongly attractive curves

(c) Strong coupling asymptotics: let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, now supposed to be C^{4}-smooth
Theorem [E.-Yoshitomi, 2001]: The j-th ev of $H_{\alpha, \Gamma}$ is

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty,
$$

where μ_{j} is the j-th ev of $S_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{ds} s^{2}}-\frac{1}{4} \gamma(s)^{2}$ on $L^{2}((\mathbb{R})$ and γ is the curvature of Γ.

Strongly attractive curves

(c) Strong coupling asymptotics: let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, now supposed to be C^{4}-smooth
Theorem [E.-Yoshitomi, 2001]: The j-th ev of $H_{\alpha, \Gamma}$ is

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty,
$$

where μ_{j} is the j-th ev of $S_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{ds} s^{2}}-\frac{1}{4} \gamma(s)^{2}$ on $L^{2}((\mathbb{R})$ and γ is the curvature of Γ. The same holds if Γ is a loop; then we also have

$$
\# \sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)=\frac{|\Gamma| \alpha}{2 \pi}+\mathcal{O}(\ln \alpha) \quad \text { as } \quad \alpha \rightarrow \infty
$$

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in \mathbb{R}^{3}

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in \mathbb{R}^{3}
- and to curved surfaces in \mathbb{R}^{3}; then the comparison operator is $-\Delta_{\mathrm{LB}}+K-M^{2}$, where K, M, respectively, are the corresponding Gauss and mean curvatures

How can one find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ. There are various possibilities:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only

How can one find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ. There are various possibilities:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only
- Using trace maps of $R^{k} \equiv\left(-\Delta-k^{2}\right)^{-1}$ and the generalized BS principle

$$
R^{k}:=R_{0}^{k}+\alpha R_{\mathrm{d} x, m}^{k}\left[I-\alpha R_{m, m}^{k}\right]^{-1} R_{m, \mathrm{~d} x}^{k},
$$

where m is δ measure on Γ, we pass to a 1D integral operator problem, $\alpha R_{m, m}^{k} \psi=\psi$

How can one find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ. There are various possibilities:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only
- Using trace maps of $R^{k} \equiv\left(-\Delta-k^{2}\right)^{-1}$ and the generalized BS principle

$$
R^{k}:=R_{0}^{k}+\alpha R_{\mathrm{d} x, m}^{k}\left[I-\alpha R_{m, m}^{k}\right]^{-1} R_{m, \mathrm{~d} x}^{k},
$$

where m is δ measure on Γ, we pass to a 1D integral operator problem, $\alpha R_{m, m}^{k} \psi=\psi$

- discretization of the latter which amounts to a point-interaction approximations to $H_{\alpha, \Gamma}$

2D point interactions

Such an interaction at the point a with the "coupling constant" α is defined by b.c. which change locally the domain of $-\Delta$: the functions behave as

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-a| L_{0}(\psi, a)+L_{1}(\psi, a)+\mathcal{O}(|x-a|),
$$

where the generalized b.v. $L_{0}(\psi, a)$ and $L_{1}(\psi, a)$ satisfy

$$
L_{1}(\psi, a)+2 \pi \alpha L_{0}(\psi, a)=0, \quad \alpha \in \mathbb{R}
$$

2D point interactions

Such an interaction at the point a with the "coupling constant" α is defined by b.c. which change locally the domain of $-\Delta$: the functions behave as

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-a| L_{0}(\psi, a)+L_{1}(\psi, a)+\mathcal{O}(|x-a|),
$$

where the generalized b.v. $L_{0}(\psi, a)$ and $L_{1}(\psi, a)$ satisfy

$$
L_{1}(\psi, a)+2 \pi \alpha L_{0}(\psi, a)=0, \quad \alpha \in \mathbb{R}
$$

For our purpose, the coupling should depend on the set Y approximating Γ. To see how compare a line Γ with the solvable straight-polymer model [AGHH]

2D point-interaction approximation

Spectral threshold convergence requires $\alpha_{n}=\alpha n$ which means that individual point interactions get weaker. Hence we approximate $H_{\alpha, \Gamma}$ by point-interaction Hamiltonians $H_{\alpha_{n}, Y_{n}}$ with $\alpha_{n}=\alpha\left|Y_{n}\right|$, where $\left|Y_{n}\right|:=\sharp Y_{n}$.

2D point-interaction approximation

Spectral threshold convergence requires $\alpha_{n}=\alpha n$ which means that individual point interactions get weaker. Hence we approximate $H_{\alpha, \Gamma}$ by point-interaction Hamiltonians $H_{\alpha_{n}, Y_{n}}$ with $\alpha_{n}=\alpha\left|Y_{n}\right|$, where $\left|Y_{n}\right|:=\sharp Y_{n}$.
Theorem [E.-Němcová, 2003]: Let a family $\left\{Y_{n}\right\}$ of finite sets $Y_{n} \subset \Gamma \subset \mathbb{R}^{2}$ be such that

$$
\frac{1}{\left|Y_{n}\right|} \sum_{y \in Y_{n}} f(y) \rightarrow \int_{\Gamma} f \mathrm{~d} m
$$

holds for any bounded continuous function $f: \Gamma \rightarrow \mathbb{C}$, together with technical conditions, then $H_{\alpha_{n}, Y_{n}} \rightarrow H_{\alpha, \Gamma}$ in the strong resolvent sense as $n \rightarrow \infty$.

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant; also a magnetic field can be added [Ožanová’06] (=Němcová)

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant; also a magnetic field can be added [Ožanová’06] (=Němcová)
- The result applies to finite graphs, however, an infinite $Г$ can be approximated in strong resolvent sense by a family of cut-off graphs

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant; also a magnetic field can be added [Ožanová’06] (=Němcová)
- The result applies to finite graphs, however, an infinite $Г$ can be approximated in strong resolvent sense by a family of cut-off graphs
- The idea is due to [Brasche-Figari-Teta'98], who analyzed point-interaction approximations of measure perturbations with codim $\Gamma=1$ in \mathbb{R}^{3}. There are differences, however, for instance in the 2D case we can approximate attractive interactions only

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant; also a magnetic field can be added [Ožanová’06] (=Němcová)
- The result applies to finite graphs, however, an infinite $Г$ can be approximated in strong resolvent sense by a family of cut-off graphs
- The idea is due to [Brasche-Figari-Teta'98], who analyzed point-interaction approximations of measure perturbations with codim $\Gamma=1$ in \mathbb{R}^{3}. There are differences, however, for instance in the 2D case we can approximate attractive interactions only
- A uniform resolvent convergence can be achieved in this scheme if the term $-\varepsilon^{2} \Delta^{2}$ is added to the Hamiltonian [Brasche-Ožanová'06]

Scheme of the proof

Resolvent of $H_{\alpha_{n}, Y_{n}}$ is given Krein's formula. Given $k^{2} \in \rho\left(H_{\alpha_{n}, Y_{n}}\right)$ define $\left|Y_{n}\right| \times\left|Y_{n}\right|$ matrix by

$$
\begin{aligned}
\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2} ; x, y\right)= & \frac{1}{2 \pi}\left[2 \pi\left|Y_{n}\right| \alpha+\ln \left(\frac{i k}{2}\right)+\gamma_{E}\right] \delta_{x y} \\
& -G_{k}(x-y)\left(1-\delta_{x y}\right)
\end{aligned}
$$

for $x, y \in Y_{n}$, where γ_{E} is Euler' constant.

Scheme of the proof

Resolvent of $H_{\alpha_{n}, Y_{n}}$ is given Krein's formula. Given $k^{2} \in \rho\left(H_{\alpha_{n}, Y_{n}}\right)$ define $\left|Y_{n}\right| \times\left|Y_{n}\right|$ matrix by

$$
\begin{aligned}
\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2} ; x, y\right)= & \frac{1}{2 \pi}\left[2 \pi\left|Y_{n}\right| \alpha+\ln \left(\frac{i k}{2}\right)+\gamma_{E}\right] \delta_{x y} \\
& -G_{k}(x-y)\left(1-\delta_{x y}\right)
\end{aligned}
$$

for $x, y \in Y_{n}$, where γ_{E} is Euler' constant. Then

$$
\begin{aligned}
& \left(H_{\alpha_{n}, Y_{n}}-k^{2}\right)^{-1}(x, y)=G_{k}(x-y) \\
& \quad+\sum_{x^{\prime}, y^{\prime} \in Y_{n}}\left[\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right)\right]^{-1}\left(x^{\prime}, y^{\prime}\right) G_{k}\left(x-x^{\prime}\right) G_{k}\left(y-y^{\prime}\right)
\end{aligned}
$$

Scheme of the proof

Resolvent of $H_{\alpha, \Gamma}$ is given by the generalized $B S$ formula given above; one has to check directly that the difference of the two vanishes as $n \rightarrow \infty \square$

Scheme of the proof

Resolvent of $H_{\alpha, \Gamma}$ is given by the generalized $B S$ formula given above; one has to check directly that the difference of the two vanishes as $n \rightarrow \infty \square$

Remarks:

- Spectral condition in the n-th approximation, i.e. $\operatorname{det} \Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right)=0$, is a discretization of the integral equation coming from the generalized BS principle
- A solution to $\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right) \eta=0$ determines the approximating ef by $\psi(x)=\sum_{y_{j} \in Y_{n}} \eta_{j} G_{k}\left(x-y_{j}\right)$
- A match with solvable models illustrates the convergence and shows that it is not fast, slower than n^{-1} in the eigenvalues. This comes from singular "spikes" in the approximating functions

An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite "leads", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Not much.

- First question: What is the "free" operator? - Δ is not a good candidate, rather $H_{\alpha, \Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $\left(-\frac{1}{4} \alpha^{2}, 0\right)$, i.e. 1D transport of states laterally bound to Γ

An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite "leads", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Not much.

- First question: What is the "free" operator? - Δ is not a good candidate, rather $H_{\alpha, \Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $\left(-\frac{1}{4} \alpha^{2}, 0\right)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is known only for locally deformed line [E.-Kondej'05]

An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite "leads", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Not much.

- First question: What is the "free" operator? $-\Delta$ is not a good candidate, rather $H_{\alpha, \Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $\left(-\frac{1}{4} \alpha^{2}, 0\right)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is known only for locally deformed line [E.-Kondej'05]
- Conjecture: For strong coupling, $\alpha \rightarrow \infty$, the scattering is described in leading order by $S_{\Gamma}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$

An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite "leads", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Not much.

- First question: What is the "free" operator? $-\Delta$ is not a good candidate, rather $H_{\alpha, \Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $\left(-\frac{1}{4} \alpha^{2}, 0\right)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is known only for locally deformed line [E.-Kondej'05]
- Conjecture: For strong coupling, $\alpha \rightarrow \infty$, the scattering is described in leading order by $S_{\Gamma}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$
- On the other hand, in general, the global geometry of Γ is expected to determine the S-matrix

Something more on resonances

Consider infinite curves Γ, straight outside a compact, and ask for examples of resonances. Recall the L^{2}-approach: in 1D potential scattering one explores spectral properties of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum - for a recent proof see [Hagedorn-Meller'00]. Try the same here:

Something more on resonances

Consider infinite curves Γ, straight outside a compact, and ask for examples of resonances. Recall the L^{2}-approach: in 1D potential scattering one explores spectral properties of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum - for a recent proof see [Hagedorn-Meller'00]. Try the same here:

- Broken line: absence of "intrinsic" resonances due lack of higher transverse thresholds
- Z-shaped Γ : if a single bend has a significant reflection, a double band should exhibit resonances
- Bottleneck curve: a good candidate to demonstrate tunneling resonances

Broken line

Broken line

\mathbf{Z} shape with $\theta=\frac{\pi}{2}$

$$
\begin{aligned}
& \square L_{c}=10 \\
& \alpha=5
\end{aligned}
$$

\mathbf{Z} shape with $\theta=\frac{\pi}{2}$

\mathbf{Z} shape with $\theta=0.32 \pi$

$$
\angle L_{c}=10
$$

\mathbf{Z} shape with $\theta=0.32 \pi$

$$
\begin{aligned}
& Z L_{c}=10 \\
& \alpha=5
\end{aligned}
$$

A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary

A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary

If Γ is a straight line, the transverse eigenfunction is
$\mathrm{e}^{-\alpha|y| / 2}$, hence the distance at which tunneling becomes significant is $\approx 4 \alpha^{-1}$. In the example, we choose $\alpha=1$

Bottleneck with $a=5.2$

Bottleneck with $a=2.9$

Bottleneck with $a=1.9$

A caricature but solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots.

A caricature but solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots. Formal Hamiltonian

$$
-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right)
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$ with $\alpha>0$. The 2D point interactions at $\Pi=\left\{y^{(i)}\right\}$ with couplings $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are properly introduced through b.c. mentioned above, giving Hamiltonian $H_{\alpha, \beta}$

A caricature but solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots. Formal Hamiltonian

$$
-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right)
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$ with $\alpha>0$. The 2D point interactions at $\Pi=\left\{y^{(i)}\right\}$ with couplings $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are properly introduced through b.c. mentioned above, giving Hamiltonian $H_{\alpha, \beta}$
Resolvent by Krein-type formula: given $z \in \mathbb{C} \backslash[0, \infty)$ we start from the free resolvent $R(z):=(-\Delta-z)^{-1}$, also interpreted as unitary $\mathbf{R}(z)$ acting from L^{2} to $W^{2,2}$. Then

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,
- then we define canonical embeddings of $\mathbf{R}(z)$ to \mathcal{H}_{i} by $\mathbf{R}_{i, L}(z):=\tau_{i} R(z): L^{2} \rightarrow \mathcal{H}_{i}, \mathbf{R}_{L, i}(z):=\left[\mathbf{R}_{i, L}(z)\right]^{*}$, and $\mathbf{R}_{j, i}(z):=\tau_{j} \mathbf{R}_{L, i}(z): \mathcal{H}_{i} \rightarrow \mathcal{H}_{j}$, and

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,
- then we define canonical embeddings of $\mathbf{R}(z)$ to \mathcal{H}_{i} by $\mathbf{R}_{i, L}(z):=\tau_{i} R(z): L^{2} \rightarrow \mathcal{H}_{i}, \mathbf{R}_{L, i}(z):=\left[\mathbf{R}_{i, L}(z)\right]^{*}$, and $\mathbf{R}_{j, i}(z):=\tau_{j} \mathbf{R}_{L, i}(z): \mathcal{H}_{i} \rightarrow \mathcal{H}_{j}$, and
- operator-valued matrix $\Gamma(z): \mathcal{H}_{0} \oplus \mathcal{H}_{1} \rightarrow \mathcal{H}_{0} \oplus \mathcal{H}_{1}$ by

$$
\begin{aligned}
\Gamma_{i j}(z) g & :=-\mathbf{R}_{i, j}(z) g \text { for } i \neq j \text { and } g \in \mathcal{H}_{j}, \\
\Gamma_{00}(z) f & :=\left[\alpha^{-1}-\mathbf{R}_{0,0}(z)\right] f \text { if } f \in \mathcal{H}_{0}, \\
\Gamma_{11}(z) \varphi & :=\left(s_{\beta}(z) \delta_{k l}-G_{z}\left(y^{(k)}, y^{(l)}\right)\left(1-\delta_{k l}\right)\right) \varphi,
\end{aligned}
$$

with $s_{\beta}(z):=\beta+s(z):=\beta+\frac{1}{2 \pi}\left(\ln \frac{\sqrt{z}}{2 i}-\psi(1)\right)$

Resolvent by Krein-type formula

To invert it we define the "reduced determinant"

$$
D(z):=\Gamma_{11}(z)-\Gamma_{10}(z) \Gamma_{00}(z)^{-1} \Gamma_{01}(z): \mathcal{H}_{1} \rightarrow \mathcal{H}_{1},
$$

Resolvent by Krein-type formula

To invert it we define the "reduced determinant"

$$
D(z):=\Gamma_{11}(z)-\Gamma_{10}(z) \Gamma_{00}(z)^{-1} \Gamma_{01}(z): \mathcal{H}_{1} \rightarrow \mathcal{H}_{1},
$$

then an easy algebra yields expressions for "blocks" of $[\Gamma(z)]^{-1}$ in the form

$$
\begin{aligned}
& {[\Gamma(z)]_{11}^{-1}=D(z)^{-1},} \\
& {[\Gamma(z)]_{00}^{-1}=\Gamma_{00}(z)^{-1}+\Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1},} \\
& {[\Gamma(z)]_{01}^{-1}=-\Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1},} \\
& {[\Gamma(z)]_{10}^{-1}=-D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1} ;}
\end{aligned}
$$

thus to determine singularities of $[\Gamma(z)]^{-1}$ one has to find the null space of $D(z)$

Resolvent by Krein-type formula

With this notation we can state the sought formula:
Theorem [E.-Kondej, 2004]: For $z \in \rho\left(H_{\alpha, \beta}\right)$ with $\operatorname{Im} z>0$ the resolvent $R_{\alpha, \beta}(z):=\left(H_{\alpha, \beta}-z\right)^{-1}$ equals

$$
R_{\alpha, \beta}(z)=R(z)+\sum_{i, j=0}^{1} \mathbf{R}_{L, i}(z)[\Gamma(z)]_{i j}^{-1} \mathbf{R}_{j, L}(z)
$$

Resolvent by Krein-type formula

With this notation we can state the sought formula:
Theorem [E.-Kondej, 2004]: For $z \in \rho\left(H_{\alpha, \beta}\right)$ with $\operatorname{Im} z>0$ the resolvent $R_{\alpha, \beta}(z):=\left(H_{\alpha, \beta}-z\right)^{-1}$ equals

$$
R_{\alpha, \beta}(z)=R(z)+\sum_{i, j=0}^{1} \mathbf{R}_{L, i}(z)[\Gamma(z)]_{i j}^{-1} \mathbf{R}_{j, L}(z)
$$

Remark: One can also compare resolvent of $H_{\alpha, \beta}$ to that of $H_{\alpha} \equiv H_{\alpha, \Sigma}$ using trace maps of the latter,

$$
R_{\alpha, \beta}(z)=R_{\alpha}(z)+\mathbf{R}_{\alpha ; L 1}(z) D(z)^{-1} \mathbf{R}_{\alpha ; 1 L}(z)
$$

Spectral properties of $H_{\alpha, \beta}$

It is easy to check that

$$
\sigma_{\mathrm{ess}}\left(H_{\alpha, \beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\alpha, \beta}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)
$$

Spectral properties of $H_{\alpha, \beta}$

It is easy to check that

$$
\sigma_{\mathrm{ess}}\left(H_{\alpha, \beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\alpha, \beta}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)
$$

$\sigma_{\text {disc }}$ given by generalized Birman-Schwinger principle:

$$
\begin{gathered}
\operatorname{dim} \operatorname{ker} \Gamma(z)=\operatorname{dim} \operatorname{ker} R_{\alpha, \beta}(z), \\
H_{\alpha, \beta} \phi_{z}=z \phi_{z} \Leftrightarrow \phi_{z}=\sum_{i=0}^{1} \mathbf{R}_{L, i}(z) \eta_{i, z},
\end{gathered}
$$

where $\left(\eta_{0, z}, \eta_{1, z}\right) \in \operatorname{ker} \Gamma(z)$. Moreover, it is clear that $0 \in \sigma_{\text {disc }}(\Gamma(z)) \Leftrightarrow 0 \in \sigma_{\text {disc }}(D(z))$; this reduces the task of finding the spectrum to an algebraic problem

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2004]: (a) Let $n=1$ and denote $\operatorname{dist}(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite.

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2004]: (a) Let $n=1$ and denote $\operatorname{dist}(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite. (b) For any $\alpha>0, \beta \in \mathbb{R}^{n}$, and $n \in \mathbb{N}_{+}$the operator $H_{\alpha, \beta}$ has N isolated eigenvalues, $1 \leq N \leq n$. If all the point interactions are strong enough, we have $N=n$

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2004]: (a) Let $n=1$ and denote $\operatorname{dist}(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite. (b) For any $\alpha>0, \beta \in \mathbb{R}^{n}$, and $n \in \mathbb{N}_{+}$the operator $H_{\alpha, \beta}$ has N isolated eigenvalues, $1 \leq N \leq n$. If all the point interactions are strong enough, we have $N=n$

Remark: Embedded eigenvalues due to mirror symmetry w.r.t. Σ possible if $n \geq 2$

Resonance for $n=1$

Assume the point interaction eigenvalue becomes
embedded as $a \rightarrow \infty$, i.e. that $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$

Resonance for $n=1$

Assume the point interaction eigenvalue becomes
embedded as $a \rightarrow \infty$, i.e. that $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$
Observation: Birman-Schwinger works in the complex domain too; it is enough to look for analytical continuation of $D(\cdot)$, which acts for $z \in \mathbb{C} \backslash\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ as a multiplication by

$$
\begin{aligned}
d_{a}(z) & :=s_{\beta}(z)-\phi_{a}(z)=s_{\beta}(z)-\int_{0}^{\infty} \frac{\mu(z, t)}{t-z-\frac{1}{4} \alpha^{2}} \mathrm{~d} t, \\
\mu(z, t) & :=\frac{i \alpha}{16 \pi} \frac{\left(\alpha-2 i(z-t)^{1 / 2}\right) \mathrm{e}^{2 i a(z-t)^{1 / 2}}}{t^{1 / 2}(z-t)^{1 / 2}}
\end{aligned}
$$

Thus we have a situation reminiscent of Friedrichs model, just the functions involved are more complicated

Analytic continuation

Take a region Ω_{-}of the other sheet with $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ as a part of its boundary. Put $\mu^{0}(\lambda, t):=\lim _{\varepsilon \rightarrow 0} \mu(\lambda+i \varepsilon, t)$, define

$$
I(\lambda):=\mathcal{P} \int_{0}^{\infty} \frac{\mu^{0}(\lambda, t)}{t-\lambda-\frac{1}{4} \alpha^{2}} \mathrm{~d} t,
$$

and furthermore, $g_{\alpha, a}(z):=\frac{i \alpha}{4} \frac{\mathrm{e}^{-\alpha a}}{\left(z+\frac{1}{4} \alpha^{2}\right)^{1 / 2}}$.

Analytic continuation

Take a region Ω_{-}of the other sheet with $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ as a part of its boundary. Put $\mu^{0}(\lambda, t):=\lim _{\varepsilon \rightarrow 0} \mu(\lambda+i \varepsilon, t)$, define

$$
I(\lambda):=\mathcal{P} \int_{0}^{\infty} \frac{\mu^{0}(\lambda, t)}{t-\lambda-\frac{1}{4} \alpha^{2}} \mathrm{~d} t
$$

and furthermore, $g_{\alpha, a}(z):=\frac{i \alpha}{4} \frac{\mathrm{e}^{-\alpha a}}{\left(z+\frac{1}{4} \alpha^{2}\right)^{1 / 2}}$.
Lemma: $z \mapsto \phi_{a}(z)$ is continued analytically to Ω_{-}as

$$
\begin{aligned}
& \phi_{a}^{0}(\lambda)=I(\lambda)+g_{\alpha, a}(\lambda) \text { for } \quad \lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right), \\
& \phi_{a}^{-}(z)=-\int_{0}^{\infty} \frac{\mu(z, t)}{t-z-\frac{1}{4} \alpha^{2}} \mathrm{~d} t-2 g_{\alpha, a}(z), z \in \Omega_{-}
\end{aligned}
$$

Analytic continuation

Proof: By a direct computation one checks

$$
\lim _{\varepsilon \rightarrow 0^{+}} \phi_{a}^{ \pm}(\lambda \pm i \varepsilon)=\phi_{a}^{0}(\lambda), \quad-\frac{1}{4} \alpha^{2}<\lambda<0,
$$

so the claim follows from edge-of-the-wedge theorem. \square

Analytic continuation

Proof: By a direct computation one checks

$$
\lim _{\varepsilon \rightarrow 0^{+}} \phi_{a}^{ \pm}(\lambda \pm i \varepsilon)=\phi_{a}^{0}(\lambda), \quad-\frac{1}{4} \alpha^{2}<\lambda<0,
$$

so the claim follows from edge-of-the-wedge theorem. \square
The continuation of d_{a} is thus the function $\eta_{a}: M \mapsto \mathbb{C}$, where $M=\{z: \operatorname{Im} z>0\} \cup\left(-\frac{1}{4} \alpha^{2}, 0\right) \cup \Omega_{-}$, acting as

$$
\eta_{a}(z)=s_{\beta}(z)-\phi_{a}^{l(z)}(z),
$$

and our problem reduces to solution if the implicit function problem $\eta_{a}(z)=0$.

Resonance for $n=1$

Theorem [E.-Kondej, 2004]: Assume $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$. For any a large enough the equation $\eta_{a}(z)=0$ has a unique solution $z(a)=\mu(b)+i \nu(b) \in \Omega_{-}$, i.e. $\nu(a)<0$, with the following asymptotic behaviour as $a \rightarrow \infty$,

$$
\mu(a)=\epsilon_{\beta}+\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right), \quad \nu(a)=\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right)
$$

Resonance for $n=1$

Theorem [E.-Kondej, 2004]: Assume $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$. For any a large enough the equation $\eta_{a}(z)=0$ has a unique solution $z(a)=\mu(b)+i \nu(b) \in \Omega_{-}$, i.e. $\nu(a)<0$, with the following asymptotic behaviour as $a \rightarrow \infty$,

$$
\mu(a)=\epsilon_{\beta}+\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right), \quad \nu(a)=\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right)
$$

Remark: We have $\left|\phi_{a}^{-}(z)\right| \rightarrow 0$ uniformly in a and $\left|s_{\beta}(z)\right| \rightarrow \infty$ as $\operatorname{Im} z \rightarrow-\infty$. Hence the imaginary part $z(a)$ is bounded as a function of a, in particular, the resonance pole survives as $a \rightarrow 0$.

Scattering for $n=1$

The same as scattering problem for $\left(H_{\alpha, \beta}, H_{\alpha}\right)$

α

Scattering for $n=1$

The same as scattering problem for $\left(H_{\alpha, \beta}, H_{\alpha}\right)$

Existence and completeness by Birman-Kuroda theorem; we seek on-shell S-matrix in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$. By Krein formula, resolvent for $\operatorname{Im} z>0$ expresses as

$$
R_{\alpha, \beta}(z)=R_{\alpha}(z)+\eta_{a}(z)^{-1}\left(\cdot, v_{z}\right) v_{z}
$$

where $v_{z}:=R_{\alpha ; L, 1}(z)$

Scattering for $n=1$

Apply this operator to vector

$$
\omega_{\lambda, \varepsilon}(x):=\mathrm{e}^{i\left(\lambda+\alpha^{2} / 4\right)^{1 / 2} x_{1}-\varepsilon^{2} x_{1}^{2}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2}
$$

and take limit $\varepsilon \rightarrow 0+$ in the sense of distributions; then a straightforward calculation give generalized eigenfunction of $H_{\alpha, \beta}$. In particular, we have

Scattering for $n=1$

Apply this operator to vector

$$
\omega_{\lambda, \varepsilon}(x):=\mathrm{e}^{i\left(\lambda+\alpha^{2} / 4\right)^{1 / 2} x_{1}-\varepsilon^{2} x_{1}^{2}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2}
$$

and take limit $\varepsilon \rightarrow 0+$ in the sense of distributions; then a straightforward calculation give generalized eigenfunction of $H_{\alpha, \beta}$. In particular, we have
Proposition: For any $\lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ the reflection and transmission amplitudes are

$$
\mathcal{R}(\lambda)=\mathcal{T}(\lambda)-1=\frac{i}{4} \alpha \eta_{a}(\lambda)^{-1} \frac{\mathrm{e}^{-\alpha a}}{\left(\lambda+\frac{1}{4} \alpha^{2}\right)^{1 / 2}}
$$

they have the same pole in the analytical continuation to Ω_{-}as the continued resolvent

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

Let $\sigma_{\text {disc }}\left(H_{0, \beta_{0}}\right) \cap\left(-\frac{1}{4} \alpha^{2}, 0\right) \neq \emptyset$, so that Hamiltonian $H_{0, \beta_{0}}$ has two eigenvalues, the larger of which, ϵ_{2}, exceeds $-\frac{1}{4} \alpha^{2}$. Then $H_{\alpha, \beta_{0}}$ has the same eigenvalue ϵ_{2} embedded in the negative part of continuous spectrum

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

Let $\sigma_{\text {disc }}\left(H_{0, \beta_{0}}\right) \cap\left(-\frac{1}{4} \alpha^{2}, 0\right) \neq \emptyset$, so that Hamiltonian $H_{0, \beta_{0}}$ has two eigenvalues, the larger of which, ϵ_{2}, exceeds $-\frac{1}{4} \alpha^{2}$. Then $H_{\alpha, \beta_{0}}$ has the same eigenvalue ϵ_{2} embedded in the negative part of continuous spectrum
One has now to continue analytically the 2×2 matrix function $D(\cdot)$. Put $\kappa_{2}:=\sqrt{-\epsilon_{2}}$ and $\breve{s}_{\beta}(\kappa):=s_{\beta}\left(-\kappa^{2}\right)$

Resonances from perturbed symmetry

Proposition: Assume $\epsilon_{2} \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ and denote $\tilde{g}(\lambda):=-i g_{\alpha, a}(\lambda)$. Then for all b small enough the continued function has a unique zero $z_{2}(b)=\mu_{2}(b)+i \nu_{2}(b) \in \Omega_{-}$with the asymptotic expansion

$$
\begin{aligned}
\mu_{2}(b) & =\epsilon_{2}+\frac{\kappa_{2} b}{s_{\beta}^{\prime}\left(\kappa_{2}\right)+K_{0}^{\prime}\left(2 a \kappa_{2}\right)}+\mathcal{O}\left(b^{2}\right), \\
\nu_{2}(b) & =-\frac{\kappa_{2} \tilde{g}\left(\epsilon_{2}\right) b^{2}}{2\left(s_{\beta}^{\prime}\left(\kappa_{2}\right)+K_{0}^{\prime}\left(2 a \kappa_{2}\right)\right)\left|s_{\beta}^{\prime}\left(\kappa_{2}\right)-\phi_{a}^{0}\left(\epsilon_{2}\right)\right|}+\mathcal{O}\left(b^{3}\right)
\end{aligned}
$$

Unstable state decay, $n=1$

Complementary point of view: investigate decay of unstable state associated with the resonance; assume again $n=1$. We found that if the "unperturbed" ev ϵ_{β} of H_{β} is embedded in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ and a is large, the corresponding resonance has a long halflife. In analogy with Friedrichs model [Demuth, 1976] one conjectures that in weak coupling case, the resonance state would be similar up to normalization to the eigenvector $\xi_{0}:=K_{0}\left(\sqrt{-\epsilon_{\beta}} \cdot\right)$ of H_{β}, with the decay law being dominated by the exponential term

Unstable state decay, $n=1$

Complementary point of view: investigate decay of unstable state associated with the resonance; assume again $n=1$. We found that if the "unperturbed" ev ϵ_{β} of H_{β} is embedded in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ and a is large, the corresponding resonance has a long halflife. In analogy with Friedrichs model [Demuth, 1976] one conjectures that in weak coupling case, the resonance state would be similar up to normalization to the eigenvector $\xi_{0}:=K_{0}\left(\sqrt{-\epsilon_{\beta}} \cdot\right)$ of H_{β}, with the decay law being dominated by the exponential term
At the same time, $H_{\alpha, \beta}$ has always an isolated ev with ef which is not orthogonal to ξ_{0} for any a (recall that both functions are positive). Consequently, the decay law $\left|\left(\xi_{0}, U(t) \xi_{0}\right)\right|^{2}\left\|\xi_{0}\right\|^{-2}$ has always a nonzero limit as $t \rightarrow \infty$

Summarizing Lecture II

- "Leaky" graphs are a more realistic model of graph-like nanostructures because they take quantum tunneling into account

Summarizing Lecture II

- "Leaky" graphs are a more realistic model of graph-like nanostructures because they take quantum tunneling into account
- Geometry plays essential role in determining spectral and scattering properties of such systems

Summarizing Lecture II

- "Leaky" graphs are a more realistic model of graph-like nanostructures because they take quantum tunneling into account
- Geometry plays essential role in determining spectral and scattering properties of such systems
- There are efficient numerical methods to determine spectra of leaky graphs

Summarizing Lecture II

- "Leaky" graphs are a more realistic model of graph-like nanostructures because they take quantum tunneling into account
- Geometry plays essential role in determining spectral and scattering properties of such systems
- There are efficient numerical methods to determine spectra of leaky graphs
- Rigorous results on spectra and scattering are available so far in simple situations only

Summarizing Lecture II

- "Leaky" graphs are a more realistic model of graph-like nanostructures because they take quantum tunneling into account
- Geometry plays essential role in determining spectral and scattering properties of such systems
- There are efficient numerical methods to determine spectra of leaky graphs
- Rigorous results on spectra and scattering are available so far in simple situations only
- The theory described in the lecture is far from complete, various open questions persist

Some literature to Lecture II

[EI01] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439-1450.
[EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^{3}, Ann. H. Poincaré 3 (2002), 967-981.
[EK03] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A36 (2003), 443-457.
[EK04] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, J. Phys. A37 (2004), 8255-8277.
[EK05] P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, J. Phys. A38 (2005), 4865-4874.
[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003), 10173-10193.
[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.
[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.
[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong ס-interaction on a loop, J. Phys. A35 (2002), 3479-3487.
[EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface, Lett. Math. Phys. 65 (2003), 19-26.
and references therein, see also http://www.ujf.cas.cz/ exner

Lecture III

Generalized graphs - or what happens if a quantum particle has to change its dimension

Lecture overview

- Motivation - a nontrivial configuration space

Lecture overview

- Motivation - a nontrivial configuration space
- Coupling by means of s-a extensions

Lecture overview

- Motivation - a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy

Lecture overview

- Motivation - a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers

Lecture overview

- Motivation - a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems

Lecture overview

- Motivation - a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- A heuristic way to choose the coupling

Lecture overview

- Motivation - a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- A heuristic way to choose the coupling
- An illustration on microwave experiments

Lecture overview

- Motivation - a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- A heuristic way to choose the coupling
- An illustration on microwave experiments
- And something else: spin conductance oscillations

A nontrivial configuration space

In both classical and QM there are systems with constraints for which the configuration space is a nontrivivial subset of \mathbb{R}^{n}. Sometimes it happens that one can idealize as a union of components of lower dimension

A nontrivial configuration space

In both classical and QM there are systems with constraints for which the configuration space is a nontrivivial subset of \mathbb{R}^{n}. Sometimes it happens that one can idealize as a union of components of lower dimension

A nontrivial configuration space

In CM it is not a big problem: few examples, and moreover, the motion is "local" so we can "magnify" the junction region and study trajectories there

A nontrivial configuration space

In CM it is not a big problem: few examples, and moreover, the motion is "local" so we can "magnify" the junction region and study trajectories there

In contrast, QM offers interesting examples, e.g.

- point-contact spectroscopy,
- STEM-type devices,
- compositions of nanotubes with fulleren molecules,
etc. Similarly one can consider some electromagnetic systems such as flat microwave resonators with attached antennas; we will comment on that later in the lecture

Coupling by means of s-a extensions

Among other things we owe to J . von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.

Coupling by means of s-a extensions

Among other things we owe to J . von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.

The idea: Quantum dynamics on $M_{1} \cup M_{2}$ coupled by a point contact $x_{0} \in M_{1} \cap M_{2}$. Take Hamiltonians H_{j} on the isolated manifold M_{j} and restrict them to functions vanishing in the vicinity of x_{0}

Coupling by means of s-a extensions

Among other things we owe to J. von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.

The idea: Quantum dynamics on $M_{1} \cup M_{2}$ coupled by a point contact $x_{0} \in M_{1} \cap M_{2}$. Take Hamiltonians H_{j} on the isolated manifold M_{j} and restrict them to functions vanishing in the vicinity of x_{0}
The operator $H_{0}:=H_{1,0} \oplus H_{2,0}$ is symmetric, in general not s-a. We seek admissible Hamiltonians of the coupled system among its self-adjoint extensions

Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where H_{j} is a second-order operator the method works for $\operatorname{dim} M_{j} \leq 3$ (more generally, codimension of the contact should not exceed three), since otherwise the restriction is e.s.a. [similarly for Dirac operators we require the codimension to be at most one]

Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where H_{j} is a second-order operator the method works for $\operatorname{dim} M_{j} \leq 3$ (more generally, codimension of the contact should not exceed three), since otherwise the restriction is e.s.a. [similarly for Dirac operators we require the codimension to be at most one]
Non-uniqueness: Apart of the trivial case, there are many s -a extensions. A junction where n configuration-space components meet contributes typically by n to deficiency indices of H_{0}, and thus adds n^{2} parameters to the resulting Hamiltonian class; recall a similar situation in Lecture I

Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where H_{j} is a second-order operator the method works for $\operatorname{dim} M_{j} \leq 3$ (more generally, codimension of the contact should not exceed three), since otherwise the restriction is e.s.a. [similarly for Dirac operators we require the codimension to be at most one]

Non-uniqueness: Apart of the trivial case, there are many s -a extensions. A junction where n configuration-space components meet contributes typically by n to deficiency indices of H_{0}, and thus adds n^{2} parameters to the resulting Hamiltonian class; recall a similar situation in Lecture I

Physical meaning: The construction guarantees that the probability current is conserved at the junction
\square

Different dimensions

In distinction to quantum graphs " $1+1$ " situation, we will be mostly concerned with cases " $2+1$ " and " $2+2$ ", i.e. manifolds of these dimensions coupled through point contacts. Other combinations are similar
We use "rational" units, in particular, the Hamiltonian acts at each configuration component as $-\Delta$ (or Laplace-Beltrami operator if M_{j} has a nontrivial metric)

Different dimensions

In distinction to quantum graphs " $1+1$ " situation, we will be mostly concerned with cases " $2+1$ " and " $2+2$ ", i.e. manifolds of these dimensions coupled through point contacts. Other combinations are similar
We use "rational" units, in particular, the Hamiltonian acts at each configuration component as $-\Delta$ (or Laplace-Beltrami operator if M_{j} has a nontrivial metric)
An archetypal example, $\mathcal{H}=L^{2}\left(\mathbb{R}_{-}\right) \oplus L^{2}\left(\mathbb{R}^{2}\right)$, so the wavefunctions are pairs $\phi:=\binom{\phi_{1}}{\Phi_{2}}$ of square integrable functions

A model: point-contact spectroscopy

Restricting $\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right)_{\mathrm{D}} \oplus-\Delta$ to functions vanishing in the vicinity of the junction gives symmetric operator with deficiency indices $(2,2)$.

A model: point-contact spectroscopy

Restricting $\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right)_{\mathrm{D}} \oplus-\Delta$ to functions vanishing in the vicinity of the junction gives symmetric operator with deficiency indices $(2,2)$.
von Neumann theory gives a general prescription to construct the s-a extensions, however, it is practical to characterize the by means of boundary conditions. We need generalized boundary values

$$
L_{0}(\Phi):=\lim _{r \rightarrow 0} \frac{\Phi(\vec{x})}{\ln r}, L_{1}(\Phi):=\lim _{r \rightarrow 0}\left[\Phi(\vec{x})-L_{0}(\Phi) \ln r\right]
$$

(in view of the 2D character, in three dimensions L_{0} would be the coefficient at the pole singularity)

$2+1$ point-contact coupling

Typical b.c. determining a s-a extension

$$
\begin{aligned}
\phi_{1}^{\prime}(0-) & =A \phi_{1}(0-)+B L_{0}\left(\Phi_{2}\right), \\
L_{1}\left(\Phi_{2}\right) & =C \phi_{1}(0-)+D L_{0}\left(\Phi_{2}\right),
\end{aligned}
$$

$2+1$ point-contact coupling

Typical b.c. determining a s-a extension

$$
\begin{aligned}
& \phi_{1}^{\prime}(0-)=A \phi_{1}(0-)+B L_{0}\left(\Phi_{2}\right), \\
& L_{1}\left(\Phi_{2}\right)=C \phi_{1}(0-)+D L_{0}\left(\Phi_{2}\right),
\end{aligned}
$$

where

$$
A, D \in \mathbb{R} \quad \text { and } \quad B=2 \pi \bar{C}
$$

$2+1$ point-contact coupling

Typical b.c. determining a s-a extension

$$
\begin{aligned}
& \phi_{1}^{\prime}(0-)=A \phi_{1}(0-)+B L_{0}\left(\Phi_{2}\right), \\
& L_{1}\left(\Phi_{2}\right)=C \phi_{1}(0-)+D L_{0}\left(\Phi_{2}\right),
\end{aligned}
$$

where

$$
A, D \in \mathbb{R} \quad \text { and } \quad B=2 \pi \bar{C}
$$

The easiest way to see that is to compute the boundary form to H_{0}^{*}, recall that the latter is given by the same differential expression.
Notice that only the s-wave part of Φ in the plane, $\Phi_{2}(r, \varphi)=(2 \pi)^{-1 / 2} \phi_{2}(r)$ can be coupled nontrivially to the halfline

$2+1$ point-contact coupling

An integration by parts gives

$$
\begin{aligned}
\left(\phi, H_{0}^{*} \psi\right)- & \left(H_{0}^{*} \phi, \psi\right)=\bar{\phi}_{1}^{\prime}(0) \psi_{1}(0)-\bar{\phi}_{1}(0) \psi_{1}^{\prime}(0) \\
& +\lim _{\varepsilon \rightarrow 0+} \varepsilon\left(\bar{\phi}_{2}(\varepsilon) \psi_{1}^{\prime}(\varepsilon)-\bar{\phi}_{2}^{\prime}(\varepsilon) \psi_{2}(\varepsilon)\right),
\end{aligned}
$$

$2+1$ point-contact coupling

An integration by parts gives

$$
\begin{aligned}
\left(\phi, H_{0}^{*} \psi\right)- & \left(H_{0}^{*} \phi, \psi\right)=\bar{\phi}_{1}^{\prime}(0) \psi_{1}(0)-\bar{\phi}_{1}(0) \psi_{1}^{\prime}(0) \\
& +\lim _{\varepsilon \rightarrow 0+} \varepsilon\left(\bar{\phi}_{2}(\varepsilon) \psi_{1}^{\prime}(\varepsilon)-\bar{\phi}_{2}^{\prime}(\varepsilon) \psi_{2}(\varepsilon)\right),
\end{aligned}
$$

and using the asymptotic behaviour

$$
\phi_{2}(\varepsilon)=\sqrt{2 \pi}\left[L_{0}\left(\Phi_{2}\right) \ln \varepsilon+L_{1}\left(\Phi_{2}\right)+\mathcal{O}(\varepsilon)\right],
$$

$2+1$ point-contact coupling

An integration by parts gives

$$
\begin{aligned}
\left(\phi, H_{0}^{*} \psi\right)- & \left(H_{0}^{*} \phi, \psi\right)=\bar{\phi}_{1}^{\prime}(0) \psi_{1}(0)-\bar{\phi}_{1}(0) \psi_{1}^{\prime}(0) \\
& +\lim _{\varepsilon \rightarrow 0+} \varepsilon\left(\bar{\phi}_{2}(\varepsilon) \psi_{1}^{\prime}(\varepsilon)-\bar{\phi}_{2}^{\prime}(\varepsilon) \psi_{2}(\varepsilon)\right),
\end{aligned}
$$

and using the asymptotic behaviour

$$
\phi_{2}(\varepsilon)=\sqrt{2 \pi}\left[L_{0}\left(\Phi_{2}\right) \ln \varepsilon+L_{1}\left(\Phi_{2}\right)+\mathcal{O}(\varepsilon)\right],
$$

we can express the above limit term as

$$
2 \pi\left[L_{1}\left(\Phi_{2}\right) L_{0}\left(\Psi_{2}\right)-L_{0}\left(\Phi_{2}\right) L_{1}\left(\Psi_{2}\right)\right],
$$

so the form vanishes under the stated boundary conditions

Transport through point contact

Using the b.c. we match plane wave solution $\mathrm{e}^{i k x}+r(k) \mathrm{e}^{-i k x}$ on the halfline with $t(k)(\pi k r / 2)^{1 / 2} H_{0}^{(1)}(k r)$ in the plane obtaining

$$
r(k)=-\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k)=\frac{2 i C k}{\mathcal{D}_{+}}
$$

Transport through point contact

Using the b.c. we match plane wave solution $\mathrm{e}^{i k x}+r(k) \mathrm{e}^{-i k x}$ on the halfline with $t(k)(\pi k r / 2)^{1 / 2} H_{0}^{(1)}(k r)$ in the plane obtaining

$$
r(k)=-\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k)=\frac{2 i C k}{\mathcal{D}_{+}}
$$

with

$$
\mathcal{D}_{ \pm}:=(A \pm i k)\left[1+\frac{2 i}{\pi}\left(\gamma_{\mathrm{E}}-D+\ln \frac{k}{2}\right)\right]+\frac{2 i}{\pi} B C
$$

where $\gamma_{\mathrm{E}} \approx 0.5772$ is Euler's number

Transport through point contact

Using the b.c. we match plane wave solution $\mathrm{e}^{i k x}+r(k) \mathrm{e}^{-i k x}$ on the halfline with $t(k)(\pi k r / 2)^{1 / 2} H_{0}^{(1)}(k r)$ in the plane obtaining

$$
r(k)=-\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k)=\frac{2 i C k}{\mathcal{D}_{+}}
$$

with

$$
\mathcal{D}_{ \pm}:=(A \pm i k)\left[1+\frac{2 i}{\pi}\left(\gamma_{\mathrm{E}}-D+\ln \frac{k}{2}\right)\right]+\frac{2 i}{\pi} B C
$$

where $\gamma_{\mathrm{E}} \approx 0.5772$ is Euler's number
Remark: More general coupling, $\mathcal{A}\binom{\phi_{1}}{L_{0}}+\mathcal{B}\binom{\phi_{1}^{\prime}}{L_{1}}=0$, gives rise to similar formulae (an invertible \mathcal{B} can be put to one)

Transport through point contact

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

- Scattering is nontrivial if $\mathcal{A}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is unitary, in particular, we have $|r(k)|^{2}+|t(k)|^{2}=1$

Transport through point contact

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

- Scattering is nontrivial if $\mathcal{A}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is unitary, in particular, we have $|r(k)|^{2}+|t(k)|^{2}=1$
- Notice that reflection dominates at high energies, since $|t(k)|^{2}=\mathcal{O}\left((\ln k)^{-2}\right)$ holds as $k \rightarrow \infty$

Transport through point contact

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

- Scattering is nontrivial if $\mathcal{A}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is unitary, in particular, we have $|r(k)|^{2}+|t(k)|^{2}=1$
- Notice that reflection dominates at high energies, since $|t(k)|^{2}=\mathcal{O}\left((\ln k)^{-2}\right)$ holds as $k \rightarrow \infty$
- For some \mathcal{A} there are also bound states decaying exponentially away of the junction, at most two

Single-mode geometric scatterers

Consider a sphere with two leads attached

with the coupling at both vertices given by the same \mathcal{A}

Single-mode geometric scatterers

Consider a sphere with two leads attached

with the coupling at both vertices given by the same \mathcal{A}
Three one-parameter families of \mathcal{A} were investigated [Kiselev, 1997; E.-Tater-Vaněk, 2001; Brüning-Geyler-Margulis-Pyataev, 2002]; it appears that scattering properties en gross are not very sensitive to the coupling:

- there numerous resonances
- in the background reflection dominates as $k \rightarrow \infty$

Geometric scatterer transport

Let us describe the argument in more details: construction of generalized eigenfunctions means to couple plane-wave solution at leads with

$$
u(x)=a_{1} G\left(x, x_{1} ; k\right)+a_{2} G\left(x, x_{2} ; k\right),
$$

where $G(\cdot, \cdot ; k)$ is Green's function of Δ_{LB} on the sphere

Geometric scatterer transport

Let us describe the argument in more details: construction of generalized eigenfunctions means to couple plane-wave solution at leads with

$$
u(x)=a_{1} G\left(x, x_{1} ; k\right)+a_{2} G\left(x, x_{2} ; k\right),
$$

where $G(\cdot, \cdot ; k)$ is Green's function of Δ_{LB} on the sphere The latter has a logarithmic singularity so $L_{j}(u)$ express in terms of $g:=G\left(x_{1}, x_{2} ; k\right)$ and

$$
\xi_{j} \equiv \xi\left(x_{j} ; k\right):=\lim _{x \rightarrow x_{j}}\left[G\left(x, x_{j} ; k\right)+\frac{\ln \left|x-x_{j}\right|}{2 \pi}\right]
$$

Geometric scatterer transport

Introduce $Z_{j}:=\frac{D_{j}}{2 \pi}+\xi_{j}$ and $\Delta:=g^{2}-Z_{1} Z_{2}$, and consider,
e.g., $\mathcal{A}_{j}=\left(\begin{array}{cc}(2 a)^{-1} & (2 \pi / a)^{1 / 2} \\ (2 \pi a)^{-1 / 2} & -\ln a\end{array}\right)$ with $a>0$. Then the solution of the matching condition is given by

Geometric scatterer transport

Introduce $Z_{j}:=\frac{D_{j}}{2 \pi}+\xi_{j}$ and $\Delta:=g^{2}-Z_{1} Z_{2}$, and consider,
e.g., $\mathcal{A}_{j}=\left(\begin{array}{cc}(2 a)^{-1} & (2 \pi / a)^{1 / 2} \\ (2 \pi a)^{-1 / 2} & -\ln a\end{array}\right)$ with $a>0$. Then the
solution of the matching condition is given by

$$
\begin{aligned}
r(k) & =-\frac{\pi \Delta+Z_{1}+Z_{2}-\pi^{-1}+2 i k a\left(Z_{2}-Z_{1}\right)+4 \pi k^{2} a^{2} \Delta}{\pi \Delta+Z_{1}+Z_{2}-\pi^{-1}+2 i k a\left(Z_{1}+Z_{2}+2 \pi \Delta\right)-4 \pi k^{2} a^{2} \Delta}, \\
t(k) & =-\frac{4 i k a g}{\pi \Delta+Z_{1}+Z_{2}-\pi^{-1}+2 i k a\left(Z_{1}+Z_{2}+2 \pi \Delta\right)-4 \pi k^{2} a^{2} \Delta} .
\end{aligned}
$$

Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold G. To make use of them we need to know g, Z_{1}, Z_{2}, Δ. The spectrum $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of Δ_{LB} on G is purely discrete with eigenfunctions $\left\{\phi(x)_{n}\right\}_{n=1}^{\infty}$. Then we find easily

$$
g(k)=\sum_{n=1}^{\infty} \frac{\phi_{n}\left(x_{1}\right) \overline{\phi_{n}\left(x_{2}\right)}}{\lambda_{n}-k^{2}}
$$

Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold G. To make use of them we need to know g, Z_{1}, Z_{2}, Δ. The spectrum $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of $\Delta_{\text {LB }}$ on G is purely discrete with eigenfunctions $\left\{\phi(x)_{n}\right\}_{n=1}^{\infty}$. Then we find easily

$$
g(k)=\sum_{n=1}^{\infty} \frac{\phi_{n}\left(x_{1}\right) \overline{\phi_{n}\left(x_{2}\right)}}{\lambda_{n}-k^{2}}
$$

and

$$
\xi\left(x_{j}, k\right)=\sum_{n=1}^{\infty}\left(\frac{\left|\phi_{n}\left(x_{j}\right)\right|^{2}}{\lambda_{n}-k^{2}}-\frac{1}{4 \pi n}\right)+c(G),
$$

where $c(G)$ depends of the manifold only (changing it is equivalent to a coupling constant renormalization)

A symmetric spherical scatterer

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l large enough the interval $(l(l-1), l(l+1))$ contains a point μ_{l} such that $\Delta\left(\sqrt{\mu_{l}}\right)=0$. Let $\varepsilon(\cdot)$ be a positive, strictly increasing function which tends to ∞ and obeys the inequality $|\varepsilon(x)| \leq x \ln x$ for $x>1$. Furthermore, denote $K_{\varepsilon}:=\mathbb{R} \backslash \bigcup_{l=2}^{\infty}\left(\mu_{l}-\varepsilon(l)(\ln l)^{-2}, \mu_{l}+\varepsilon(l)(\ln l)^{-2}\right)$.

A symmetric spherical scatterer

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l large enough the interval $(l(l-1), l(l+1))$ contains a point μ_{l} such that $\Delta\left(\sqrt{\mu_{l}}\right)=0$. Let $\varepsilon(\cdot)$ be a positive, strictly increasing function which tends to ∞ and obeys the inequality $|\varepsilon(x)| \leq x \ln x$ for $x>1$. Furthermore, denote $K_{\varepsilon}:=\mathbb{R} \backslash \bigcup_{l=2}^{\infty}\left(\mu_{l}-\varepsilon(l)(\ln l)^{-2}, \mu_{l}+\varepsilon(l)(\ln l)^{-2}\right)$. Then there is $c>0$ such that the transmission probability satisfies

$$
|t(k)|^{2} \leq c \varepsilon(l)^{-2}
$$

in the background, i.e. for $k^{2} \in K_{\varepsilon} \cap(l(l-1), l(l+1))$ and any l large enough. On the other hand, there are resonance peaks localized outside K_{ε} with the property

$$
\left|t\left(\sqrt{\mu_{l}}\right)\right|^{2}=1+\mathcal{O}\left((\ln l)^{-1}\right) \quad \text { as } \quad l \rightarrow \infty
$$

A symmetric spherical scatterer

The high-energy behavior shares features with strongly singular interaction such as δ^{\prime}, for which $|t(k)|^{2}=\mathcal{O}\left(k^{-2}\right)$. We conjecture that coarse-grained transmission through our "bubble" has the same decay as $k \rightarrow \infty$

A symmetric spherical scatterer

The high-energy behavior shares features with strongly singular interaction such as δ^{\prime}, for which $|t(k)|^{2}=\mathcal{O}\left(k^{-2}\right)$. We conjecture that coarse-grained transmission through our "bubble" has the same decay as $k \rightarrow \infty$

An asymmetric spherical scatterer

While the above general features are expected to be the same if the angular distance of junctions is less than π, the detailed transmission plot changes [Brüning et al., 2002]:

An asymmetric spherical scatterer

While the above general features are expected to be the same if the angular distance of junctions is less than π, the detailed transmission plot changes [Brüning et al., 2002]:

Arrays of geometric scatterers

In a similar way one can construct general scattering theory on such "hedgehog" manifolds composed of compact scatterers, connecting edges and external leads
[Brüning-Geyler, 2003]

Arrays of geometric scatterers

In a similar way one can construct general scattering theory on such "hedgehog" manifolds composed of compact scatterers, connecting edges and external leads [Brüning-Geyler, 2003]

Furthermore, infinite periodic systems can be treated by Floquet-Bloch decomposition

Sphere array spectrum

A band spectrum example from [E.-Tater-Vaněk, 2001]: radius $R=1$, segment length $\ell=1,0.01$ and coupling ρ

Sphere array spectrum

A band spectrum example from [E.-Tater-Vaněk, 2001]: radius $R=1$, segment length $\ell=1,0.01$ and coupling ρ

 [-G.0] (lower figure, p is the conlect madur,

How do gaps behave as $k \rightarrow \infty$?

Question: Are the scattering properties of such junctions reflected in gap behaviour of periodic families of geometric scatterers at high energies? And if we ask so, why it should be interesting?

How do gaps behave as $k \rightarrow \infty$?

Question: Are the scattering properties of such junctions reflected in gap behaviour of periodic families of geometric scatterers at high energies? And if we ask so, why it should be interesting?

Recall properties of singular Wannier-Stark systems:

How do gaps behave as $k \rightarrow \infty$?

Question: Are the scattering properties of such junctions reflected in gap behaviour of periodic families of geometric scatterers at high energies? And if we ask so, why it should be interesting?

Recall properties of singular Wannier-Stark systems:

Spectrum of such systems is purely discrete which is proved for "most" values of the parameters [Asch-DuclosE., 1998] and conjectured for all values. The reason behind are large gaps of δ^{\prime} Kronig-Penney systems

Periodic systems - assumptions

Consider periodic combinations of spheres and segments and
 adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")

Periodic systems - assumptions

Consider periodic combinations of spheres and segments and
 adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi / 2$

Periodic systems - assumptions

Consider periodic combinations of spheres and segments and
 adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi / 2$
- sphere-segment coupling $\mathcal{A}=\left(\begin{array}{cc}0 & 2 \pi \alpha^{-1} \\ \bar{\alpha}^{-1} & 0\end{array}\right)$

Periodic systems - assumptions

Consider periodic combinations of spheres and segments and
 adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi / 2$
- sphere-segment coupling $\mathcal{A}=\left(\begin{array}{cc}0 & 2 \pi \alpha^{-1} \\ \bar{\alpha}^{-1} & 0\end{array}\right)$
- we allow also tight coupling when the spheres touch

Tightly coupled spheres

Tightly coupled spheres

The tight-coupling boundary conditions will be

$$
\begin{aligned}
& L_{1}\left(\Phi_{1}\right)=A L_{0}\left(\Phi_{1}\right)+C L_{0}\left(\Phi_{2}\right), \\
& L_{1}\left(\Phi_{2}\right)=\bar{C} L_{0}\left(\Phi_{1}\right)+D L_{0}\left(\Phi_{2}\right)
\end{aligned}
$$

with $A, D \in \mathbb{R}, C \in \mathbb{C}$. For simplicity we put $A=D=0$

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ. Denote by B_{n}, G_{n} the widths ot the nth band and gap, respectively; then we have

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ. Denote by B_{n}, G_{n} the widths ot the nth band and gap, respectively; then we have
Theorem [Brüning-E.-Geyler, 2003]: There is a $c>0$ s.t.

$$
\frac{B_{n}}{G_{n}} \leq c n^{-\varepsilon}
$$

holds as $n \rightarrow \infty$ for loosely connected systems, where $\epsilon=\frac{1}{2}$ for arrays and $\epsilon=\frac{1}{4}$ for carpets. For tightly coupled systems to any $\epsilon \in(0,1)$ there is a $\tilde{c}>0$ such that the inequality $B_{n} / G_{n} \leq \tilde{c}(\ln n)^{-\epsilon}$ holds as $n \rightarrow \infty$

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ. Denote by B_{n}, G_{n} the widths ot the nth band and gap, respectively; then we have
Theorem [Brüning-E.-Geyler, 2003]: There is a $c>0$ s.t.

$$
\frac{B_{n}}{G_{n}} \leq c n^{-\epsilon}
$$

holds as $n \rightarrow \infty$ for loosely connected systems, where $\epsilon=\frac{1}{2}$ for arrays and $\epsilon=\frac{1}{4}$ for carpets. For tightly coupled systems to any $\epsilon \in(0,1)$ there is a $\tilde{c}>0$ such that the inequality $B_{n} / G_{n} \leq \tilde{c}(\ln n)^{-\epsilon}$ holds as $n \rightarrow \infty$
Conjecture: Similar results hold for other couplings and angular distances of the junctions. The problem is just technical; the dispersion curves are less regular in general

A heuristic way to choose the coupling

Let us return to the plane+halfline model and compare low-energy scattering to situation when the halfline is replaced by tube of radius a (we disregard effect of the sharp edge at interface of the two parts)

A heuristic way to choose the coupling

Let us return to the plane+halfline model and compare low-energy scattering to situation when the halfline is replaced by tube of radius a (we disregard effect of the sharp edge at interface of the two parts)

Plane plus tube scattering

Rotational symmetry allows us again to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$
\psi(x):=\left\{\begin{array}{ccc}
e^{i k x}+r_{a}^{(\ell)}(t) e^{-i k x} & \ldots & x \leq 0 \\
\sqrt{\frac{\pi k r}{2} t_{a}^{(\ell)}(k) H_{\ell}^{(1)}(k r)} & \ldots & r \geq a
\end{array}\right.
$$

Plane plus tube scattering

Rotational symmetry allows us again to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$
\psi(x):=\left\{\begin{array}{ccc}
e^{i k x}+r_{a}^{(\ell)}(t) e^{-i k x} & \ldots & x \leq 0 \\
\sqrt{\frac{\pi k r}{2}} t_{a}^{(\ell)}(k) H_{\ell}^{(1)}(k r) & \ldots & r \geq a
\end{array}\right.
$$

This yields

$$
r_{a}^{(\ell)}(k)=-\frac{\mathcal{D}_{a}^{a}}{\mathcal{D}_{+}^{a}}, \quad t_{a}^{(\ell)}(k)=4 i \sqrt{\frac{2 k a}{\pi}}\left(\mathcal{D}_{+}^{a}\right)^{-1}
$$

with

$$
\mathcal{D}_{ \pm}^{a}:=(1 \pm 2 i k a) H_{\ell}^{(1)}(k a)+2 k a\left(H_{\ell}^{(1)}\right)^{\prime}(k a)
$$

Plane plus point: low energy behavior

Wronskian relation $W\left(J_{\nu}(z), Y_{\nu}(z)\right)=2 / \pi z$ implies scattering unitarity, in particular, it shows that

$$
\left|r_{a}^{(\ell)}(k)\right|^{2}+\left|t_{a}^{(\ell)}(k)\right|^{2}=1
$$

Plane plus point: low energy behavior

Wronskian relation $W\left(J_{\nu}(z), Y_{\nu}(z)\right)=2 / \pi z$ implies scattering unitarity, in particular, it shows that

$$
\left|r_{a}^{(\ell)}(k)\right|^{2}+\left|t_{a}^{(\ell)}(k)\right|^{2}=1
$$

Using asymptotic properties of Bessel functions with for small values of the argument we get

$$
\left|t_{a}^{(\ell)}(k)\right|^{2} \approx \frac{4 \pi}{((\ell-1)!)^{2}}\left(\frac{k a}{2}\right)^{2 \ell-1}
$$

for $\ell \neq 0$, so the transmission probability vanishes fast as $k \rightarrow 0$ for higher partial waves

Heuristic choice of coupling parameters

The situation is different for $\ell=0$ where

$$
H_{0}^{(1)}(z)=1+\frac{2 i}{\pi}\left(\gamma+\ln \frac{k a}{2}\right)+\mathcal{O}\left(z^{2} \ln z\right)
$$

Heuristic choice of coupling parameters

The situation is different for $\ell=0$ where

$$
H_{0}^{(1)}(z)=1+\frac{2 i}{\pi}\left(\gamma+\ln \frac{k a}{2}\right)+\mathcal{O}\left(z^{2} \ln z\right)
$$

Comparison shows that $t_{a}^{(0)}(k)$ coincides, in the leading order as $k \rightarrow 0$, with the plane+halfline expression if

$$
A:=\frac{1}{2 a}, \quad D:=-\ln a, \quad B=2 \pi C=\sqrt{\frac{2 \pi}{a}}
$$

Heuristic choice of coupling parameters

The situation is different for $\ell=0$ where

$$
H_{0}^{(1)}(z)=1+\frac{2 i}{\pi}\left(\gamma+\ln \frac{k a}{2}\right)+\mathcal{O}\left(z^{2} \ln z\right)
$$

Comparison shows that $t_{a}^{(0)}(k)$ coincides, in the leading order as $k \rightarrow 0$, with the plane+halfline expression if

$$
A:=\frac{1}{2 a}, \quad D:=-\ln a, \quad B=2 \pi C=\sqrt{\frac{2 \pi}{a}}
$$

Notice that the "right" s-a extensions depend on a single parameter, namely radius of the "thin" component

Illustration on microwave experiments

Our models do not apply to QM only. Consider an electromagnetic resonator. If it is very flat, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation

Illustration on microwave experiments

Our models do not apply to QM only. Consider an electromagnetic resonator. If it is very flat, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation
Let a rectangular resonator be equipped with an antenna which serves a source. Such a system has many
resonances; we ask about distribution of their spacings

Illustration on microwave experiments

Our models do not apply to QM only. Consider an electromagnetic resonator. If it is very flat, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation
Let a rectangular resonator be equipped with an antenna which serves a source. Such a system has many resonances; we ask about distribution of their spacings
The reflection amplitude for a compact manifold with one lead attached at x_{0} is found as above: we have

$$
r(k)=-\frac{\pi Z(k)(1-2 i k a)-1}{\pi Z(k)(1+2 i k a)-1},
$$

where $Z(k):=\xi\left(\vec{x}_{0} ; k\right)-\frac{\ln a}{2 \pi}$

Finding the resonances

To evaluate regularized Green's function we use ev's and ef's of Dirichlet Laplacian in $M=\left[0, c_{1}\right] \times\left[0, c_{2}\right]$, namely

$$
\begin{aligned}
\phi_{n m}(x, y) & =\frac{2}{\sqrt{c_{1} c_{2}}} \sin \left(n \frac{\pi}{c_{1}} x\right) \sin \left(m \frac{\pi}{c_{2}} y\right) \\
\lambda_{n m} & =\frac{n^{2} \pi^{2}}{c_{1}^{2}}+\frac{m^{2} \pi^{2}}{c_{2}^{2}}
\end{aligned}
$$

Finding the resonances

To evaluate regularized Green's function we use ev's and ef's of Dirichlet Laplacian in $M=\left[0, c_{1}\right] \times\left[0, c_{2}\right]$, namely

$$
\begin{aligned}
\phi_{n m}(x, y) & =\frac{2}{\sqrt{c_{1} c_{2}}} \sin \left(n \frac{\pi}{c_{1}} x\right) \sin \left(m \frac{\pi}{c_{2}} y\right), \\
\lambda_{n m} & =\frac{n^{2} \pi^{2}}{c_{1}^{2}}+\frac{m^{2} \pi^{2}}{c_{2}^{2}}
\end{aligned}
$$

Resonances are given by complex zeros of the denominator of $r(k)$, i.e. by solutions of the algebraic equation

$$
\xi\left(\vec{x}_{0}, k\right)=\frac{\ln (a)}{2 \pi}+\frac{1}{\pi(1+i k a)}
$$

Comparison with experiment

Compare now experimental results obtained at University of Marburg with the model for $a=1 \mathrm{~mm}$, averaging over x_{0} and $c_{1}, c_{2}=20 \sim 50 \mathrm{~cm}$

Comparison with experiment

Compare now experimental results obtained at University of Marburg with the model for $a=1 \mathrm{~mm}$, averaging over x_{0} and $c_{1}, c_{2}=20 \sim 50 \mathrm{~cm}$

Important: An agreement is achieved with the lower third of measured frequencies - confirming thus validity of our approximation, since shorter wavelengths are comparable with the antenna radius a and $k a \ll 1$ is no longer valid

Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:
[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results depended on length L of the semiconductor "bar", in particular, that for some L spin-flip processes dominated

Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:
[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results depended on length L of the semiconductor "bar", in particular, that for some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit interaction with impurity atoms. It is complicated and no realistic transport theory of that type was constructed

Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:
[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results depended on length L of the semiconductor "bar", in particular, that for some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit interaction with impurity atoms. It is complicated and no realistic transport theory of that type was constructed
We construct a model in which spin-flipping interaction has a point character. Semiconductor bar is described as two strips coupled at the impurity sites by the boundary condition described above

Spin-orbit coupled strips

We assume that impurities are randomly distributed with the same coupling, $A=D$ and $C \in \mathbb{R}$. Then we can instead study a pair of decoupled strips,

$$
L_{1}\left(\Phi_{1} \pm \Phi_{2}\right)=(A \pm C) L_{0}\left(\Phi_{1} \pm \Phi_{2}\right),
$$

which have naturally different localizations lengths

Compare with measured conductance

Returning to original functions Φ_{j}, spin conductance oscillations are expected. This is indeed what we see if the parameters assume realistic values:

Summarizing Lecture III

- There are many physically interesting systems whose configuration space consists of components of different dimensions

Summarizing Lecture III

- There are many physically interesting systems whose configuration space consists of components of different dimensions
- In QM there is an efficient technique to model them generalizing ideal quantum graphs of Lecture I

Summarizing Lecture III

- There are many physically interesting systems whose configuration space consists of components of different dimensions
- In QM there is an efficient technique to model them generalizing ideal quantum graphs of Lecture I
- A typical feature of such systems is a suppression of transport at high energies

Summarizing Lecture III

- There are many physically interesting systems whose configuration space consists of components of different dimensions
- In QM there is an efficient technique to model them generalizing ideal quantum graphs of Lecture I
- A typical feature of such systems is a suppression of transport at high energies
- This has consequences for spectral properties of periodic and WS-type systems

Summarizing Lecture III

- There are many physically interesting systems whose configuration space consists of components of different dimensions
- In QM there is an efficient technique to model them generalizing ideal quantum graphs of Lecture I
- A typical feature of such systems is a suppression of transport at high energies
- This has consequences for spectral properties of periodic and WS-type systems
- Finally, concerning the justification of coupling choice a lot of work remains to be done; the situation is less understood than for quantum graphs of Lecture I

Some literature to Lecture III

[ADE98] J. Asch, P. Duclos, P.E.: Stability of driven systems with growing gaps. Quantum rings and Wannier ladders, J. Stat. Phys. 92 (1998), 1053-1069
[BEG03] J.Brüning, P.E., V.A. Geyler: Large gaps in point-coupled periodic systems of manifolds, J. Phys. A36 (2003), 4875-4890
[EP05] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys. 54 (2005), 77-115
[ETV01] P.E., M. Tater, D. Vaněk: A single-mode quantum transport in serial-structure geometric scatterers, J. Math. Phys. 42 (2001), 4050-4078
[EŠ86] P.E., P. Šeba: Quantum motion on two planes connected at one point, Lett. Math. Phys. 12 (1986), 193-198
[EŠ87] P.E., P. Šeba: Quantum motion on a halfline connected to a plane, J. Math. Phys. 28 (1987), 386-391
[EŠ89] P. Exner, P. Šeba: Free quantum motion on a branching graph, Rep. Math. Phys. 28 (1989), 7-26
[EŠ97] P.E., P. Šeba: Resonance statistics in a microwave cavity with a thin antenna, Phys. Lett. A228 (1997), 146-150
[ŠEPVS01] P. Šeba, P.E., K.N. Pichugin, A. Vyhnal, P. Středa: Two-component interference effect: model of a spin-polarized transport, Phys. Rev. Lett. 86 (2001), 1598-1601
and references therein, see also http://www.ujf.cas.cz/~exner

Summarizing the course

- Quantum graphs and various generalizations of them offer a wide variety of solvable models

Summarizing the course

- Quantum graphs and various generalizations of them offer a wide variety of solvable models
- They describe numerous systems of physical importance, both of quantum and classical nature

Summarizing the course

- Quantum graphs and various generalizations of them offer a wide variety of solvable models
- They describe numerous systems of physical importance, both of quantum and classical nature
- The field offers many open questions, some of them difficult, presenting thus a challenge for ambitious young people

