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Course overview

The aim to review some recent results in the theory of
quantum graphs, standard as well as non-standard

Lecture I
Ideal graphs – their nontrivial aspect, or what is
the meaning of the vertex coupling
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Lecture I
Ideal graphs – their nontrivial aspect, or what is
the meaning of the vertex coupling

Lecture II
Leaky graphs – what they are, and their spectral
and resonance properties

Lecture III
Generalized graphs – or what happens if a quantum
particle has to change its dimension
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Quantum graphs

The idea of investigating quantum particles confined to a
graph is rather old. It was first suggested by L. Pauling and
worked out by Ruedenberg and Scherr in 1953 in a model
of aromatic hydrocarbons
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Quantum graphs

The idea of investigating quantum particles confined to a
graph is rather old. It was first suggested by L. Pauling and
worked out by Ruedenberg and Scherr in 1953 in a model
of aromatic hydrocarbons

Using “textbook” graphs such as
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with “Kirchhoff” b.c. in combination with Pauli principle, they
reproduced the actual spectra with a . 10% accuracy

A caveat: later naive generalizations were less successful
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Ideal quantum graph concept

The beauty of theoretical physics resides in permanent
oscillation between physical anchoring in reality and
mathematical freedom of creating concepts
As a mathematically minded person you can imagine
quantum particles confined to a graph of arbitrary shape
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on graph edges,
boundary conditions at vertices

and, lo and behold, this turns out to be a practically
important concept – after experimentalists learned in the
last 15-20 years to fabricate tiny graph-like structure for
which this is a good model
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Remarks

Most often one deals with semiconductor graphs
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared
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Recently carbon nanotubes became a building material,
after branchings were fabricated cca five years ago:
see [Papadopoulos et al.’00], [Andriotis et al.’01], etc.
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Remarks

Most often one deals with semiconductor graphs
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared

Recently carbon nanotubes became a building material,
after branchings were fabricated cca five years ago:
see [Papadopoulos et al.’00], [Andriotis et al.’01], etc.

Moreover, from the stationary point of view a quantum
graph is also equivalent to a microwave network built of
optical cables – see [Hul et al.’04]

In addition to graphs one can consider generalized
graphs which consist of components of different
dimensions, modelling things as different as
combinations of nanotubes with fullerenes, scanning
tunneling microscopy, etc. – we will do that in Lecture III
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More remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in Pavlov
class has to know (or am I wrong?)
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[Bulla-Trenckler’90], although this remains so far a
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More remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in Pavlov
class has to know (or am I wrong?)

We consider mostly Schrödinger operators on graphs,
often free ones, vj = 0. Naturally one can add external
electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see e.g.
[Bulla-Trenckler’90], although this remains so far a
theoretical possibility only.

The graph literature is extensive; let us refer just to a
review [Kuchment’04] and other references in the recent
topical issue of “Waves in Random Media”
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Wavefunction coupling at vertices
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j

Since it is second-order, the boundary condition involve
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)} being of the form

AΨ(0) +BΨ′(0) = 0 ;

by [Kostrykin-Schrader’99] the n× n matrices A,B give rise
to a self-adjoint operator if they satisfy the conditions

rank (A,B) = n

AB∗ is self-adjoint
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Unique boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 8/115



Unique boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)

One can derive them modifying the argument used in
[Fülöp-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,
n
∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0)± iℓΨ′(0)‖Cn with a fixed
ℓ 6= 0 coincide, so the vectors must be related by an n× n
unitary matrix; this gives (U − I)Ψ(0) + iℓ(U + I)Ψ′(0) = 0
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Remarks
The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′
(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale
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(ℓ+ ℓ′)U + ℓ− ℓ′
(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale

The unique b.c. help to simplify the analysis done in
[Kostrykin-Schrader’99], [Kuchment’04] and other
previous work. It concerns, for instance, the null
spaces of the matrices A,B
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Remarks
The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′
(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale

The unique b.c. help to simplify the analysis done in
[Kostrykin-Schrader’99], [Kuchment’04] and other
previous work. It concerns, for instance, the null
spaces of the matrices A,B

or the on-shell scattering matrix for a star graph of n
halflines with the considered coupling which equals

SU (k) =
(k − 1)I + (k + 1)U

(k + 1)I + (k − 1)U
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n
∑

j=1

ψ′
j(0) = αψ(0)

with “coupling strength” α ∈ R; α =∞ gives U = −I
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standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n
∑

j=1

ψ′
j(0) = αψ(0)

with “coupling strength” α ∈ R; α =∞ gives U = −I
α = 0 corresponds to the “free motion”, the so-called
free boundary conditions (better name than Kirchhoff)
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n
∑

j=1

ψ′
j(0) = αψ(0)

with “coupling strength” α ∈ R; α =∞ gives U = −I
α = 0 corresponds to the “free motion”, the so-called
free boundary conditions (better name than Kirchhoff)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′
j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n
∑

j=1

ψj(0) = βψ′(0)

with β ∈ R; for β =∞ we get Neumann decoupling
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Further examples
Another generalization of 1D δ′ is the δ′ coupling:

n
∑

j=1

ψ′
j(0) = 0 , ψj(0)−ψk(0) =

β

n
(ψ′

j(0)−ψ′
k(0)) , 1 ≤ j, k ≤ n

with β ∈ R and U = n−iα
n+iαI − 2

n+iαJ ; the infinite value of
β refers again to Neumann decoupling of the edges
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Further examples
Another generalization of 1D δ′ is the δ′ coupling:

n
∑

j=1

ψ′
j(0) = 0 , ψj(0)−ψk(0) =

β

n
(ψ′

j(0)−ψ′
k(0)) , 1 ≤ j, k ≤ n

with β ∈ R and U = n−iα
n+iαI − 2

n+iαJ ; the infinite value of
β refers again to Neumann decoupling of the edges

Due to permutation symmetry the U ’s are combinations
of I and J in the examples. In general, interactions with
this property form a two-parameter family described by
U = uI + vJ s.t. |u| = 1 and |u+ nv| = 1 giving the b.c.

(u− 1)(ψj(0)− ψk(0)) + i(u− 1)(ψ′
j(0)− ψ′

k(0)) = 0

(u− 1 + nv)
n
∑

k=1

ψk(0) + i(u− 1 + nv)
n
∑

k=1

ψ′
k(0) = 0
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Why are vertices interesting?

While usually conductivity of graph structures is
controlled by external fields, vertex coupling can
serve the same purpose
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It is an interesting problem in itself, recall that for the
generalized point interaction, i.e. graph with n = 2,
the spectrum has nontrivial topological structure
[Tsutsui-Fülöp-Cheon’01]
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More recently, the same system has been proposed as
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Why are vertices interesting?

While usually conductivity of graph structures is
controlled by external fields, vertex coupling can
serve the same purpose

It is an interesting problem in itself, recall that for the
generalized point interaction, i.e. graph with n = 2,
the spectrum has nontrivial topological structure
[Tsutsui-Fülöp-Cheon’01]

More recently, the same system has been proposed as
a way to realize a qubit , with obvious consequences:
cf. “quantum abacus” in [Cheon-Tsutsui-Fülöp’04]

Recall also that in a rectangular lattice with δ coupling
of nonzero α spectrum depends on number theoretic
properties of model parameters [E.’95]
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More on the lattice example

Basic cell is a rectangle of sides ℓ1, ℓ2, the δ coupling with
parameter α is assumed at every vertex

x

y

g
n

g
n+1

fm+1

fm

l 2

1l
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More on the lattice example

Basic cell is a rectangle of sides ℓ1, ℓ2, the δ coupling with
parameter α is assumed at every vertex

x

y

g
n

g
n+1

fm+1

fm

l 2

1l

Spectral condition for quasimomentum (θ1, θ2) reads

2
∑

j=1

cos θjℓj − cos kℓj
sin kℓj

=
α

2k
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Lattice band spectrum
Recall a continued-fraction classification, α = [a0, a1, . . .]:

“good” irrationals have lim supj aj =∞
(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞
(and limj aj 6= 0, of course)
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Lattice band spectrum
Recall a continued-fraction classification, α = [a0, a1, . . .]:

“good” irrationals have lim supj aj =∞
(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞
(and limj aj 6= 0, of course)

Theorem [E.’95]: Call θ := ℓ2/ℓ1 and L := max{ℓ1, ℓ2}.
(a) If θ is rational or “good” irrational, there are infinitely
many gaps for any nonzero α
(b) For a “bad” irrational θ there is α0 > 0 such no gaps
open above threshold for |α| < α0

(c) There are infinitely many gaps if |α|L > π2

√
5
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Lattice band spectrum
Recall a continued-fraction classification, α = [a0, a1, . . .]:

“good” irrationals have lim supj aj =∞
(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞
(and limj aj 6= 0, of course)

Theorem [E.’95]: Call θ := ℓ2/ℓ1 and L := max{ℓ1, ℓ2}.
(a) If θ is rational or “good” irrational, there are infinitely
many gaps for any nonzero α
(b) For a “bad” irrational θ there is α0 > 0 such no gaps
open above threshold for |α| < α0

(c) There are infinitely many gaps if |α|L > π2

√
5

This all illustrates why it is desirable to understand vertex
couplings. This will be our main task in Lecture I
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A head-on approach

Take a more realistic situation with no ambiguity, such
as branching tubes and analyze the squeezing limit :
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Unfortunately, it is not so simple as it looks because
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A head-on approach

Take a more realistic situation with no ambiguity, such
as branching tubes and analyze the squeezing limit :
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Unfortunately, it is not so simple as it looks because

after a long effort the Neumann-like case was solved
[Kuchment-Zeng’01], [Rubinstein-Schatzmann’01],
[Saito’01], [E.-Post’05], [Post’06] giving free b.c. only

there is a recent progress in Dirichlet case [Post’05],
[Molchanov-Vainberg’06], [Grieser’06]?, but the full
understanding has not yet been achieved here
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Recall the Neumann-like case

The simplest situation in [KZ’01, EP’05] (weights left out)

Let M0 be a finite connected graph with vertices vk, k ∈ K
and edges ej ≃ Ij := [0, ℓj ], j ∈ J ; the state Hilbert space is

L2(M0) :=
⊕

j∈J
L2(Ij)

and in a similar way Sobolev spaces on M0 are introduced
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Recall the Neumann-like case

The simplest situation in [KZ’01, EP’05] (weights left out)

Let M0 be a finite connected graph with vertices vk, k ∈ K
and edges ej ≃ Ij := [0, ℓj ], j ∈ J ; the state Hilbert space is

L2(M0) :=
⊕

j∈J
L2(Ij)

and in a similar way Sobolev spaces on M0 are introduced

The form u 7→ ‖u′‖2M0
:=
∑

j∈J ‖u′‖2Ij
with u ∈ H1(M0) is

associated with the operator which acts as −∆M0
u = −u′′j

and satisfies free b.c.,
∑

j, ej meets vk

u′j(vk) = 0
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On the other hand, Laplacian on manifolds
Consider a Riemannian manifold X of dimension d ≥ 2 and
the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
−∆X which acts in fixed chart coordinates as

−∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)
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On the other hand, Laplacian on manifolds
Consider a Riemannian manifold X of dimension d ≥ 2 and
the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
−∆X which acts in fixed chart coordinates as

−∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)

If X is compact with piecewise smooth boundary, one starts
from the form defined on C∞(X). This yields −∆X as the
Neumann Laplacian on X and allows us in this way to treat
“fat graphs” and “sleeves” on the same footing
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Fat graphs and sleeves: manifolds

We associate with the graph M0 a family of manifolds Mε

M0 Mε

ej

vk
Uε,j

Vε,k

We suppose that Mε is a union of compact edge and vertex
components Uε,j and Vε,k such that their interiors are
mutually disjoint for all possible j ∈ J and k ∈ K
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Manifold building blocks

ε

ε

ej vk

Uε,j
Vε,k
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Manifold building blocks

ε

ε

ej vk

Uε,j
Vε,k

However, Mε need not be embedded in some R
d.

It is convenient to assume that Uε,j and Vε,k depend on ε
only through their metric:

for edge regions we assume that Uε,j is diffeomorphic to
Ij × F where F is a compact and connected manifold
(with or without a boundary) of dimension m := d− 1

for vertex regions we assume that the manifold Vε,k is
diffeomorphic to an ε-independent manifold Vk
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Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that
H, H′ are separable Hilbert spaces. We want to compare
ev’s λk and λ′k of nonnegative operators Q and Q′ with
purely discrete spectra defined via quadratic forms q and q′

on D ⊂ H and D′ ⊂ H′. Set ‖u‖2Q,n := ‖u‖2 + ‖Qn/2u‖2.
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Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that
H, H′ are separable Hilbert spaces. We want to compare
ev’s λk and λ′k of nonnegative operators Q and Q′ with
purely discrete spectra defined via quadratic forms q and q′

on D ⊂ H and D′ ⊂ H′. Set ‖u‖2Q,n := ‖u‖2 + ‖Qn/2u‖2.

Lemma: Suppose that Φ : D → D′ is a linear map such that
there are n1, n2 ≥ 0 and δ1, δ2 ≥ 0 such that

‖u‖2 ≤ ‖Φu‖′2 + δ1‖u‖2Q,n1
, q(u) ≥ q′(Φu)− δ2‖u‖2Q,n2

for all u ∈ D ⊂ D(Qmax{n1,n2}/2). Then to each k there is an
ηk(λk, δ1, δ2) > 0 which tends to zero as δ1, δ2 → 0, such that

λk ≥ λ′k − ηk
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Eigenvalue convergence

Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2h(y) ;

the two metrics coincide up to an O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges
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Eigenvalue convergence

Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2h(y) ;

the two metrics coincide up to an O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges

The sought result now looks as follows.

Theorem [E.-Post’05]: Under the stated assumptions
λk(Mε)→ λk(M0) as ε→ 0 (giving thus free b.c.!)
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Sketch of the proof

Proposition: λk(Mε) ≤ λk(M0) + o(1) as ε→ 0

To prove it apply the lemma to Φε : L2(M0)→ L2(Mε),

Φεu(z) :=







ε−m/2u(vk) if z ∈ Vk

ε−m/2uj(x) if z = (x, y) ∈ Uj

for u ∈ H1(M0)
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Sketch of the proof

Proposition: λk(Mε) ≤ λk(M0) + o(1) as ε→ 0

To prove it apply the lemma to Φε : L2(M0)→ L2(Mε),

Φεu(z) :=







ε−m/2u(vk) if z ∈ Vk

ε−m/2uj(x) if z = (x, y) ∈ Uj

for u ∈ H1(M0)

Proposition: λk(M0) ≤ λk(Mε) + o(1) as ε→ 0

Proof again by the lemma. Here one uses averaging:

Nju(x) :=

∫

F

u(x, ·) dF , Cku :=
1

volVk

∫

Vk

u dVk

to build the comparison map by interpolation:

(Ψε)j(x) := εm/2
(

Nju(x) + ρ(x)(Cku−Nju(x))
)

with a smooth ρ interpolating between zero and one
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More general b.c.? Recall RS argument

[Ruedenberg-Scher’53] used the heuristic argument:

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

The surface term dominates in the limit ε→ 0 giving
formally free boundary conditions
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More general b.c.? Recall RS argument

[Ruedenberg-Scher’53] used the heuristic argument:

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

The surface term dominates in the limit ε→ 0 giving
formally free boundary conditions

A way out could thus be to use different scaling rates of
edges and vertices. Of a particular interest is the borderline
case, voldVε ≈ vold−1∂Vε, when the integral of 〈dφ, du〉 is
expected to be negligible and we hope to obtain

λ0φ0(vk) =
∑

j∈Jk

φ′0,j(vk)
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Scaling with a powerα

Let us try to do the same properly using different scaling of
the edge and vertex regions. Some technical assumptions
needed, e.g., the bottlenecks must be “simple”

transition region Aε,jk

fat edge Uε,j

vertex region Vε,k

scaled as ε

scaled as εα
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Two-speed scaling limit

Let vertices scale as εα. Using the comparison lemma
again (just more in a more complicated way) we find that

if α ∈ (1−d−1, 1] the result is as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
free b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;
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Two-speed scaling limit

Let vertices scale as εα. Using the comparison lemma
again (just more in a more complicated way) we find that

if α ∈ (1−d−1, 1] the result is as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
free b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;

if α ∈ (0, 1−d−1) the “limiting” Hilbert space is
L2(M0)⊕ C

K , where K is # of vertices, and the
“limiting” operator acts as Dirichlet Laplacian at each
edge and as zero on C

K

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 25/115



Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u′j‖2Ij
,

the domain of which consists of u = {{uj}j∈J , {uk}k∈K}
such that u ∈ H1(M0)⊕ C

K and the edge and vertex
parts are coupled by (vol (V −

k )1/2uj(vk) = uk
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Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u′j‖2Ij
,

the domain of which consists of u = {{uj}j∈J , {uk}k∈K}
such that u ∈ H1(M0)⊕ C

K and the edge and vertex
parts are coupled by (vol (V −

k )1/2uj(vk) = uk

finally, if vertex regions do not scale at all, α = 0, the
manifold components decouple in the limit again,

⊕

j∈J
∆D
Ij
⊕
⊕

k∈K
∆V0,k
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Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u′j‖2Ij
,

the domain of which consists of u = {{uj}j∈J , {uk}k∈K}
such that u ∈ H1(M0)⊕ C

K and the edge and vertex
parts are coupled by (vol (V −

k )1/2uj(vk) = uk

finally, if vertex regions do not scale at all, α = 0, the
manifold components decouple in the limit again,

⊕

j∈J
∆D
Ij
⊕
⊕

k∈K
∆V0,k

Hence such a straightforward limiting procedure does
not help us to justify choice of appropriate s-a extension
Hence the scaling trick does not work: one has to add
either manifold geometry or external potentials
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Potential approximation

A more modest goal: let us look what we can achieve with
potential families on the graph alone
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Potential approximation

A more modest goal: let us look what we can achieve with
potential families on the graph alone

�
�

�

HHHH
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@
@

@ q
Consider once more star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj
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Potential approximation

A more modest goal: let us look what we can achieve with
potential families on the graph alone
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@
@

@ q
Consider once more star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj

We make the following assumptions:

Vj ∈ L1
loc(R+) , j = 1, . . . , n

δ coupling with a parameter α in the vertex

Then the operator, denoted as Hα(V ), is self-adjoint
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n

Theorem [E.’96]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫∞
0 Wj(x) dx

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 28/115



Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n

Theorem [E.’96]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫∞
0 Wj(x) dx

Proof: Analogous to that for δ interaction on the line. �
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More singular couplings
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
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More singular couplings
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
Inspiration: Recall that δ′ on the line can be approximated
by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]
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More singular couplings
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
Inspiration: Recall that δ′ on the line can be approximated
by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]

This suggests the following scheme:
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@

@ r−→
a→ 0

βa

b(a)

c(a)

HβHb,c
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δ′s approximation

Theorem [Cheon-E.’04]: Hb,c(a)→ Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β
a2
, c(a) := −1

a
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δ′s approximation

Theorem [Cheon-E.’04]: Hb,c(a)→ Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β
a2
, c(a) := −1

a

Proof : Green’s functions of both operators are found
explicitly be Krein’s formula, so the convergence can be
established by straightforward computation
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δ′s approximation

Theorem [Cheon-E.’04]: Hb,c(a)→ Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β
a2
, c(a) := −1

a

Proof : Green’s functions of both operators are found
explicitly be Krein’s formula, so the convergence can be
established by straightforward computation

Remark : Similar approximation can be worked out also for
the other couplings mentioned above – cf. [E.-Turek’06]. For
“most” permutation symmetric ones, e.g., one has

b(a) :=
in

a2

(

u− 1 + nv

u + 1 + nv
+

u− 1

u + 1

)

−1

, c(a) := −1

a
− i

u− 1

u + 1
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Summarizing Lecture I

The (ideal) graph model is easy to handle and
useful in describing a host of physical phenomena
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Summarizing Lecture I

The (ideal) graph model is easy to handle and
useful in describing a host of physical phenomena

Vertex coupling: to employ the full potential of the
graph model, it is vital to understand the physical
meaning of the corresponding boundary conditions
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geometry only we get free b.c. in the Neumann-like
case, the Dirichlet case is under study
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Summarizing Lecture I

The (ideal) graph model is easy to handle and
useful in describing a host of physical phenomena

Vertex coupling: to employ the full potential of the
graph model, it is vital to understand the physical
meaning of the corresponding boundary conditions

“Fat manifold” approximations: using the simplest
geometry only we get free b.c. in the Neumann-like
case, the Dirichlet case is under study

Potential approximation to δ: well understood

Potential approximation to more singular coupling:
there are particular results showing the way,
a deeper analysis needed
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Some literature to Lecture I
[CE04] T. Cheon, P.E.: An approximation to δ′ couplings on graphs, J. Phys. A:

Math. Gen. A37 (2004), L329-335

[E95] P.E.: Lattice Kronig–Penney models, Phys. Rev. Lett.75 (1995), 3503-3506

[E96] P.E.: Weakly coupled states on branching graphs, Lett. Math. Phys. 38 (1996),
313-320

[E97] P.E.: A duality between Schrödinger operators on graphs and certain Jacobi
matrices, Ann. Inst. H. Poincaré: Phys. Théor. 66 (1997), 359-371

[EHŠ06] P.E., P. Hejčík, P. Šeba: Approximations by graphs and emergence of global
structures, Rep. Math. Phys. 57 (2006), 445-455

[ENZ01] P.E., H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ′: an inverse
Klauder phenomenon with norm-resolvent convergence, CMP 224 (2001), 593-612

[EP05] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys.
54 (2005), 77-115

[ET06] P.E., O. Turek: Approximations of permutation-symmetric vertex couplings in
quantum graphs, Proceedings Snowbird 2005, to appear; math-ph/0508046,
and in preparation

and references therein, see also http://www.ujf.cas.cz/ ẽxner
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Lecture II

Leaky graphs – what they are, and
their spectral and resonance

properties
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Lecture overview

Why we might want something better than the ideal
graph model of the previous lecture
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A model of “leaky” quantum wires and graphs, with
Hamiltonians of the type Hα,Γ = −∆− αδ(x− Γ)
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Lecture overview

Why we might want something better than the ideal
graph model of the previous lecture

A model of “leaky” quantum wires and graphs, with
Hamiltonians of the type Hα,Γ = −∆− αδ(x− Γ)

Geometrically induced spectral properties of leaky
wires and graphs

How to find spectrum numerically: an approximation
by point interaction Hamiltonians

A solvable resonance model: interaction supported by
a line and a family of points – a caricature but solvable
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Drawbacks of ideal graphs

Presence of ad hoc parameters in the b.c. describing
branchings. A natural remedy: fit these using an
approximation procedure, e.g.

@
@

@
@

�
�

�
�

@
@

�
�r−→

As we have seen in Lecture I it is possible but not
quite easy and a lot of work remains to be done
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Drawbacks of ideal graphs

Presence of ad hoc parameters in the b.c. describing
branchings. A natural remedy: fit these using an
approximation procedure, e.g.

@
@

@
@

�
�

�
�

@
@

�
�r−→

As we have seen in Lecture I it is possible but not
quite easy and a lot of work remains to be done

More important, quantum tunneling is neglected
in ideal graph models – recall that a true quantum-wire
boundary is a finite potential jump – hence topology is
taken into account but geometric effects may not be
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Leaky quantum graphs

We consider “leaky” graphs with an attractive interaction
supported by graph edges. Formally we have

Hα,Γ = −∆− αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is the graph in question.
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Leaky quantum graphs

We consider “leaky” graphs with an attractive interaction
supported by graph edges. Formally we have

Hα,Γ = −∆− αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is the graph in question.

A proper definition of Hα,Γ: it can be associated naturally
with the quadratic form,

ψ 7→ ‖∇ψ‖2L2(Rn) − α
∫

Γ
|ψ(x)|2dx ,

which is closed and below bounded in W 2,1(Rn); the second
term makes sense in view of Sobolev embedding. This
definition also works for various “wilder” sets Γ
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Leaky graph Hamiltonians

For Γ with locally finite number of smooth edges and no
cusps we can use an alternative definition by boundary
conditions: Hα,Γ acts as −∆ on functions from W 2,1

loc (R2 \ Γ),
which are continuous and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣

∣

∣

∣

+

− ∂ψ

∂n
(x)

∣

∣

∣

∣

−
= −αψ(x)

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 37/115



Leaky graph Hamiltonians

For Γ with locally finite number of smooth edges and no
cusps we can use an alternative definition by boundary
conditions: Hα,Γ acts as −∆ on functions from W 2,1

loc (R2 \ Γ),
which are continuous and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣

∣

∣

∣

+

− ∂ψ

∂n
(x)

∣

∣

∣

∣

−
= −αψ(x)

Remarks:

for graphs in R
3 we use generalized b.c. which define a

two-dimensional point interaction in normal plane

one can combine “edges” of different dimensions as
long as codim Γ does not exceed three

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 37/115



Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated
eigenvalues of Hα,Γ. Consider a piecewise C1-smooth
Γ : R→ R

2 parameterized by its arc length, and assume:
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Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated
eigenvalues of Hα,Γ. Consider a piecewise C1-smooth
Γ : R→ R

2 parameterized by its arc length, and assume:

|Γ(s)− Γ(s′)| ≥ c|s− s′| holds for some c ∈ (0, 1)

Γ is asymptotically straight : there are d > 0, µ > 1
2

and ω ∈ (0, 1) such that

1− |Γ(s)− Γ(s′)|
|s− s′| ≤ d

[

1 + |s+ s′|2µ
]−1/2

in the sector Sω :=
{

(s, s′) : ω < s
s′ < ω−1

}

straight line is excluded , i.e. |Γ(s)− Γ(s′)| < |s− s′|
holds for some s, s′ ∈ R

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 38/115



Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions,
σess(Hα,Γ) = [−1

4α
2,∞) and Hα,Γ has at least one

eigenvalue below the threshold −1
4α

2
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Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions,
σess(Hα,Γ) = [−1

4α
2,∞) and Hα,Γ has at least one

eigenvalue below the threshold −1
4α

2

The same for curves in R
3, under stronger regularity,

with −1
4α

2 is replaced by the corresponding 2D p.i. ev

For curved surfaces Γ ⊂ R
3 such a result is proved in

the strong coupling asymptotic regime only

Implications for graphs: let Γ̃ ⊃ Γ in the set sense, then
Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum threshold is the
same for both graphs and Γ fits the above assumptions,
we have σdisc(Hα,Γ) 6= ∅ by minimax principle
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Proof: generalized BS principle

Classical Birman-Schwinger principle based on the identity

(H0 − V − z)−1 = (H0 − z)−1 + (H0 − z)−1V 1/2

×
{

I − |V |1/2(H0 − z)−1V 1/2
}−1
|V |1/2(H0 − z)−1

can be extended to generalized Schrödinger operators Hα,Γ

[BEKŠ’94]: the multiplication by (H0 − z)−1V 1/2 etc. is
replaced by suitable trace maps. In this way we find that
−κ2 is an eigenvalue of Hα,Γ iff the integral operator Rκα,Γ
on L2(R) with the kernel

(s, s′) 7→ α

2π
K0

(

κ|Γ(s)−Γ(s′)|
)

has an eigenvalue equal to one
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Sketch of the proof
We treat Rκα,Γ as a perturbation of the operator Rκα,Γ0

referring to a straight line. The spectrum of the latter is
found easily: it is purely ac and equal to [0, α/2κ)

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 41/115



Sketch of the proof
We treat Rκα,Γ as a perturbation of the operator Rκα,Γ0

referring to a straight line. The spectrum of the latter is
found easily: it is purely ac and equal to [0, α/2κ)

The curvature-induced perturbation is sign-definite: we

have
(

Rκα,Γ −Rκα,Γ0

)

(s, s′) ≥ 0 , and the inequality is sharp

somewhere unless Γ is a straight line. Using a variational
argument with a suitable trial function we can check the
inequality supσ(Rκα,Γ) > α

2κ
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Sketch of the proof
We treat Rκα,Γ as a perturbation of the operator Rκα,Γ0

referring to a straight line. The spectrum of the latter is
found easily: it is purely ac and equal to [0, α/2κ)

The curvature-induced perturbation is sign-definite: we

have
(

Rκα,Γ −Rκα,Γ0

)

(s, s′) ≥ 0 , and the inequality is sharp

somewhere unless Γ is a straight line. Using a variational
argument with a suitable trial function we can check the
inequality supσ(Rκα,Γ) > α

2κ

Due to the assumed asymptotic straightness of Γ the
perturbation Rκα,Γ −Rκα,Γ0

is Hilbert-Schmidt , hence the
spectrum of Rκα,Γ in the interval (α/2κ,∞) is discrete
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Sketch of the proof
We treat Rκα,Γ as a perturbation of the operator Rκα,Γ0

referring to a straight line. The spectrum of the latter is
found easily: it is purely ac and equal to [0, α/2κ)

The curvature-induced perturbation is sign-definite: we

have
(

Rκα,Γ −Rκα,Γ0

)

(s, s′) ≥ 0 , and the inequality is sharp

somewhere unless Γ is a straight line. Using a variational
argument with a suitable trial function we can check the
inequality supσ(Rκα,Γ) > α

2κ

Due to the assumed asymptotic straightness of Γ the
perturbation Rκα,Γ −Rκα,Γ0

is Hilbert-Schmidt , hence the
spectrum of Rκα,Γ in the interval (α/2κ,∞) is discrete

To conclude we employ continuity and limκ→∞ ‖Rκα,Γ‖ = 0.
The argument can be pictorially expressed as follows:
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Pictorial sketch of the proof



r

r

σ(Rκα,Γ)

1

κα/2
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More geometrically induced properties

(b) Perturbation theory for punctured manifolds:
let Γ : R→ R

2 be as above, C2-smooth, and let Γε differ by
ε-long hiatus around a fixed point x0 ∈ Γ. Let ϕj be the ef of
Hα,Γ corresponding to a simple ev λj ≡ λj(0) of Hα,Γ.

Theorem [E.-Yoshitomi, 2003]: The j-th ev of Hα,Γε
is

λj(ε) = λj(0) + α|ϕj(x0)|2ε+ o(εn−1) as ε→ 0
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More geometrically induced properties

(b) Perturbation theory for punctured manifolds:
let Γ : R→ R

2 be as above, C2-smooth, and let Γε differ by
ε-long hiatus around a fixed point x0 ∈ Γ. Let ϕj be the ef of
Hα,Γ corresponding to a simple ev λj ≡ λj(0) of Hα,Γ.

Theorem [E.-Yoshitomi, 2003]: The j-th ev of Hα,Γε
is

λj(ε) = λj(0) + α|ϕj(x0)|2ε+ o(εn−1) as ε→ 0

Remarks: Similarly one can express perturbed degenerate
ev’s. Analogous results hold for ev’s for punctured compact,
(d−1)-dimensional, C1+[d/2]-smooth manifolds in R

d.
Formally a small hole acts as repulsive δ interaction with
coupling α times (d−1)-Lebesgue measure of the hole
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Strongly attractive curves

(c) Strong coupling asymptotics: let Γ : R→ R
2 be as

above, now supposed to be C4-smooth

Theorem [E.-Yoshitomi, 2001]: The j-th ev of Hα,Γ is

λj(α) = −1

4
α2 + µj +O(α−1 lnα) as α→∞ ,

where µj is the j-th ev of SΓ := − d
ds2 − 1

4γ(s)
2 on L2((R)

and γ is the curvature of Γ.
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Strongly attractive curves

(c) Strong coupling asymptotics: let Γ : R→ R
2 be as

above, now supposed to be C4-smooth

Theorem [E.-Yoshitomi, 2001]: The j-th ev of Hα,Γ is

λj(α) = −1

4
α2 + µj +O(α−1 lnα) as α→∞ ,

where µj is the j-th ev of SΓ := − d
ds2 − 1

4γ(s)
2 on L2((R)

and γ is the curvature of Γ. The same holds if Γ is a loop;
then we also have

#σdisc(Hα,Γ) =
|Γ|α
2π

+O(lnα) as α→∞
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Further extensions

Hα,Γ with a periodic Γ has a band-type spectrum, but
analogous asymptotics is valid for its Floquet
components Hα,Γ(θ), with the comparison operator
SΓ(θ) satisfying the appropriate b.c. over the period cell.
It is important that the error term is uniform w.r.t. θ
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Further extensions

Hα,Γ with a periodic Γ has a band-type spectrum, but
analogous asymptotics is valid for its Floquet
components Hα,Γ(θ), with the comparison operator
SΓ(θ) satisfying the appropriate b.c. over the period cell.
It is important that the error term is uniform w.r.t. θ

Similar result holds for planar loops threaded by mg
field , homogeneous, AB flux line, etc.
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Further extensions

Hα,Γ with a periodic Γ has a band-type spectrum, but
analogous asymptotics is valid for its Floquet
components Hα,Γ(θ), with the comparison operator
SΓ(θ) satisfying the appropriate b.c. over the period cell.
It is important that the error term is uniform w.r.t. θ

Similar result holds for planar loops threaded by mg
field , homogeneous, AB flux line, etc.
Higher dimensions: the results extend to loops, infinite
and periodic curves in R

3
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Further extensions

Hα,Γ with a periodic Γ has a band-type spectrum, but
analogous asymptotics is valid for its Floquet
components Hα,Γ(θ), with the comparison operator
SΓ(θ) satisfying the appropriate b.c. over the period cell.
It is important that the error term is uniform w.r.t. θ

Similar result holds for planar loops threaded by mg
field , homogeneous, AB flux line, etc.
Higher dimensions: the results extend to loops, infinite
and periodic curves in R

3

and to curved surfaces in R
3; then the comparison

operator is −∆LB +K −M2, where K,M , respectively,
are the corresponding Gauss and mean curvatures
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How can one find the spectrum?

The above general results do not tell us how to find the
spectrum for a particular Γ. There are various possibilities:

Direct solution of the PDE problem Hα,Γψ = λψ is
feasible in a few simple examples only
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How can one find the spectrum?

The above general results do not tell us how to find the
spectrum for a particular Γ. There are various possibilities:

Direct solution of the PDE problem Hα,Γψ = λψ is
feasible in a few simple examples only

Using trace maps of Rk ≡ (−∆− k2)−1 and the
generalized BS principle

Rk := Rk0 + αRkdx,m[I − αRkm,m]−1Rkm,dx ,

where m is δ measure on Γ, we pass to a 1D integral
operator problem, αRkm,mψ = ψ
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How can one find the spectrum?

The above general results do not tell us how to find the
spectrum for a particular Γ. There are various possibilities:

Direct solution of the PDE problem Hα,Γψ = λψ is
feasible in a few simple examples only

Using trace maps of Rk ≡ (−∆− k2)−1 and the
generalized BS principle

Rk := Rk0 + αRkdx,m[I − αRkm,m]−1Rkm,dx ,

where m is δ measure on Γ, we pass to a 1D integral
operator problem, αRkm,mψ = ψ

discretization of the latter which amounts to a
point-interaction approximations to Hα,Γ
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2D point interactions

Such an interaction at the point a with the “coupling
constant” α is defined by b.c. which change locally the
domain of −∆: the functions behave as

ψ(x) = − 1

2π
log |x− a|L0(ψ, a) + L1(ψ, a) +O(|x− a|) ,

where the generalized b.v. L0(ψ, a) and L1(ψ, a) satisfy

L1(ψ, a) + 2παL0(ψ, a) = 0 , α ∈ R
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2D point interactions

Such an interaction at the point a with the “coupling
constant” α is defined by b.c. which change locally the
domain of −∆: the functions behave as

ψ(x) = − 1

2π
log |x− a|L0(ψ, a) + L1(ψ, a) +O(|x− a|) ,

where the generalized b.v. L0(ψ, a) and L1(ψ, a) satisfy

L1(ψ, a) + 2παL0(ψ, a) = 0 , α ∈ R

For our purpose, the coupling should depend on the set Y
approximating Γ. To see how compare a line Γ with the
solvable straight-polymer model [AGHH]

← r r r r r r r rαn

ℓ/n
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2D point-interaction approximation

Spectral threshold convergence requires αn = αn which
means that individual point interactions get weaker . Hence
we approximate Hα,Γ by point-interaction Hamiltonians
Hαn,Yn

with αn = α|Yn|, where |Yn| := ♯Yn.
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2D point-interaction approximation

Spectral threshold convergence requires αn = αn which
means that individual point interactions get weaker . Hence
we approximate Hα,Γ by point-interaction Hamiltonians
Hαn,Yn

with αn = α|Yn|, where |Yn| := ♯Yn.

Theorem [E.-Němcová, 2003]: Let a family {Yn} of finite
sets Yn ⊂ Γ ⊂ R

2 be such that

1

|Yn|
∑

y∈Yn

f(y) →
∫

Γ
f dm

holds for any bounded continuous function f : Γ→ C,
together with technical conditions, then Hαn,Yn

→ Hα,Γ

in the strong resolvent sense as n→∞.
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Comments on the approximation

A more general result is valid: Γ need not be a graph
and the coupling may be non-constant; also a magnetic
field can be added [Ožanová’06] (=Němcová)
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Comments on the approximation

A more general result is valid: Γ need not be a graph
and the coupling may be non-constant; also a magnetic
field can be added [Ožanová’06] (=Němcová)

The result applies to finite graphs, however, an infinite Γ
can be approximated in strong resolvent sense by a
family of cut-off graphs
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Comments on the approximation

A more general result is valid: Γ need not be a graph
and the coupling may be non-constant; also a magnetic
field can be added [Ožanová’06] (=Němcová)

The result applies to finite graphs, however, an infinite Γ
can be approximated in strong resolvent sense by a
family of cut-off graphs

The idea is due to [Brasche-Figari-Teta’98], who
analyzed point-interaction approximations of measure
perturbations with codim Γ = 1 in R

3. There are
differences, however, for instance in the 2D case we
can approximate attractive interactions only
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Comments on the approximation

A more general result is valid: Γ need not be a graph
and the coupling may be non-constant; also a magnetic
field can be added [Ožanová’06] (=Němcová)

The result applies to finite graphs, however, an infinite Γ
can be approximated in strong resolvent sense by a
family of cut-off graphs

The idea is due to [Brasche-Figari-Teta’98], who
analyzed point-interaction approximations of measure
perturbations with codim Γ = 1 in R

3. There are
differences, however, for instance in the 2D case we
can approximate attractive interactions only

A uniform resolvent convergence can be achieved
in this scheme if the term −ε2∆2 is added to the
Hamiltonian [Brasche-Ožanová’06]
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Scheme of the proof

Resolvent of Hαn,Yn
is given Krein’s formula. Given

k2 ∈ ρ(Hαn,Yn
) define |Yn| × |Yn| matrix by

Λαn,Yn
(k2;x, y) =

1

2π

[

2π|Yn|α+ ln

(

ik

2

)

+ γE

]

δxy

−Gk(x−y) (1−δxy)

for x, y ∈ Yn, where γE is Euler’ constant.
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Scheme of the proof

Resolvent of Hαn,Yn
is given Krein’s formula. Given

k2 ∈ ρ(Hαn,Yn
) define |Yn| × |Yn| matrix by

Λαn,Yn
(k2;x, y) =

1

2π

[

2π|Yn|α+ ln

(

ik

2

)

+ γE

]

δxy

−Gk(x−y) (1−δxy)

for x, y ∈ Yn, where γE is Euler’ constant. Then

(Hαn,Yn
− k2)−1(x, y) = Gk(x−y)

+
∑

x′,y′∈Yn

[

Λαn,Yn
(k2)

]−1
(x′, y′)Gk(x−x′)Gk(y−y′)
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Scheme of the proof

Resolvent of Hα,Γ is given by the generalized BS formula
given above; one has to check directly that the difference of
the two vanishes as n→∞ �
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Scheme of the proof

Resolvent of Hα,Γ is given by the generalized BS formula
given above; one has to check directly that the difference of
the two vanishes as n→∞ �

Remarks:

Spectral condition in the n-th approximation, i.e.
det Λαn,Yn

(k2) = 0, is a discretization of the integral
equation coming from the generalized BS principle
A solution to Λαn,Yn

(k2)η = 0 determines the
approximating ef by ψ(x) =

∑

yj∈Yn
ηjGk(x− yj)

A match with solvable models illustrates the
convergence and shows that it is not fast, slower
than n−1 in the eigenvalues. This comes from singular
“spikes” in the approximating functions
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An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite “leads”, e.g. an
infinite asymptotically straight curve. What we know
about scattering in such systems? Not much.

First question: What is the “free” operator? −∆ is not a
good candidate, rather Hα,Γ for a straight line Γ. Recall
that we are particularly interested in energy interval
(−1

4α
2, 0), i.e. 1D transport of states laterally bound to Γ
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Let Γ be a graph with semi-infinite “leads”, e.g. an
infinite asymptotically straight curve. What we know
about scattering in such systems? Not much.

First question: What is the “free” operator? −∆ is not a
good candidate, rather Hα,Γ for a straight line Γ. Recall
that we are particularly interested in energy interval
(−1

4α
2, 0), i.e. 1D transport of states laterally bound to Γ

Existence proof for the wave operators is known only for
locally deformed line [E.-Kondej’05]
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An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite “leads”, e.g. an
infinite asymptotically straight curve. What we know
about scattering in such systems? Not much.

First question: What is the “free” operator? −∆ is not a
good candidate, rather Hα,Γ for a straight line Γ. Recall
that we are particularly interested in energy interval
(−1

4α
2, 0), i.e. 1D transport of states laterally bound to Γ

Existence proof for the wave operators is known only for
locally deformed line [E.-Kondej’05]

Conjecture: For strong coupling, α→∞, the scattering
is described in leading order by SΓ := − d2

ds2 − 1
4γ(s)

2
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An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite “leads”, e.g. an
infinite asymptotically straight curve. What we know
about scattering in such systems? Not much.

First question: What is the “free” operator? −∆ is not a
good candidate, rather Hα,Γ for a straight line Γ. Recall
that we are particularly interested in energy interval
(−1

4α
2, 0), i.e. 1D transport of states laterally bound to Γ

Existence proof for the wave operators is known only for
locally deformed line [E.-Kondej’05]

Conjecture: For strong coupling, α→∞, the scattering
is described in leading order by SΓ := − d2

ds2 − 1
4γ(s)

2

On the other hand, in general, the global geometry of Γ
is expected to determine the S-matrix
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Something more on resonances

Consider infinite curves Γ, straight outside a compact, and
ask for examples of resonances. Recall the L2-approach: in
1D potential scattering one explores spectral properties of
the problem cut to a finite length L. It is time-honored trick
that scattering resonances are manifested as avoided
crossings in L dependence of the spectrum – for a recent
proof see [Hagedorn-Meller’00]. Try the same here:
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Something more on resonances

Consider infinite curves Γ, straight outside a compact, and
ask for examples of resonances. Recall the L2-approach: in
1D potential scattering one explores spectral properties of
the problem cut to a finite length L. It is time-honored trick
that scattering resonances are manifested as avoided
crossings in L dependence of the spectrum – for a recent
proof see [Hagedorn-Meller’00]. Try the same here:

Broken line: absence of “intrinsic” resonances due lack
of higher transverse thresholds

Z-shaped Γ: if a single bend has a significant reflection,
a double band should exhibit resonances

Bottleneck curve: a good candidate to demonstrate
tunneling resonances
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Broken line

α = 1
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Broken line

α = 1
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Z shape with θ =
π
2

α = 5

Lc = 10
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Z shape with θ =
π
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Z shape with θ = 0.32π

�
��
α = 5

Lc = 10
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Z shape with θ = 0.32π
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A bottleneck curve

Consider a straight line defor-
mation which shaped as an
open loop with a bottleneck the
width a of which we will vary
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A bottleneck curve

Consider a straight line defor-
mation which shaped as an
open loop with a bottleneck the
width a of which we will vary ←→ a

← → ← →L L

If Γ is a straight line, the transverse eigenfunction is
e−α|y|/2, hence the distance at which tunneling becomes
significant is ≈ 4α−1. In the example, we choose α = 1
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Bottleneck with a = 5.2
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Bottleneck with a = 2.9
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Bottleneck with a = 1.9
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A caricature but solvable model

Let us pass to a simple model in which existence of
resonances can be proved: a straight leaky wire and a
family of leaky dots.
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A caricature but solvable model

Let us pass to a simple model in which existence of
resonances can be proved: a straight leaky wire and a
family of leaky dots. Formal Hamiltonian

−∆− αδ(x− Σ) +
n
∑

i=1

β̃iδ(x− y(i))

in L2(R2) with α > 0. The 2D point interactions at Π = {y(i)}
with couplings β = {β1, . . . , βn} are properly introduced
through b.c. mentioned above, giving Hamiltonian Hα,β
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A caricature but solvable model

Let us pass to a simple model in which existence of
resonances can be proved: a straight leaky wire and a
family of leaky dots. Formal Hamiltonian

−∆− αδ(x− Σ) +
n
∑

i=1

β̃iδ(x− y(i))

in L2(R2) with α > 0. The 2D point interactions at Π = {y(i)}
with couplings β = {β1, . . . , βn} are properly introduced
through b.c. mentioned above, giving Hamiltonian Hα,β

Resolvent by Krein-type formula: given z ∈ C \ [0,∞) we
start from the free resolvent R(z) := (−∆− z)−1, also
interpreted as unitary R(z) acting from L2 to W 2,2. Then
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Resolvent by Krein-type formula
we introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2)→ Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,
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Resolvent by Krein-type formula
we introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2)→ Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,

then we define canonical embeddings of R(z) to Hi by
Ri,L(z) := τiR(z) : L2 → Hi, RL,i(z) := [Ri,L(z)]∗, and
Rj,i(z) := τjRL,i(z) : Hi → Hj, and
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Resolvent by Krein-type formula
we introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2)→ Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,

then we define canonical embeddings of R(z) to Hi by
Ri,L(z) := τiR(z) : L2 → Hi, RL,i(z) := [Ri,L(z)]∗, and
Rj,i(z) := τjRL,i(z) : Hi → Hj, and

operator-valued matrix Γ(z) : H0 ⊕H1 → H0 ⊕H1 by

Γij(z)g := −Ri,j(z)g for i 6= j and g ∈ Hj ,
Γ00(z)f :=

[

α−1 −R0,0(z)
]

f if f ∈ H0 ,

Γ11(z)ϕ :=
(

sβ(z)δkl −Gz(y(k), y(l))(1−δkl)
)

ϕ ,

with sβ(z) := β + s(z) := β + 1
2π (ln

√
z

2i − ψ(1))

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 62/115



Resolvent by Krein-type formula

To invert it we define the “reduced determinant”

D(z) := Γ11(z)− Γ10(z)Γ00(z)
−1Γ01(z) : H1 → H1 ,
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Resolvent by Krein-type formula

To invert it we define the “reduced determinant”

D(z) := Γ11(z)− Γ10(z)Γ00(z)
−1Γ01(z) : H1 → H1 ,

then an easy algebra yields expressions for “blocks” of
[Γ(z)]−1 in the form

[Γ(z)]−1
11 = D(z)−1 ,

[Γ(z)]−1
00 = Γ00(z)

−1 + Γ00(z)
−1Γ01(z)D(z)−1Γ10(z)Γ00(z)

−1 ,

[Γ(z)]−1
01 = −Γ00(z)

−1Γ01(z)D(z)−1 ,

[Γ(z)]−1
10 = −D(z)−1Γ10(z)Γ00(z)

−1 ;

thus to determine singularities of [Γ(z)]−1 one has to find
the null space of D(z)
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Resolvent by Krein-type formula

With this notation we can state the sought formula:

Theorem [E.-Kondej, 2004]: For z ∈ ρ(Hα,β) with Im z > 0

the resolvent Rα,β(z) := (Hα,β − z)−1 equals

Rα,β(z) = R(z) +
1
∑

i,j=0

RL,i(z)[Γ(z)]−1
ij Rj,L(z)
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Resolvent by Krein-type formula

With this notation we can state the sought formula:

Theorem [E.-Kondej, 2004]: For z ∈ ρ(Hα,β) with Im z > 0

the resolvent Rα,β(z) := (Hα,β − z)−1 equals

Rα,β(z) = R(z) +
1
∑

i,j=0

RL,i(z)[Γ(z)]−1
ij Rj,L(z)

Remark: One can also compare resolvent of Hα,β to that of
Hα ≡ Hα,Σ using trace maps of the latter,

Rα,β(z) = Rα(z) + Rα;L1(z)D(z)−1
Rα;1L(z)
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Spectral properties ofHα,β

It is easy to check that

σess(Hα,β) = σac(Hα,β) = [−1

4
α2,∞)
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Spectral properties ofHα,β

It is easy to check that

σess(Hα,β) = σac(Hα,β) = [−1

4
α2,∞)

σdisc given by generalized Birman-Schwinger principle:

dim ker Γ(z) = dim kerRα,β(z) ,

Hα,βφz = zφz ⇔ φz =
1
∑

i=0

RL,i(z)ηi,z ,

where (η0,z, η1,z) ∈ ker Γ(z). Moreover, it is clear that
0 ∈ σdisc(Γ(z))⇔ 0 ∈ σdisc(D(z)); this reduces the task
of finding the spectrum to an algebraic problem
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Spectral properties ofHα,β

Theorem [E.-Kondej, 2004]: (a) Let n = 1 and denote
dist (σ,Π) =: a, then Hα,β has one isolated eigenvalue
−κ2

a. The function a 7→ −κ2
a is increasing in (0,∞),

lim
a→∞

(−κ2
a) = min

{

ǫβ, −
1

4
α2

}

,

where ǫβ := −4e2(−2πβ+ψ(1)), while lima→0(−κ2
a) is finite.
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Spectral properties ofHα,β

Theorem [E.-Kondej, 2004]: (a) Let n = 1 and denote
dist (σ,Π) =: a, then Hα,β has one isolated eigenvalue
−κ2

a. The function a 7→ −κ2
a is increasing in (0,∞),

lim
a→∞

(−κ2
a) = min

{

ǫβ, −
1

4
α2

}

,

where ǫβ := −4e2(−2πβ+ψ(1)), while lima→0(−κ2
a) is finite.

(b) For any α > 0, β ∈ R
n, and n ∈ N+ the operator Hα,β

has N isolated eigenvalues, 1 ≤ N ≤ n. If all the point
interactions are strong enough, we have N = n
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Spectral properties ofHα,β

Theorem [E.-Kondej, 2004]: (a) Let n = 1 and denote
dist (σ,Π) =: a, then Hα,β has one isolated eigenvalue
−κ2

a. The function a 7→ −κ2
a is increasing in (0,∞),

lim
a→∞

(−κ2
a) = min

{

ǫβ, −
1

4
α2

}

,

where ǫβ := −4e2(−2πβ+ψ(1)), while lima→0(−κ2
a) is finite.

(b) For any α > 0, β ∈ R
n, and n ∈ N+ the operator Hα,β

has N isolated eigenvalues, 1 ≤ N ≤ n. If all the point
interactions are strong enough, we have N = n

Remark: Embedded eigenvalues due to mirror symmetry
w.r.t. Σ possible if n ≥ 2
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Resonance forn = 1

Assume the point interaction eigenvalue becomes
embedded as a→∞, i.e. that ǫβ > −1

4α
2
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Resonance forn = 1

Assume the point interaction eigenvalue becomes
embedded as a→∞, i.e. that ǫβ > −1

4α
2

Observation: Birman-Schwinger works in the complex
domain too; it is enough to look for analytical continuation of
D(·), which acts for z ∈ C \ [−1

4α
2,∞) as a multiplication by

da(z) := sβ(z)− φa(z) = sβ(z)−
∫ ∞

0

µ(z, t)

t− z − 1
4α

2
dt ,

µ(z, t) :=
iα

16π

(α− 2i(z−t)1/2) e2ia(z−t)1/2

t1/2(z−t)1/2

Thus we have a situation reminiscent of Friedrichs model,
just the functions involved are more complicated
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Analytic continuation

Take a region Ω− of the other sheet with (−1
4α

2, 0) as a part
of its boundary. Put µ0(λ, t) := limε→0 µ(λ+iε, t), define

I(λ) := P
∫ ∞

0

µ0(λ, t)

t− λ− 1
4α

2
dt ,

and furthermore, gα,a(z) := iα
4

e−αa

(z+ 1

4
α2)1/2

.
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Analytic continuation

Take a region Ω− of the other sheet with (−1
4α

2, 0) as a part
of its boundary. Put µ0(λ, t) := limε→0 µ(λ+iε, t), define

I(λ) := P
∫ ∞

0

µ0(λ, t)

t− λ− 1
4α

2
dt ,

and furthermore, gα,a(z) := iα
4

e−αa

(z+ 1

4
α2)1/2

.

Lemma: z 7→ φa(z) is continued analytically to Ω− as

φ0
a(λ) = I(λ) + gα,a(λ) for λ ∈

(

−1

4
α2, 0

)

,

φ−a (z) = −
∫ ∞

0

µ(z, t)

t− z − 1
4α

2
dt− 2gα,a(z) , z ∈ Ω−
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Analytic continuation

Proof: By a direct computation one checks

lim
ε→0+

φ±a (λ± iε) = φ0
a(λ) , −1

4
α2 < λ < 0 ,

so the claim follows from edge-of-the-wedge theorem. �
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Analytic continuation

Proof: By a direct computation one checks

lim
ε→0+

φ±a (λ± iε) = φ0
a(λ) , −1

4
α2 < λ < 0 ,

so the claim follows from edge-of-the-wedge theorem. �

The continuation of da is thus the function ηa : M 7→ C,
where M = {z : Im z > 0} ∪ (−1

4α
2, 0) ∪ Ω−, acting as

ηa(z) = sβ(z)− φl(z)a (z) ,

and our problem reduces to solution if the implicit function
problem ηa(z) = 0.
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Resonance forn = 1

Theorem [E.-Kondej, 2004]: Assume ǫβ > −1
4α

2. For any a
large enough the equation ηa(z) = 0 has a unique solution
z(a) = µ(b) + iν(b) ∈ Ω−, i.e. ν(a) < 0, with the following
asymptotic behaviour as a→∞,

µ(a) = ǫβ +O(e−a
√−ǫβ) , ν(a) = O(e−a

√−ǫβ)
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Resonance forn = 1

Theorem [E.-Kondej, 2004]: Assume ǫβ > −1
4α

2. For any a
large enough the equation ηa(z) = 0 has a unique solution
z(a) = µ(b) + iν(b) ∈ Ω−, i.e. ν(a) < 0, with the following
asymptotic behaviour as a→∞,

µ(a) = ǫβ +O(e−a
√−ǫβ) , ν(a) = O(e−a

√−ǫβ)

Remark: We have |φ−a (z)| → 0 uniformly in a and
|sβ(z)| → ∞ as Im z → −∞. Hence the imaginary part z(a)
is bounded as a function of a, in particular, the resonance
pole survives as a→ 0.
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Scattering for n = 1

The same as scattering problem for (Hα,β, Hα)

r
↑

↓
a

α

β
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Scattering for n = 1

The same as scattering problem for (Hα,β, Hα)

r
↑

↓
a

α

β

Existence and completeness by Birman-Kuroda theorem;
we seek on-shell S-matrix in (−1

4α
2, 0). By Krein formula,

resolvent for Im z > 0 expresses as

Rα,β(z) = Rα(z) + ηa(z)
−1(·, vz)vz,

where vz := Rα;L,1(z)
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Scattering for n = 1

Apply this operator to vector

ωλ,ε(x) := ei(λ+α2/4)1/2x1−ε2x2
1 e−α|x2|/2

and take limit ε→ 0+ in the sense of distributions; then a
straightforward calculation give generalized eigenfunction
of Hα,β. In particular, we have
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Scattering for n = 1

Apply this operator to vector

ωλ,ε(x) := ei(λ+α2/4)1/2x1−ε2x2
1 e−α|x2|/2

and take limit ε→ 0+ in the sense of distributions; then a
straightforward calculation give generalized eigenfunction
of Hα,β. In particular, we have

Proposition: For any λ ∈ (−1
4α

2, 0) the reflection and
transmission amplitudes are

R(λ) = T (λ)− 1 =
i

4
αηa(λ)−1 e−αa

(λ+ 1
4α

2)1/2
;

they have the same pole in the analytical continuation
to Ω− as the continued resolvent
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Resonances from perturbed symmetry

Take the simplest situation, n = 2r
↑

↓
a

α

β0

r

↑

↓
a

β0 + b
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Resonances from perturbed symmetry

Take the simplest situation, n = 2r
↑

↓
a

α

β0

r

↑

↓
a

β0 + b

Let σdisc(H0,β0
) ∩
(

−1
4α

2, 0
)

6= ∅, so that Hamiltonian H0,β0

has two eigenvalues, the larger of which, ǫ2, exceeds −1
4α

2.
Then Hα,β0

has the same eigenvalue ǫ2 embedded in the
negative part of continuous spectrum
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Resonances from perturbed symmetry

Take the simplest situation, n = 2r
↑

↓
a

α

β0

r

↑

↓
a

β0 + b

Let σdisc(H0,β0
) ∩
(

−1
4α

2, 0
)

6= ∅, so that Hamiltonian H0,β0

has two eigenvalues, the larger of which, ǫ2, exceeds −1
4α

2.
Then Hα,β0

has the same eigenvalue ǫ2 embedded in the
negative part of continuous spectrum

One has now to continue analytically the 2× 2 matrix
function D(·). Put κ2 :=

√−ǫ2 and s̆β(κ) := sβ(−κ2)
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Resonances from perturbed symmetry

Proposition: Assume ǫ2 ∈ (−1
4α

2, 0) and denote
g̃(λ) := −igα,a(λ). Then for all b small enough the continued
function has a unique zero z2(b) = µ2(b) + iν2(b) ∈ Ω− with
the asymptotic expansion

µ2(b) = ǫ2 +
κ2b

s̆′β(κ2)+K ′
0(2aκ2)

+O(b2) ,

ν2(b) = − κ2g̃(ǫ2)b
2

2(s̆′β(κ2)+K ′
0(2aκ2))|s̆′β(κ2)−φ0

a(ǫ2)|
+O(b3)
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Unstable state decay,n = 1

Complementary point of view: investigate decay of unstable
state associated with the resonance; assume again n = 1.
We found that if the “unperturbed” ev ǫβ of Hβ is embedded
in (−1

4α
2, 0) and a is large, the corresponding resonance

has a long halflife. In analogy with Friedrichs model
[Demuth, 1976] one conjectures that in weak coupling case,
the resonance state would be similar up to normalization to
the eigenvector ξ0 := K0(

√−ǫβ ·) of Hβ, with the decay law
being dominated by the exponential term
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Unstable state decay,n = 1

Complementary point of view: investigate decay of unstable
state associated with the resonance; assume again n = 1.
We found that if the “unperturbed” ev ǫβ of Hβ is embedded
in (−1

4α
2, 0) and a is large, the corresponding resonance

has a long halflife. In analogy with Friedrichs model
[Demuth, 1976] one conjectures that in weak coupling case,
the resonance state would be similar up to normalization to
the eigenvector ξ0 := K0(

√−ǫβ ·) of Hβ, with the decay law
being dominated by the exponential term

At the same time, Hα,β has always an isolated ev with ef
which is not orthogonal to ξ0 for any a (recall that both
functions are positive). Consequently, the decay law
|(ξ0, U(t)ξ0)|2‖ξ0‖−2 has always a nonzero limit as t→∞
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Summarizing Lecture II

“Leaky” graphs are a more realistic model of graph-like
nanostructures because they take quantum tunneling
into account
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Summarizing Lecture II

“Leaky” graphs are a more realistic model of graph-like
nanostructures because they take quantum tunneling
into account

Geometry plays essential role in determining spectral
and scattering properties of such systems

There are efficient numerical methods to determine
spectra of leaky graphs

Rigorous results on spectra and scattering are available
so far in simple situations only

The theory described in the lecture is far from complete,
various open questions persist
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Some literature to Lecture II
[EI01] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys.

A34 ( 2001), 1439-1450.
[EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a

curve in R
3, Ann. H. Poincaré 3 (2002), 967-981.

[EK03] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved
surface, J. Phys. A36 (2003), 443-457.

[EK04] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of
tunneling resonances, J. Phys. A37 (2004), 8255-8277.

[EK05] P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, J. Phys.
A38 (2005), 4865-4874.

[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction
Hamiltonians, J. Phys. A36 (2003), 10173-10193.

[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction
on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.

[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a
strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.

[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong
δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.

[EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a
δ-interaction on a punctured surface, Lett. Math. Phys. 65 (2003), 19-26.

and references therein, see also http://www.ujf.cas.cz/ ẽxner
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Lecture III

Generalized graphs – or what
happens if a quantum particle has

to change its dimension
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Lecture overview

Motivation – a nontrivial configuration space
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Lecture overview

Motivation – a nontrivial configuration space

Coupling by means of s-a extensions

A model: point-contact spectroscopy

A model: single-mode geometric scatterers

Large gaps in periodic systems

A heuristic way to choose the coupling

An illustration on microwave experiments

And something else: spin conductance oscillations
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A nontrivial configuration space

In both classical and QM there are systems with constraints
for which the configuration space is a nontrivivial subset of
R
n. Sometimes it happens that one can idealize as a union

of components of lower dimension
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A nontrivial configuration space

In both classical and QM there are systems with constraints
for which the configuration space is a nontrivivial subset of
R
n. Sometimes it happens that one can idealize as a union

of components of lower dimension
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A nontrivial configuration space

In CM it is not a big problem: few examples, and moreover,
the motion is “local” so we can “magnify” the junction region
and study trajectories there
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A nontrivial configuration space

In CM it is not a big problem: few examples, and moreover,
the motion is “local” so we can “magnify” the junction region
and study trajectories there

In contrast, QM offers interesting examples, e.g.

point-contact spectroscopy,

STEM-type devices,

compositions of nanotubes with fulleren molecules,

etc. Similarly one can consider some electromagnetic
systems such as flat microwave resonators with attached
antennas; we will comment on that later in the lecture
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Coupling by means of s-a extensions

Among other things we owe to J. von Neumann the theory
of self-adjoint extensions of symmetric operators is not the
least. Let us apply it to our problem.

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 82/115



Coupling by means of s-a extensions

Among other things we owe to J. von Neumann the theory
of self-adjoint extensions of symmetric operators is not the
least. Let us apply it to our problem.

The idea: Quantum dynamics on M1 ∪M2 coupled by a
point contact x0 ∈M1 ∩M2. Take Hamiltonians Hj on the
isolated manifold Mj and restrict them to functions
vanishing in the vicinity of x0
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Coupling by means of s-a extensions

Among other things we owe to J. von Neumann the theory
of self-adjoint extensions of symmetric operators is not the
least. Let us apply it to our problem.

The idea: Quantum dynamics on M1 ∪M2 coupled by a
point contact x0 ∈M1 ∩M2. Take Hamiltonians Hj on the
isolated manifold Mj and restrict them to functions
vanishing in the vicinity of x0

The operator H0 := H1,0 ⊕H2,0 is symmetric, in general not
s-a. We seek admissible Hamiltonians of the coupled
system among its self-adjoint extensions

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 82/115



Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where
Hj is a second-order operator the method works for
dimMj ≤ 3 (more generally, codimension of the contact
should not exceed three), since otherwise the restriction is
e.s.a. [similarly for Dirac operators we require the
codimension to be at most one]
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Limitations: In nonrelativistic QM considered here, where
Hj is a second-order operator the method works for
dimMj ≤ 3 (more generally, codimension of the contact
should not exceed three), since otherwise the restriction is
e.s.a. [similarly for Dirac operators we require the
codimension to be at most one]

Non-uniqueness: Apart of the trivial case, there are many
s-a extensions. A junction where n configuration-space
components meet contributes typically by n to deficiency
indices of H0, and thus adds n2 parameters to the resulting
Hamiltonian class; recall a similar situation in Lecture I
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Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where
Hj is a second-order operator the method works for
dimMj ≤ 3 (more generally, codimension of the contact
should not exceed three), since otherwise the restriction is
e.s.a. [similarly for Dirac operators we require the
codimension to be at most one]

Non-uniqueness: Apart of the trivial case, there are many
s-a extensions. A junction where n configuration-space
components meet contributes typically by n to deficiency
indices of H0, and thus adds n2 parameters to the resulting
Hamiltonian class; recall a similar situation in Lecture I

Physical meaning: The construction guarantees that the
probability current is conserved at the junction
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Different dimensions
In distinction to quantum graphs “1 + 1” situation, we
will be mostly concerned with cases “2+1” and “2+2”, i.e.
manifolds of these dimensions coupled through point
contacts. Other combinations are similar
We use “rational” units, in particular, the Hamiltonian acts at
each configuration component as −∆ (or Laplace-Beltrami
operator if Mj has a nontrivial metric)
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Different dimensions
In distinction to quantum graphs “1 + 1” situation, we
will be mostly concerned with cases “2+1” and “2+2”, i.e.
manifolds of these dimensions coupled through point
contacts. Other combinations are similar
We use “rational” units, in particular, the Hamiltonian acts at
each configuration component as −∆ (or Laplace-Beltrami
operator if Mj has a nontrivial metric)

An archetypal example, H = L2(R−)⊕ L2(R2), so the
wavefunctions are pairs φ :=

(φ1

Φ2

)

of square integrable
functions

������

������r
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A model: point-contact spectroscopy

Restricting
(

− d2

dx2

)

D
⊕−∆ to functions vanishing in the

vicinity of the junction gives symmetric operator with
deficiency indices (2, 2).
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A model: point-contact spectroscopy

Restricting
(

− d2

dx2

)

D
⊕−∆ to functions vanishing in the

vicinity of the junction gives symmetric operator with
deficiency indices (2, 2).

von Neumann theory gives a general prescription to
construct the s-a extensions, however, it is practical to
characterize the by means of boundary conditions. We
need generalized boundary values

L0(Φ) := lim
r→0

Φ(~x)

ln r
, L1(Φ) := lim

r→0
[ Φ(~x)− L0(Φ) ln r ]

(in view of the 2D character, in three dimensions L0 would
be the coefficient at the pole singularity)
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2 + 1 point-contact coupling

Typical b.c. determining a s-a extension

φ′1(0−) = Aφ1(0−) +BL0(Φ2) ,

L1(Φ2) = Cφ1(0−) +DL0(Φ2) ,
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2 + 1 point-contact coupling

Typical b.c. determining a s-a extension

φ′1(0−) = Aφ1(0−) +BL0(Φ2) ,

L1(Φ2) = Cφ1(0−) +DL0(Φ2) ,

where
A, D ∈ R and B = 2πC̄
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2 + 1 point-contact coupling

Typical b.c. determining a s-a extension

φ′1(0−) = Aφ1(0−) +BL0(Φ2) ,

L1(Φ2) = Cφ1(0−) +DL0(Φ2) ,

where
A, D ∈ R and B = 2πC̄

The easiest way to see that is to compute the boundary
form to H∗

0 , recall that the latter is given by the same
differential expression.
Notice that only the s-wave part of Φ in the plane,
Φ2(r, ϕ) = (2π)−1/2φ2(r) can be coupled nontrivially
to the halfline
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2 + 1 point-contact coupling

An integration by parts gives

(φ,H∗
0ψ)− (H∗

0φ, ψ) = φ̄′1(0)ψ1(0)− φ̄1(0)ψ′
1(0)

+ lim
ε→0+

ε
(

φ̄2(ε)ψ
′
1(ε)− φ̄′2(ε)ψ2(ε)

)

,
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2 + 1 point-contact coupling

An integration by parts gives

(φ,H∗
0ψ)− (H∗

0φ, ψ) = φ̄′1(0)ψ1(0)− φ̄1(0)ψ′
1(0)

+ lim
ε→0+

ε
(

φ̄2(ε)ψ
′
1(ε)− φ̄′2(ε)ψ2(ε)

)

,

and using the asymptotic behaviour

φ2(ε) =
√

2π [L0(Φ2) ln ε+ L1(Φ2) +O(ε) ] ,
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2 + 1 point-contact coupling

An integration by parts gives

(φ,H∗
0ψ)− (H∗

0φ, ψ) = φ̄′1(0)ψ1(0)− φ̄1(0)ψ′
1(0)

+ lim
ε→0+

ε
(

φ̄2(ε)ψ
′
1(ε)− φ̄′2(ε)ψ2(ε)

)

,

and using the asymptotic behaviour

φ2(ε) =
√

2π [L0(Φ2) ln ε+ L1(Φ2) +O(ε) ] ,

we can express the above limit term as

2π [L1(Φ2)L0(Ψ2)− L0(Φ2)L1(Ψ2)] ,

so the form vanishes under the stated boundary conditions
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Transport through point contact

Using the b.c. we match plane wave solution eikx + r(k)e−ikx

on the halfline with t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

obtaining

r(k) = − D−
D+

, t(k) =
2iCk

D+
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Transport through point contact

Using the b.c. we match plane wave solution eikx + r(k)e−ikx

on the halfline with t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

obtaining

r(k) = − D−
D+

, t(k) =
2iCk

D+

with

D± := (A± ik)
[

1 +
2i

π

(

γE −D + ln
k

2

)]

+
2i

π
BC ,

where γE ≈ 0.5772 is Euler’s number
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Transport through point contact

Using the b.c. we match plane wave solution eikx + r(k)e−ikx

on the halfline with t(k)(πkr/2)1/2H
(1)
0 (kr) in the plane

obtaining

r(k) = − D−
D+

, t(k) =
2iCk

D+

with

D± := (A± ik)
[

1 +
2i

π

(

γE −D + ln
k

2

)]

+
2i

π
BC ,

where γE ≈ 0.5772 is Euler’s number

Remark: More general coupling, A
(φ1

L0

)

+ B
(φ′

1

L1

)

= 0, gives
rise to similar formulae (an invertible B can be put to one)
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Transport through point contact

Let us finish discussion of this “point contact spectroscopy”
model by a few remarks:

Scattering is nontrivial if A =
(A B
C D

)

is not diagonal. For
any choice of s-a extension, the on-shell S-matrix is
unitary , in particular, we have |r(k)|2 + |t(k)|2 = 1
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Transport through point contact

Let us finish discussion of this “point contact spectroscopy”
model by a few remarks:

Scattering is nontrivial if A =
(A B
C D

)

is not diagonal. For
any choice of s-a extension, the on-shell S-matrix is
unitary , in particular, we have |r(k)|2 + |t(k)|2 = 1

Notice that reflection dominates at high energies, since
|t(k)|2 = O((ln k)−2) holds as k →∞
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Transport through point contact

Let us finish discussion of this “point contact spectroscopy”
model by a few remarks:

Scattering is nontrivial if A =
(A B
C D

)

is not diagonal. For
any choice of s-a extension, the on-shell S-matrix is
unitary , in particular, we have |r(k)|2 + |t(k)|2 = 1

Notice that reflection dominates at high energies, since
|t(k)|2 = O((ln k)−2) holds as k →∞
For some A there are also bound states decaying
exponentially away of the junction, at most two
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Single-mode geometric scatterers

Consider a sphere with two leads attached

&%
'$r

x1 x2

with the coupling at both vertices given by the same A
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Single-mode geometric scatterers

Consider a sphere with two leads attached

&%
'$r

x1 x2

with the coupling at both vertices given by the same A
Three one-parameter families of A were investigated
[Kiselev, 1997; E.-Tater-Vaněk, 2001; Brüning-Geyler-
Margulis-Pyataev, 2002]; it appears that scattering
properties en gross are not very sensitive to the coupling:

there numerous resonances

in the background reflection dominates as k →∞
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Geometric scatterer transport

Let us describe the argument in more details: construction
of generalized eigenfunctions means to couple plane-wave
solution at leads with

u(x) = a1G(x, x1; k) + a2G(x, x2; k) ,

where G(·, ·; k) is Green’s function of ∆LB on the sphere
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Geometric scatterer transport

Let us describe the argument in more details: construction
of generalized eigenfunctions means to couple plane-wave
solution at leads with

u(x) = a1G(x, x1; k) + a2G(x, x2; k) ,

where G(·, ·; k) is Green’s function of ∆LB on the sphere
The latter has a logarithmic singularity so Lj(u) express in
terms of g := G(x1, x2; k) and

ξj ≡ ξ(xj ; k) := lim
x→xj

[

G(x, xj ; k) +
ln |x−xj |

2π

]
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Geometric scatterer transport

Introduce Zj := Dj

2π + ξj and ∆ := g2− Z1Z2, and consider,

e.g., Aj =

(

(2a)−1 (2π/a)1/2

(2πa)−1/2 − ln a

)

with a > 0. Then the

solution of the matching condition is given by
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Geometric scatterer transport

Introduce Zj := Dj

2π + ξj and ∆ := g2− Z1Z2, and consider,

e.g., Aj =

(

(2a)−1 (2π/a)1/2

(2πa)−1/2 − ln a

)

with a > 0. Then the

solution of the matching condition is given by

r(k) = − π∆ + Z1 + Z2 − π−1 + 2ika(Z2−Z1) + 4πk2a2∆

π∆ + Z1+ Z2− π−1 + 2ika(Z1+Z2+2π∆)− 4πk2a2∆
,

t(k) = − 4ikag

π∆ + Z1+ Z2− π−1 + 2ika(Z1+Z2+2π∆)− 4πk2a2∆
.
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Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold G. To
make use of them we need to know g, Z1, Z2, ∆. The
spectrum {λn}∞n=1 of ∆LB on G is purely discrete with
eigenfunctions {φ(x)n}∞n=1. Then we find easily

g(k) =
∞
∑

n=1

φn(x1)φn(x2)

λn− k2

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 93/115



Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold G. To
make use of them we need to know g, Z1, Z2, ∆. The
spectrum {λn}∞n=1 of ∆LB on G is purely discrete with
eigenfunctions {φ(x)n}∞n=1. Then we find easily

g(k) =
∞
∑

n=1

φn(x1)φn(x2)

λn− k2

and

ξ(xj , k) =
∞
∑

n=1

( |φn(xj)|2
λn− k2

− 1

4πn

)

+ c(G) ,

where c(G) depends of the manifold only (changing it is
equivalent to a coupling constant renormalization)
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A symmetric spherical scatterer

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l
large enough the interval (l(l−1), l(l+1)) contains a point
µl such that ∆(

√
µl) = 0. Let ε(·) be a positive, strictly

increasing function which tends to∞ and obeys the
inequality |ε(x)| ≤ x lnx for x > 1. Furthermore, denote
Kε := R \⋃∞

l=2

(

µl−ε(l)(ln l)−2, µl+ε(l)(ln l)
−2
)

.
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A symmetric spherical scatterer

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l
large enough the interval (l(l−1), l(l+1)) contains a point
µl such that ∆(

√
µl) = 0. Let ε(·) be a positive, strictly

increasing function which tends to∞ and obeys the
inequality |ε(x)| ≤ x lnx for x > 1. Furthermore, denote
Kε := R \⋃∞

l=2

(

µl−ε(l)(ln l)−2, µl+ε(l)(ln l)
−2
)

. Then there
is c > 0 such that the transmission probability satisfies

|t(k)|2 ≤ cε(l)−2

in the background, i.e. for k2 ∈ Kε ∩ (l(l−1), l(l+1)) and any
l large enough. On the other hand, there are resonance
peaks localized outside Kε with the property

|t(√µl)|2 = 1 +O
(

(ln l)−1
)

as l→∞
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A symmetric spherical scatterer

The high-energy behavior shares features with strongly
singular interaction such as δ′, for which |t(k)|2 = O(k−2).
We conjecture that coarse-grained transmission through
our “bubble” has the same decay as k →∞
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A symmetric spherical scatterer

The high-energy behavior shares features with strongly
singular interaction such as δ′, for which |t(k)|2 = O(k−2).
We conjecture that coarse-grained transmission through
our “bubble” has the same decay as k →∞
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An asymmetric spherical scatterer
While the above general features are expected to be the
same if the angular distance of junctions is less than π, the
detailed transmission plot changes [Brüning et al., 2002]:
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An asymmetric spherical scatterer
While the above general features are expected to be the
same if the angular distance of junctions is less than π, the
detailed transmission plot changes [Brüning et al., 2002]:
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Arrays of geometric scatterers

In a similar way one can construct general scattering theory
on such “hedgehog” manifolds composed of compact
scatterers, connecting edges and external leads
[Brüning-Geyler, 2003]

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 97/115



Arrays of geometric scatterers

In a similar way one can construct general scattering theory
on such “hedgehog” manifolds composed of compact
scatterers, connecting edges and external leads
[Brüning-Geyler, 2003]

Furthermore, infinite periodic systems can be treated by
Floquet-Bloch decomposition

&%
'$ppp r

&%
'$r

&%
'$r pp p ⇔ &%

'$r
eiθ

r

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 97/115



Sphere array spectrum
A band spectrum example from [E.-Tater-Vaněk, 2001]:
radius R = 1, segment length ℓ = 1, 0.01 and coupling ρ
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Sphere array spectrum
A band spectrum example from [E.-Tater-Vaněk, 2001]:
radius R = 1, segment length ℓ = 1, 0.01 and coupling ρ
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How do gaps behave ask →∞?
Question: Are the scattering properties of such junctions
reflected in gap behaviour of periodic families of geometric
scatterers at high energies? And if we ask so, why it should
be interesting?
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How do gaps behave ask →∞?
Question: Are the scattering properties of such junctions
reflected in gap behaviour of periodic families of geometric
scatterers at high energies? And if we ask so, why it should
be interesting?

Recall properties of singular Wannier-Stark systems:

PPPPPPPPPPPPPPPPPP

r r r r r rlinear potential

δ′
δ′

δ′
δ′

δ′
δ′
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How do gaps behave ask →∞?
Question: Are the scattering properties of such junctions
reflected in gap behaviour of periodic families of geometric
scatterers at high energies? And if we ask so, why it should
be interesting?

Recall properties of singular Wannier-Stark systems:

PPPPPPPPPPPPPPPPPP

r r r r r rlinear potential

δ′
δ′

δ′
δ′

δ′
δ′

Spectrum of such systems is purely discrete which is
proved for “most” values of the parameters [Asch-Duclos-
E., 1998] and conjectured for all values. The reason behind
are large gaps of δ′ Kronig-Penney systems
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Periodic systems – assumptions
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Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)
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Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)

angular distance between contacts equals π or π/2
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Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)

angular distance between contacts equals π or π/2

sphere-segment coupling A =

(

0 2πα−1

ᾱ−1 0

)
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Periodic systems – assumptions
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n

S
2
n+1

Consider periodic combinations
of spheres and segments and
adopt the following assumptions:

periodicity in one or two directions (one can speak
about “bead arrays” and “bead carpets”)

angular distance between contacts equals π or π/2

sphere-segment coupling A =

(

0 2πα−1

ᾱ−1 0

)

we allow also tight coupling when the spheres touch
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Tightly coupled spheres
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Tightly coupled spheres
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...

The tight-coupling boundary conditions will be

L1(Φ1) = AL0(Φ1) + CL0(Φ2) ,

L1(Φ2) = C̄L0(Φ1) +DL0(Φ2)

with A,D ∈ R, C ∈ C. For simplicity we put A = D = 0
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Large gaps in periodic manifolds
We analyze how spectra of the fibre operators depend on
quasimomentum θ. Denote by Bn, Gn the widths ot the nth
band and gap, respectively; then we have
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Large gaps in periodic manifolds
We analyze how spectra of the fibre operators depend on
quasimomentum θ. Denote by Bn, Gn the widths ot the nth
band and gap, respectively; then we have

Theorem [Brüning-E.-Geyler, 2003]: There is a c > 0 s.t.

Bn
Gn
≤ c n−ε

holds as n→∞ for loosely connected systems, where
ǫ = 1

2 for arrays and ǫ = 1
4 for carpets. For tightly coupled

systems to any ǫ ∈ (0, 1) there is a c̃ > 0 such that the
inequality Bn/Gn ≤ c̃ (lnn)−ǫ holds as n→∞
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Large gaps in periodic manifolds
We analyze how spectra of the fibre operators depend on
quasimomentum θ. Denote by Bn, Gn the widths ot the nth
band and gap, respectively; then we have

Theorem [Brüning-E.-Geyler, 2003]: There is a c > 0 s.t.

Bn
Gn
≤ c n−ǫ

holds as n→∞ for loosely connected systems, where
ǫ = 1

2 for arrays and ǫ = 1
4 for carpets. For tightly coupled

systems to any ǫ ∈ (0, 1) there is a c̃ > 0 such that the
inequality Bn/Gn ≤ c̃ (lnn)−ǫ holds as n→∞
Conjecture: Similar results hold for other couplings and
angular distances of the junctions. The problem is just
technical; the dispersion curves are less regular in general
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A heuristic way to choose the coupling

Let us return to the plane+halfline model and compare
low-energy scattering to situation when the halfline is
replaced by tube of radius a (we disregard effect of the
sharp edge at interface of the two parts)
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A heuristic way to choose the coupling

Let us return to the plane+halfline model and compare
low-energy scattering to situation when the halfline is
replaced by tube of radius a (we disregard effect of the
sharp edge at interface of the two parts)
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Plane plus tube scattering

Rotational symmetry allows us again to treat each partial
wave separately. Given orbital quantum number ℓ one has
to match smoothly the corresponding solutions

ψ(x) :=







eikx + r
(ℓ)
a (t)e−ikx . . . x ≤ 0

√

πkr
2 t

(ℓ)
a (k)H

(1)
ℓ (kr) . . . r ≥ a
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Plane plus tube scattering

Rotational symmetry allows us again to treat each partial
wave separately. Given orbital quantum number ℓ one has
to match smoothly the corresponding solutions

ψ(x) :=







eikx + r
(ℓ)
a (t)e−ikx . . . x ≤ 0

√

πkr
2 t

(ℓ)
a (k)H

(1)
ℓ (kr) . . . r ≥ a

This yields

r
(ℓ)
a (k) = − D

a
−
Da+

, t
(ℓ)
a (k) = 4i

√

2ka

π

(

Da+
)−1

with

Da± := (1± 2ika)H
(1)
ℓ (ka) + 2ka

(

H
(1)
ℓ

)′
(ka)
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Plane plus point: low energy behavior

Wronskian relation W (Jν(z), Yν(z)) = 2/πz implies
scattering unitarity, in particular, it shows that

|r(ℓ)a (k)|2+ |t(ℓ)a (k)|2 = 1
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Plane plus point: low energy behavior

Wronskian relation W (Jν(z), Yν(z)) = 2/πz implies
scattering unitarity, in particular, it shows that

|r(ℓ)a (k)|2+ |t(ℓ)a (k)|2 = 1

Using asymptotic properties of Bessel functions with for
small values of the argument we get

|t(ℓ)a (k)|2 ≈ 4π

((ℓ− 1)!)2

(

ka

2

)2ℓ−1

for ℓ 6= 0, so the transmission probability vanishes fast as
k → 0 for higher partial waves
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Heuristic choice of coupling parameters

The situation is different for ℓ = 0 where

H
(1)
0 (z) = 1 +

2i

π

(

γ + ln
ka

2

)

+O(z2 ln z)
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The situation is different for ℓ = 0 where

H
(1)
0 (z) = 1 +

2i

π

(

γ + ln
ka

2

)

+O(z2 ln z)

Comparison shows that t(0)
a (k) coincides, in the leading

order as k → 0, with the plane+halfline expression if

A :=
1

2a
, D := − ln a , B = 2πC =

√

2π

a
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Heuristic choice of coupling parameters

The situation is different for ℓ = 0 where

H
(1)
0 (z) = 1 +

2i

π

(

γ + ln
ka

2

)

+O(z2 ln z)

Comparison shows that t(0)
a (k) coincides, in the leading

order as k → 0, with the plane+halfline expression if

A :=
1

2a
, D := − ln a , B = 2πC =

√

2π

a

Notice that the “right” s-a extensions depend on a single
parameter, namely radius of the “thin” component
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Illustration on microwave experiments

Our models do not apply to QM only. Consider an
electromagnetic resonator . If it is very flat , Maxwell
equations simplify: TE modes effectively decouple from TM
ones and one can describe them by Helmholz equation
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Illustration on microwave experiments

Our models do not apply to QM only. Consider an
electromagnetic resonator . If it is very flat , Maxwell
equations simplify: TE modes effectively decouple from TM
ones and one can describe them by Helmholz equation
Let a rectangular resonator be equipped with an antenna
which serves a source. Such a system has many
resonances; we ask about distribution of their spacings
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Illustration on microwave experiments

Our models do not apply to QM only. Consider an
electromagnetic resonator . If it is very flat , Maxwell
equations simplify: TE modes effectively decouple from TM
ones and one can describe them by Helmholz equation
Let a rectangular resonator be equipped with an antenna
which serves a source. Such a system has many
resonances; we ask about distribution of their spacings

The reflection amplitude for a compact manifold with one
lead attached at x0 is found as above: we have

r(k) = − πZ(k)(1− 2ika)− 1

πZ(k)(1 + 2ika)− 1
,

where Z(k) := ξ(~x0; k)− ln a
2π
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Finding the resonances

To evaluate regularized Green’s function we use ev’s and
ef’s of Dirichlet Laplacian in M = [0, c1]× [0, c2], namely

φnm(x, y) =
2√
c1c2

sin(n
π

c1
x) sin(m

π

c2
y) ,

λnm =
n2π2

c21
+
m2π2

c22
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Finding the resonances

To evaluate regularized Green’s function we use ev’s and
ef’s of Dirichlet Laplacian in M = [0, c1]× [0, c2], namely

φnm(x, y) =
2√
c1c2

sin(n
π

c1
x) sin(m

π

c2
y) ,

λnm =
n2π2

c21
+
m2π2

c22

Resonances are given by complex zeros of the denominator
of r(k), i.e. by solutions of the algebraic equation

ξ(~x0, k) =
ln(a)

2π
+

1

π(1 + ika)
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Comparison with experiment

Compare now experimental results obtained at University of
Marburg with the model for a = 1 mm, averaging over x0 and
c1, c2 = 20 ∼ 50 cm

s
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Comparison with experiment

Compare now experimental results obtained at University of
Marburg with the model for a = 1 mm, averaging over x0 and
c1, c2 = 20 ∼ 50 cm
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P(s)
Figure 1

antenna

resonator

Important: An agreement is achieved with the lower third of
measured frequencies – confirming thus validity of our
approximation, since shorter wavelengths are comparable
with the antenna radius a and ka≪ 1 is no longer valid
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Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial
entities. Illustration: a spin conductance problem:
[Hu et al., 2001] measured conductance of polarized
electrons through an InAs sample; the results depended on
length L of the semiconductor “bar”, in particular, that for
some L spin-flip processes dominated
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Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial
entities. Illustration: a spin conductance problem:
[Hu et al., 2001] measured conductance of polarized
electrons through an InAs sample; the results depended on
length L of the semiconductor “bar”, in particular, that for
some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit
interaction with impurity atoms. It is complicated and no
realistic transport theory of that type was constructed
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Spin conductance oscillations

Finally, manifolds we consider need not be separate spatial
entities. Illustration: a spin conductance problem:
[Hu et al., 2001] measured conductance of polarized
electrons through an InAs sample; the results depended on
length L of the semiconductor “bar”, in particular, that for
some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit
interaction with impurity atoms. It is complicated and no
realistic transport theory of that type was constructed
We construct a model in which spin-flipping interaction has
a point character. Semiconductor bar is described as two
strips coupled at the impurity sites by the boundary
condition described above
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Spin-orbit coupled strips

We assume that impurities are randomly distributed with
the same coupling, A = D and C ∈ R. Then we can instead
study a pair of decoupled strips,

L1(Φ1 ± Φ2) = (A± C)L0(Φ1 ± Φ2) ,

which have naturally different localizations lengths
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Compare with measured conductance

Returning to original functions Φj, spin conductance
oscillations are expected. This is indeed what we see
if the parameters assume realistic values:
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0.2

0.4

0.6

Partial Differential Equations: Analysis, Applications, and Inverse Problems; NZIMA, Auckland, November 2006 – p. 112/115



Summarizing Lecture III

There are many physically interesting systems whose
configuration space consists of components of different
dimensions
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In QM there is an efficient technique to model them
generalizing ideal quantum graphs of Lecture I

A typical feature of such systems is a suppression of
transport at high energies

This has consequences for spectral properties of
periodic and WS-type systems
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Summarizing Lecture III

There are many physically interesting systems whose
configuration space consists of components of different
dimensions

In QM there is an efficient technique to model them
generalizing ideal quantum graphs of Lecture I

A typical feature of such systems is a suppression of
transport at high energies

This has consequences for spectral properties of
periodic and WS-type systems

Finally, concerning the justification of coupling choice
a lot of work remains to be done; the situation is less
understood than for quantum graphs of Lecture I
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Some literature to Lecture III
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rings and Wannier ladders, J. Stat. Phys. 92 (1998), 1053-1069
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manifolds, J. Phys. A36 (2003), 4875-4890
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54 (2005), 77-115
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and references therein, see also http://www.ujf.cas.cz/ ẽxner
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Summarizing the course

Quantum graphs and various generalizations of them
offer a wide variety of solvable models
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Summarizing the course

Quantum graphs and various generalizations of them
offer a wide variety of solvable models

They describe numerous systems of physical
importance, both of quantum and classical nature
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Summarizing the course

Quantum graphs and various generalizations of them
offer a wide variety of solvable models

They describe numerous systems of physical
importance, both of quantum and classical nature

The field offers many open questions, some of them
difficult, presenting thus a challenge for ambitious
young people
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