Mathematical Apology 4
 The Euclidean algorithim, continued fractions and rational approximations

Professor John Butcher, The University of Auckland

In continuing our discussion of the approximation of irrational numbers by rational numbers we turn first to an ancient piece of mathematics, the famous Euclidean algorithm for finding the highest common factor (now known as the greatest common divisor or gcd) of two positive integers.

If two integers M_{0} and M_{1} are given with $M_{0}>M_{1}>0$, then any divisors they have in common are also shared with $M_{2}=M_{0}-n_{1} M_{1}$, where n_{1} is the quotient and M_{2} the remainder when M_{0} is divided by M_{1}. Hence, $\operatorname{gcd}\left(M_{0}, M_{1}\right)=\operatorname{gcd}\left(M_{1}, M_{2}\right)$. Because $M_{2}<M_{1}$ we can continue this procedure to obtain a sequence $M_{0}, M_{1}, M_{2}, \ldots, M_{k}, 0$, where we can go no further because "thou shalt not divide by zero". Because M_{k} divides exactly into $M_{k-1}, \operatorname{gcd}\left(M_{k-1}, M_{k}\right)=M_{k}$, and working back throught the sequence, we conclude that $\operatorname{gcd}\left(M_{0}, M_{1}\right)=M_{k}$.

Another way of writing the steps in this algorithm, so as to put more emphasis on the quotients $n_{1}, n_{2}, \ldots, n_{k-1}$ and on the ratios of success M pairs and less on the individual M values themselves is

$$
\begin{aligned}
x_{1}= & n_{1}+\frac{1}{x_{2}}, \\
x_{2}= & n_{2}+\frac{1}{x_{3}}, \\
\vdots & \vdots \\
x_{k-1}= & n_{k-1}+\frac{1}{x_{k}},
\end{aligned}
$$

where we have written $x_{1}=M_{0} / M_{1}, x_{2}=M_{1} / M_{2}, \ldots, x_{k}=M_{k-1} / M_{k}=n_{k}$. This sequence of operations can be written as a "continued fraction"

$$
x_{1}=n_{1}+\frac{1}{n_{2}+\frac{1}{n_{3}+\frac{1}{\ddots+\frac{1}{n_{k}}}}} .
$$

or more compactly as

$$
x_{1}=n_{1}+\frac{1}{n_{2}+} \frac{1}{n_{3}+} \cdots \frac{1}{n_{k}} .
$$

Introducing a special notation for the purpose, we can also write

$$
x_{1}=\left[n_{1}, n_{2}, n_{3}, \ldots, n_{k}\right] .
$$

It is interesting to look at the sequence of rational numbers (known as "convergents" of the
continued fraction) formed by possibly taking less than k terms. That is, the sequence

$$
\begin{array}{rlrl}
\frac{N_{1}}{D_{1}}= & =\frac{n_{1}}{1} \\
\frac{N_{2}}{D_{2}} & =\left[n_{1}, n_{2}\right] & =n_{1}+\frac{1}{n_{2}} \quad=\frac{n_{1} n_{2}+1}{n_{2}} \\
\frac{N_{3}}{D_{3}}= & {\left[n_{1}, n_{2}, n_{3}\right]} & =n_{1}+\frac{1}{n_{2}+\frac{1}{n_{3}}}=\frac{n_{1} n_{2} n_{3}+n_{1}+n_{3}}{n_{2} n_{3}+1} \\
\vdots & \vdots & & \\
\frac{N_{k}}{D_{k}}= & {\left[n_{1}, n_{2}, n_{3}, \ldots, n_{k}\right] .} & &
\end{array}
$$

It is convenient to create vectors formed from the numerator-denominator pairs from this sequence. Denote these by $V_{1}, V_{2}, \ldots, V_{k}$ so that

$$
V_{i}=\left[\begin{array}{c}
N_{i} \\
D_{i}
\end{array}\right], \quad i=1,2, \ldots, k
$$

It is remarkable, and remarkably easy to verify, that these vectors are related to each other by

$$
V_{i}=n_{i} V_{i-1}+V_{i-2}, \quad i=3,4, \ldots, k
$$

and that the 2×2 matrices formed by putting two successive members of the vector sequence together, have a determinant either +1 or -1 depending on parity (evenness or oddness). That is,

$$
\operatorname{det}\left[\begin{array}{cc}
N_{i-1} & N_{i} \tag{1}\\
D_{i-1} & D_{i}
\end{array}\right]=(-1)^{i-1}, \quad i=2,3, \ldots, k
$$

In passing we remark that this fact enables us to solve the Diophantine equation $a x+b y=1$, where $\operatorname{gcd}(a, b)=1$, and of course x and y are required, like a and b, to be integers.

However, the main aim of this Apology is to pursue our goal of approximating positive irrational numbers by rationals. Suppose that $x_{1}=X$ is such a number and not, as we have been assuming up to now, a rational number. In this case the value of each n_{i} is defined as the integer part of x_{i} and the continued fraction goes on forever. Furthermore, the approximations formed from the convergents alternate between being too small and being too large and they get closer and closer to the number being approximated. This is illustrated by the chain of inequalities

$$
\frac{N_{1}}{D_{1}}<\frac{N_{3}}{D_{3}}<\frac{N_{5}}{D_{5}}<\cdots<X<\cdots<\frac{N_{6}}{D_{6}}<\frac{N_{4}}{D_{4}}<\frac{N_{2}}{D_{2}}
$$

If we approximate X by N_{i} / D_{i}, then the error in the approximation is less than $\left|N_{i} / D_{i}-N_{i+1} / D_{i+1}\right|$, because X is between N_{i} / D_{i} and N_{i+1} / D_{i+1}. Hence,

$$
\left|X-\frac{N_{i}}{D_{i}}\right|<\left|\frac{N_{i+1}}{D_{i+1}}-\frac{N_{i}}{D_{i}}\right|=\frac{\left|N_{i+1} D_{i}-D_{i+1} N_{i}\right|}{D_{i+1} D_{i}}=\frac{1}{D_{i+1} D_{i}},
$$

where we are able to simplify the numerator because of (1). Since $D_{i+1}>D_{i}$, we can bound the error in the approximation by $1 / D_{i}^{2}$. Hence we have a construction for an infinite sequence for "quadratically good" approximations.

To see how this works, consider the continued fraction for π. We can find the first few terms numerically if we start with an accurate enough approximation to π. The continued fraction turns out to be $[3,7,15,1,292, \ldots]$ and the steps in the calculation of these terms are shown in the following table, together with a list of the convergents and the errors in the approximations.

i	x_{i}	n_{i}	$\frac{N_{i}}{D_{i}}$	$\pi-\frac{N_{i}}{D_{i}}$
1	3.141592653589793	3	$\frac{3}{1}$	0.141592653589793
2	7.062513305931046	7	$\frac{22}{7}$	-0.001264489267350
3	15.996594406685720	15	$\frac{333}{106}$	0.000083219627529
4	1.003417231013373	1	$\frac{355}{113}$	-0.000000266764189
5	292.634591014395472	292		

Other interesting examples can be found from some situations where the continued fractions recur, such as

$$
\begin{aligned}
\sqrt{2} & =[1,2,2,2,2, \ldots] \\
\frac{1+\sqrt{5}}{2} & =[1,1,1,1,1, \ldots]
\end{aligned}
$$

Even though this is only the fourth of my Apologies the so-called millenium may be a suitable time for taking stock. I have absolutely no idea if anyone reads this regular feature of the Magazine and, if so, if anyone find it at all interesting. I ask for your comments.

