
MATHEMATICAL MINIATURE 9

Hardy’s taxi, x2 + 3y2 = p and Michael Lennon

Michael Lennon was a member of the academic staff of The University of Auckland, first in the Mathematics
Department and then in the Computer Science Department, from 1970 until his untimely death in 1999. Al-
though he was far from being a “publish or perish” scientist, he made his own distinctive contributions. He is,
for example, recognised as the teacher of Vaughan Jones who most influenced the early career of that famous
mathematician. As a colleague of Michael, I turned to him from time to time for advice on technical matters.
There were many areas in which he was the sole authority in Auckland, and probably in New Zealand. An
ambition I never achieved was to write something with Michael, but I at least had the privilege of seeing how
his brilliant mind worked, as we tried out a few projects together.

The famous anecdote in which Hardy told Ramanaujan, that the number of a taxi he had used was not
particularly interesting, was recalled by Mrs Shakuntala Devi, a visiting calculating prodigy, when she spoke
in Auckland in 1978. Clever though she was, Mrs Devi was not a mathematician in the usual sense, and both
Michael and I were surprised by a mistake she made in quoting Ramanujan’s rejoinder. The number 1729 was,
she said, the only number that could be written as the sum of two cubes in two different ways. Of course the
correct statement would have said that the taxi number is the lowest such number. Michael and I started to
consider the question as to what the other solutions to the Diophantine equation x3 + y3 = u3 + v3 are like.
Obviously we exclude as trivial solutions for which x, y, u and v have a common factor greater than 1, but
there is still a family of solutions that seemed to go on forever, as we found from computer searches. After
poring through the pages of output we generated, Michael found some interesting patterns and was able to
prove a formula for an infinite sub-family of solutions. Unfortunately, I cannot reproduce this formula after all
these years, so I will do something else with the “Ramanujan Diophantine Equation” in this miniature, which
I dedicate to the memory of Michael Lennon.

First a special result which will be used below, although just beneath the surface.

Theorem 1 Let p > 3 be a prime then there exist integers x and y such that x2 + 3y2 = p if and only if
p ≡ 1 mod 6.

Proof. The “only if” part follows from the fact that −3 is a quadratic residue only for the primes referred to
in the statement of the theorem. To prove the “if” part, consider the lattice points in S = Zp × Zp satisfying
x2 + 3y2 ≡ mod p. For convenience, we represent Zp as the set of integers reduced mod p, {0, 1, 2, . . . , p − 1},
although the word “closest” that we use below will refer to the closest distance between a given point and any
representative of another point. Using the inner product 〈x, y〉 = x2 + 3y2 and the associated norm, the area of
S is

√
3p2. Let P1 = (x1, y1) denote the closest lattice point to P0 = (0, 0) and let P2 = (x2, y2) = (−3y1, x1).

The vectors P0P1 and P0P2 are orthogonal and there is no lattice point on the interval P0P2, except P0 and
P2, since such a point would be closer to P0 than P1 is. The rectangle with corners P0, P1, P1 + P2 and P2,
has area

√
3np, where x2

1 + 3y2
1 = np. Exactly p of these rectangles make up an area equal to that of S. Thus,√

3np2 =
√

3p2, implying that n = 1.
A simple corollary is that a square-free positive integer is of the form x2 + 3y2 if and only if its prime

factorisation contains only primes congruent to 1 mod 6. The “if” part of the proof is based on the fact that
(x1 + y1

√
−3)(x2 + y2

√
−3) = (x1x2 − 3y1y2) + (x1y2 + y1x2)

√
−3.

Our main result is given in the following discussion.
Let N = x3+y3 = u3+v3, where the four integers have no common factor. If N is even, define a′ = (x+y)/2,

b′ = (x− y)/2, c′ = (u+ v)/2, d′ = (u− v)/2; if N is odd, define a′ = x+ y, b′ = x− y, c′ = u+ v, d′ = u− v. In
either case gcd(x, y, u, v) = 1 implies gcd(a′, b′, c′, d′) = 1. Let µ = gcd(a′, b′), ν = gcd(c′, d′) and let a = a′/µν3,
b = b′/µ, c = c′/νµ3, d = d′/ν, where we note that, because gcd(µ, ν) = 1, a and b must be integers. It is found
that a(ν6a2 + 3b2) = c(µ6c2 + 3d2). It now follows that integers r, X , Y , Z exist such that

a = rY, (1)
ν6a2 + 3b2 = XZ,

c = rX, (2)
µ6c2 + 3d2 = Y Z.

Because gcd(a, b) = gcd(c, d) = 1, it follows that X , Y and Z can be written in the form X = |ξ|2, Y = |η|2,
Z = |ζ|2, where ξ = α + β

√
−3, η = γ + δ

√
−3, ζ = s + t

√
−3 and

ν3a + b
√
−3 = ξζ, (3) µ3c + d

√
−3 = ηζ. (4)

We can now find conditions on r, s and t to ensure that (1), (2), (3) and (4) are consistent. These conditions
are ν3(γ2 + 3δ2)r = αs − 3βt and µ3(α2 + 3β2)r = γs − 3δt. Solve these and we have a representation of the
solution which enables us to back-track from given values of α, β, γ, δ, µ and ν to find a′, b′, c′ and d′ and finally
x, y, u and v. For example, ξ = 1 + 2

√
−3, η = 4 +

√
−3, µ = ν = 1 gives the values r = 1, ζ = 1− 3

√
−3 and

the famous solution of Ramanujan 93 + 103 = 13 + 123 = 1729. Other examples are (i) ξ =
√
−3, η = 1 +

√
−3,

µ = ν = 1 which gives r = 3, ζ = −3− 4
√
−3 and the solution 93 + 153 = 23 + 163 = 4104 and (ii) ξ =

√
−3,

η = 1, µ = 1, ν = 2 which gives r = 3, ζ = 9 − 8
√
−3 and the solution 333 + 153 = 23 + 343 = 39312. Finally,

ξ =
√
−3, η = −1, µ = ν = 1, gives a solution which rearranges to 33 + 43 + 53 = 63.
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