
MATHEMATICAL MINIATURE 12

Pascal’s triangle, Padé approximations and an application

The following triangular array is formed by adding adjacent cells in a row, to give the cell between them on
the next row. This is just as for Pascal’s triangle, even though the cells are vectors of polynomials rather than
integers.
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The vectors on row number k = 0, 1, 2, . . . represent approximations to exp(z) of order k in the sense that the
rational function formed from the two components, say N(z) and D(z), of any cell on this row satisfies

N(z)
D(z)

= exp(z) + Czk+1 + O(zk+2).

The values of C corresponding to row number k have the same magnitude but alternate in sign. This is why
adding an adjacent pair to form an entry in the next row of the triangle increases the order by 1.

Many relationships exist between triples of entries in this table and we will explore one simple example. The
relationship is between the central three entries on rows 2n− 4, 2n− 2 and 2n. Denote the entry in the centre
of row 2n by

Vn(z) =

[
Nn(z)
Dn(z)

]
and we have

Vn(z) = αnVn−1(z) + βnz2Vn−2(z), n = 2, 3, . . . , (1)

where αn = 2(2n− 1)/n, βn = 1/n(n− 1). The right-hand side represents an approximation to exp(z) with
order at least 2n− 2, irrespective of the values of αn 6= 0 and βn. One can easily verify that the values actually
used, give the correct z0 and zn terms in Vn(z) and a proof of (1) can be built on these observations.

Given a function f , assumed to be analytic in a neighbourhood of zero with f(0) 6= 0, there may exist
for particular non-negative integers l and m a pair of polynomials N of degree l, and D of degree m, such
that N(z)/D(z) = f(z) + O(zl+m+1). In this case the rational function N/D is known as an (l, m)-Padé
approximation to f . For some functions the complete Padé table exists and, as we see by rotating the Pascal’s
triangle we have introduced into tabular form, exp is one of these functions. The tabular arrangement in this
case, where a few more entries have been squeezed in, is
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Now the application. There exists an ordinary differential equation counterpart to Gauss-Legendre quadra-
ture in which, for each time step of length ∆t, the solution is advanced using an implicit Runge-Kutta method,
containing n stages evaluated at the zeros of the Legendre polynomial Pn, adapted to the interval [t, t + ∆t].
The error generated in a step is equal to O(∆t2n+1). To be acceptable for the solution of the type of “stiff”
problems arising in the discretisation of time-dependent partial differential equations, the numerical method
must be stable for the solution of y′ = λy whenever λ is in the left half-complex-plane. Write z = λ∆t and this
means that the value of the (n, n) Padé approximation to exp(z) must lie in the unit disc, whenever z is in the
left half-plane. Using (1) it follows that this approximation can be written in continued fraction form as
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where an = 4(2n− 1) for n even, and an = 2n− 1 for n odd. The proof that |R(z)| < 1 for Re z < 0, is left as
an exercise, but hinges on the facts that the left half-plane is closed under addition, multiplication by a positive
real and by the mapping z 7→ z−1.

John Butcher, butcher@math.auckland.ac.nz


