The inverses of some triangular matrices and the Möbius function

Let (S, \leq) denote a partially ordered set and, for $i, j \in S$, let $m_{i j}=1$, if $j \leq i$, and zero otherwise. Assume that the members of S are ordered in such a way that M is lower triangular with 1 on the diagonals. If S is not finite but has a minimum element, then M is an infinite matrix and represents a linear operator on the set of sequences indexed by the elements of S. Let $\widetilde{m}_{i j}$ denote the (i, j) element of M^{-1}.

In the following two examples, \leq is defined by divisibility. In the case of Example 2, this is defined, not in the ring \mathbb{Z}, but in $\mathbb{Z}[\sqrt{-3}]$ (a ring which does not enjoy the benefits of unique factorization) and the five elements attached to the vertices of the graph are in the order $1,2,1+i \sqrt{3}, 1-i \sqrt{3}, 4$

Example 1

Example 2

$$
M^{-1}=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
2 & -1 & -1 & -1 & 1
\end{array}\right]
$$

If $j \leq i$ with $j \neq i$ we define the interval $[j, i]$ as the set consisting of each vertex x such that $j \leq x \leq i$. Because row j of M is orthogonal to column i of M^{-1}, it follows that

$$
\sum_{j \leq x \leq i} \widetilde{m}_{x, j}=0
$$

This enables the elements in column i of M^{-1} to be evaluated recursively. In Examples 1 and 2, the calculations of the first columns of M^{-1} are represented on the graphs as shown in the following diagrams

Now consider a countably infinite partially ordered set, where S consists of all
 sequences of non-negative integers, $\left(i_{1}, i_{2}, \ldots\right)$, where all but a finite number are zero, and $j \leq i$ means that $j_{k} \leq i_{k}$ for all $k=1,2, \ldots$. We can order the elements of S so that each element eventually arises, by associating with $i \in S$ a sequence number $n(i)$ equal to

$$
n(i)=\prod_{k=1}^{\infty} p_{k}^{i_{k}}
$$

where $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ is the sequence of primes. For any $i \in S$, we will conventionally write i_{k}, not only to represent component number k, but also the member of S formed from i by replacing every component, except number k, by zero.

If $\theta \in S$, then the sub-graph associated with the interval $[j+\theta, i+\theta]$ is isomorphic with the subgraph for the interval $[j, i]$. Hence, $\widetilde{m}_{i, j}$ is a function only of $i-j$. In the interpretation provided by the mapping $i \mapsto n(i)$, this means that $\widetilde{m}_{i, j}=\mu(n(i) / n(j))$, where μ is said to be the "Möbius function". We will show that $\mu\left(2^{i_{1}} 3^{i_{2}} 5^{i_{3}} \ldots\right)$ is zero if any of $i_{1}, i_{2}, i_{3}, \ldots$, exceeds 1 and otherwise is equal to $(-1)^{i_{1}+i_{2}+\cdots}$. To calculate the first column of M^{-1}, and hence the value of $\mu(m)$ for m a positive integer, we first consider the case that only one of the i components is non-zero - this corresponds to the evaluation of μ for a prime power. The sub-graph consists of a chain with integers 1 attached to the root, -1 to its neighbour and 0 attached to each other vertex. Now consider an interval $[j, i]$, with $j=(0,0, \ldots)$ and $i=\left(i_{1}, i_{2}, \ldots, i_{N}, 0,0, \ldots\right)$. For x in $[j, i]$, let $\psi(x)$ denote the value attached to the corresponding vertex in the sub-graph representing $[j, i]$. The fact that $\psi(x)=\prod_{k=1}^{N} \psi\left(x_{k}\right)$, follows by induction because the sums of $\psi(y)$ and $\prod_{k=1}^{N} \psi\left(y_{k}\right)$ over all $y \in[j, x]$ are each zero and because the individual terms are equal if $y \neq x$. Hence $\widetilde{m}_{j, i}=\prod_{k=1}^{N} \widetilde{m}_{j, i_{k}}$.

If f is a function on the positive integers and F is defined by

$$
F(n)=\sum_{d \mid n} f(d)
$$

this can be written as $F=M f$ and we have the inversion formula

$$
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) F(d)
$$

which is another way of writing $f=M^{-1} F$. Applications abound in number theory.

