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Padé approximations to the exponential function

Given non-negative integersn0, n1 a rational function
N(z)/D(z) is the[n0, n1] Padé approximation to the
exponential function if

N(z)

D(z)
= exp(z) + O(zp+1),

wheredeg(D) = n0, deg(N) = n1, p = n0 + n1.
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Padé approximations to the exponential function

Given non-negative integersn0, n1 a rational function
N(z)/D(z) is the[n0, n1] Padé approximation to the
exponential function if

N(z)

D(z)
= exp(z) + O(zp+1),

wheredeg(D) = n0, deg(N) = n1, p = n0 + n1.
Some examples are

p n0 n1 D(z) N(z)

1 0 1 1 1 + z
1 1 0 1 − z 1
2 0 2 1 1 + z + 1

2
z2

2 1 1 1 − 1

2
z 1 + 1

2
z

2 2 0 1 − z + 1

2
z2 1
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Generalized Padé approximations to exponential

Given a sequence of integers[n0, n1, . . . , nr], consider a
sequence of polynomials

(P0, P1, . . . , Pr),
with degreesn0, n1, . . . , nr, and the corresponding
polynomial in two variables

Φ(w, z) = P0(z)wr + P1(z)wr−1 + · · · + Pr(z).
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Generalized Padé approximations to exponential

Given a sequence of integers[n0, n1, . . . , nr], consider a
sequence of polynomials

(P0, P1, . . . , Pr),
with degreesn0, n1, . . . , nr, and the corresponding
polynomial in two variables

Φ(w, z) = P0(z)wr + P1(z)wr−1 + · · · + Pr(z).

Φ is a generalized Padé approximation with degree
vector[n0, n1, . . . , nr], if

Φ(exp(z), z) = O(zp+1),
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Generalized Padé approximations to exponential

Given a sequence of integers[n0, n1, . . . , nr], consider a
sequence of polynomials

(P0, P1, . . . , Pr),
with degreesn0, n1, . . . , nr, and the corresponding
polynomial in two variables

Φ(w, z) = P0(z)wr + P1(z)wr−1 + · · · + Pr(z).

Φ is a generalized Padé approximation with degree
vector[n0, n1, . . . , nr], if

Φ(exp(z), z) = O(zp+1),
where the “order” is

p =
r∑

i=0

(ni + 1) − 1.
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Generalized Padé approximations to exponential

Given a sequence of integers[n0, n1, . . . , nr], consider a
sequence of polynomials

(P0, P1, . . . , Pr),
with degreesn0, n1, . . . , nr, and the corresponding
polynomial in two variables

Φ(w, z) = P0(z)wr + P1(z)wr−1 + · · · + Pr(z).

Φ is a generalized Padé approximation with degree
vector[n0, n1, . . . , nr], if

Φ(exp(z), z) = O(zp+1),
where the “order” is

p =
r∑

i=0

(ni + 1) − 1.

To within a scale factor,(P0, P1, . . . , Pr) is unique.
Order and stability for general linear methods – p. 4/38



This is an approximation to the exponential function in
the sense that the polynomial equation

P0(z)wr + P1(z)wr−1 + · · · + Pr(z) = 0,
regarded as a function ofw, has solutions some of which
are approximations toexp(z).
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This is an approximation to the exponential function in
the sense that the polynomial equation

P0(z)wr + P1(z)wr−1 + · · · + Pr(z) = 0,
regarded as a function ofw, has solutions some of which
are approximations toexp(z).

Under certain conditions, there is a single “principal
solution”w(z), which exists in a neighbourhood of0,
such that

w(z) = exp(z) + O(zp+1).
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This is an approximation to the exponential function in
the sense that the polynomial equation

P0(z)wr + P1(z)wr−1 + · · · + Pr(z) = 0,
regarded as a function ofw, has solutions some of which
are approximations toexp(z).

Under certain conditions, there is a single “principal
solution”w(z), which exists in a neighbourhood of0,
such that

w(z) = exp(z) + O(zp+1).

In the caser = 1, w = −P1(z)/P0(z) is the[n0, n1] Padé
approximation toexp(z).
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Generalized Padé approximations arise naturally when a
numerical method is applied to the linear problem

y′ = qy, (⋆)

whereq is a complex number.
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Generalized Padé approximations arise naturally when a
numerical method is applied to the linear problem

y′ = qy, (⋆)

whereq is a complex number. Writez = hq, whereh is
the stepsize.
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Generalized Padé approximations arise naturally when a
numerical method is applied to the linear problem

y′ = qy, (⋆)

whereq is a complex number. Writez = hq, whereh is
the stepsize.
In this situation,Φ(w, z) arises as the characteristic
polynomial of a difference equation describing the
behaviour of the numerical method applied to the linear
problem (⋆).
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Generalized Padé approximations arise naturally when a
numerical method is applied to the linear problem

y′ = qy, (⋆)

whereq is a complex number. Writez = hq, whereh is
the stepsize.
In this situation,Φ(w, z) arises as the characteristic
polynomial of a difference equation describing the
behaviour of the numerical method applied to the linear
problem (⋆).
If for any z in the left half-plane, all zeros ofΦ(w, z) are
in the unit disc thenΦ is said to be “A-stable”.
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Generalized Padé approximations arise naturally when a
numerical method is applied to the linear problem

y′ = qy, (⋆)

whereq is a complex number. Writez = hq, whereh is
the stepsize.
In this situation,Φ(w, z) arises as the characteristic
polynomial of a difference equation describing the
behaviour of the numerical method applied to the linear
problem (⋆).
If for any z in the left half-plane, all zeros ofΦ(w, z) are
in the unit disc thenΦ is said to be “A-stable”.
This is an important property of numerical methods for
solving “stiff” problems.
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Examples of generalized Padé approximations

The first example is the[2, 0, 0, 0] approximation

(1 − 66

85
z + 18

85
z2)w3 − 108

85
w2 + 27

85
w − 4

85
.
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Examples of generalized Padé approximations

The first example is the[2, 0, 0, 0] approximation

(1 − 66

85
z + 18

85
z2)w3 − 108

85
w2 + 27

85
w − 4

85
.

This approximation is related to the Obreshkov method

yn = 66

85
hy′n −

18

85
h2y′′n + 108

85
yn−1 −

27

85
yn−2 + 4

85
yn−3,

which generalizes the[1, 0, 0, 0] “BDF3” method.
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Examples of generalized Padé approximations

The first example is the[2, 0, 0, 0] approximation

(1 − 66

85
z + 18

85
z2)w3 − 108

85
w2 + 27

85
w − 4

85
.

This approximation is related to the Obreshkov method

yn = 66

85
hy′n −

18

85
h2y′′n + 108

85
yn−1 −

27

85
yn−2 + 4

85
yn−3,

which generalizes the[1, 0, 0, 0] “BDF3” method.

By substitutingw = exp(z) and obtaining the result
O(z5), we find the order to be4.
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Examples of generalized Padé approximations

The first example is the[2, 0, 0, 0] approximation

(1 − 66

85
z + 18

85
z2)w3 − 108

85
w2 + 27

85
w − 4

85
.

This approximation is related to the Obreshkov method

yn = 66

85
hy′n −

18

85
h2y′′n + 108

85
yn−1 −

27

85
yn−2 + 4

85
yn−3,

which generalizes the[1, 0, 0, 0] “BDF3” method.

By substitutingw = exp(z) and obtaining the result
O(z5), we find the order to be4.

The order can also be verified using Taylor’s theorem.
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The second example has order5 and corresponds to the
Obreshkov method

yn = 60

83
hy′n−

72

415
h2y′′n+

576

415
yn−1−

216

415
yn−2+

64

415
yn−3−

9

415
yn−4,
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The second example has order5 and corresponds to the
Obreshkov method

yn = 60

83
hy′n−

72

415
h2y′′n+

576

415
yn−1−

216

415
yn−2+

64

415
yn−3−

9

415
yn−4,

leading to the stability function

(1 − 60

83
z + 72

415
z2)w4 − 576

415
w3 + 216

415
w2 − 64

415
w + 9

415
.
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The second example has order5 and corresponds to the
Obreshkov method

yn = 60

83
hy′n−

72

415
h2y′′n+

576

415
yn−1−

216

415
yn−2+

64

415
yn−3−

9

415
yn−4,

leading to the stability function

(1 − 60

83
z + 72

415
z2)w4 − 576

415
w3 + 216

415
w2 − 64

415
w + 9

415
.

Again we can verify the order by substituting
w = exp(z), this time obtaining the resultO(z6).
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The second example has order5 and corresponds to the
Obreshkov method

yn = 60

83
hy′n−

72

415
h2y′′n+

576

415
yn−1−

216

415
yn−2+

64

415
yn−3−

9

415
yn−4,

leading to the stability function

(1 − 60

83
z + 72

415
z2)w4 − 576

415
w3 + 216

415
w2 − 64

415
w + 9

415
.

Again we can verify the order by substituting
w = exp(z), this time obtaining the resultO(z6).

This is the[2, 0, 0, 0, 0] approximation.
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The stability regions of these two methods are the
unshaded regions in the diagrams:

2

0

−2

4

[2, 0, 0, 0]

2

0

−2

5

[2, 0, 0, 0, 0]
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The stability regions of these two methods are the
unshaded regions in the diagrams:

2

0

−2

4

[2, 0, 0, 0]

2

0

−2

5

[2, 0, 0, 0, 0]

The methods are A-stable
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The stability regions of these two methods are the
unshaded regions in the diagrams:

2

0

−2

4

[2, 0, 0, 0]

2

0

−2

5
8

9
.

3
6

5
◦

[2, 0, 0, 0, 0]

The methods are A-stable and A(89.365◦)-stable
respectively.
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Order stars and order arrows

The use of order stars in settling stability questions is
well-known.
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The use of order stars in settling stability questions is
well-known.

An alternative to order stars is “order arrows” and this is
the approach we will emphasise.

Order and stability for general linear methods – p. 10/38



Order stars and order arrows

The use of order stars in settling stability questions is
well-known.

An alternative to order stars is “order arrows” and this is
the approach we will emphasise.

In order stars we consider the sets of(w, z) pairs such
that

Φ(w exp(z), z) = 0, (⋆)

and such that|w| > 1 (or such that|w| < 1).
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Order stars and order arrows

The use of order stars in settling stability questions is
well-known.

An alternative to order stars is “order arrows” and this is
the approach we will emphasise.

In order stars we consider the sets of(w, z) pairs such
that

Φ(w exp(z), z) = 0, (⋆)

and such that|w| > 1 (or such that|w| < 1).

For order arrows we consider the set of(w, z) pairs
satisfying (⋆), such thatw is real and positive.
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Before considering complicated examples like the
[2, 0, 0, 0] and[2, 0, 0, 0, 0] approximations we will look
at standard Padé approximations to the exponential
function.
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Before considering complicated examples like the
[2, 0, 0, 0] and[2, 0, 0, 0, 0] approximations we will look
at standard Padé approximations to the exponential
function.

We consider the example of the[2, 1] Padé
approximation for which

R(z) =
1 + 1

3
z

1 − 2

3
z + 1

6
z2

.
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Before considering complicated examples like the
[2, 0, 0, 0] and[2, 0, 0, 0, 0] approximations we will look
at standard Padé approximations to the exponential
function.

We consider the example of the[2, 1] Padé
approximation for which

R(z) =
1 + 1

3
z

1 − 2

3
z + 1

6
z2

.

The figure on the next slide gives information on both the
order star and the order arrows:

Order and stability for general linear methods – p. 11/38



Order and stability for general linear methods – p. 12/38



We can separate out the order star picture
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And the order arrow picture
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Now consider the[2, 0, 0, 0] approximation
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And the [2, 0, 0, 0, 0] approximation
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Order arrows and stability results

For an A-stable approximation, an upward arrow from0
cannot cross or be tangential to the imaginary axis.
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Order arrows and stability results

For an A-stable approximation, an upward arrow from0
cannot cross or be tangential to the imaginary axis.

This is similar to the observation that, in the order star
analysis, a finger cannot overlap the imaginary axis if the
method is to be A-stable.
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Order arrows and stability results

For an A-stable approximation, an upward arrow from0
cannot cross or be tangential to the imaginary axis.

This is similar to the observation that, in the order star
analysis, a finger cannot overlap the imaginary axis if the
method is to be A-stable.

In each case we also use the behaviour near zero of the
locally defined functionw(z) = 1 + Czp+1.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
We illustrate how this theorem is proved by returning to
the[2, 0, 0, 0, 0] approximation.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
We illustrate how this theorem is proved by returning to
the[2, 0, 0, 0, 0] approximation.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
We illustrate how this theorem is proved by returning to
the[2, 0, 0, 0, 0] approximation.

The red lines are tangent to the arrows and are spaced at
angles ofπ/(p + 1) = π/6.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
We illustrate how this theorem is proved by returning to
the[2, 0, 0, 0, 0] approximation.

The red lines are tangent to the arrows and are spaced at
angles ofπ/(p + 1) = π/6.
Hence there exist up-arrows tangent to the imaginary
axis. Order and stability for general linear methods – p. 22/38



The Ehle theorem

Theorem. A Pad́e approximation[n0, n1] with order
p = n0 + n1, is A-stable only if

2n0 − p ≤ 2.
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The Ehle theorem

Theorem. A Pad́e approximation[n0, n1] with order
p = n0 + n1, is A-stable only if

2n0 − p ≤ 2.

Some of the up-arrows from zero terminate at poles and
some terminate at−∞ in the sense that the real part has
this limit and the imaginary part has a finite limit.
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The Ehle theorem

Theorem. A Pad́e approximation[n0, n1] with order
p = n0 + n1, is A-stable only if

2n0 − p ≤ 2.

Some of the up-arrows from zero terminate at poles and
some terminate at−∞ in the sense that the real part has
this limit and the imaginary part has a finite limit.

We will assume that each of the poles is a termination
point for an up-arrow from zero.
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The Ehle theorem

Theorem. A Pad́e approximation[n0, n1] with order
p = n0 + n1, is A-stable only if

2n0 − p ≤ 2.

Some of the up-arrows from zero terminate at poles and
some terminate at−∞ in the sense that the real part has
this limit and the imaginary part has a finite limit.

We will assume that each of the poles is a termination
point for an up-arrow from zero.

This question will be discussed later.
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Because adjacent up-arrows subtend an angle
2π

p + 1

andn0 of them terminate at poles, the total angle
subtended is at least

2(n0 − 1)

p + 1
π ≥ π if 2n0 − p > 2.
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Because adjacent up-arrows subtend an angle
2π

p + 1

andn0 of them terminate at poles, the total angle
subtended is at least

2(n0 − 1)

p + 1
π ≥ π if 2n0 − p > 2.

Hence, either up-arrows terminating at poles are
tangential to the imaginary axis or protrude into the left
half-plane.
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Because adjacent up-arrows subtend an angle
2π

p + 1

andn0 of them terminate at poles, the total angle
subtended is at least

2(n0 − 1)

p + 1
π ≥ π if 2n0 − p > 2.

Hence, either up-arrows terminating at poles are
tangential to the imaginary axis or protrude into the left
half-plane.

In the latter case, there are poles in the left half-plane or
an up-arrow crosses back across the imaginary axis.
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We will illustrate this result in the[3, 0] case.
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Now return to a crucial part of the proof:

Why should every pole be at the end of an up-arrow
from zero?
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Now return to a crucial part of the proof:

Why should every pole be at the end of an up-arrow
from zero?

For Padé approximations, this follows simply from the
fact that up-arrows from zero and down-arrows from
zero cannot cross.
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Now return to a crucial part of the proof:

Why should every pole be at the end of an up-arrow
from zero?

For Padé approximations, this follows simply from the
fact that up-arrows from zero and down-arrows from
zero cannot cross.

But in the general case, where everything happens on a
Riemann surface, we cannot use this argument in a
simple way.
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Now return to a crucial part of the proof:

Why should every pole be at the end of an up-arrow
from zero?

For Padé approximations, this follows simply from the
fact that up-arrows from zero and down-arrows from
zero cannot cross.

But in the general case, where everything happens on a
Riemann surface, we cannot use this argument in a
simple way.

Our approach will be based on modified arrows and
homotopy.
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Modifications to the arrow system

We want to simplify what happens when an arrow
interacts with a stagnation point, a branch point, a pole or
a zero.
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Modifications to the arrow system

We want to simplify what happens when an arrow
interacts with a stagnation point, a branch point, a pole or
a zero.

We will adopt a “pass on the right” convention by
moving each arrow, drawn in the increasingw sense, by
an infinitesimal amount to the right.
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Modifications to the arrow system

We want to simplify what happens when an arrow
interacts with a stagnation point, a branch point, a pole or
a zero.

We will adopt a “pass on the right” convention by
moving each arrow, drawn in the increasingw sense, by
an infinitesimal amount to the right.

We will remove all poles by replacing a polynomial
sequence

(P0, P1, . . . , Pr) by (−t, P0, P1, . . . , Pr)
and take the limit ast → 0. Although the limit does not
exist on the Riemann surface, its projection onto theZ
plane does.

Order and stability for general linear methods – p. 27/38



Modifications to the arrow system

We want to simplify what happens when an arrow
interacts with a stagnation point, a branch point, a pole or
a zero.

We will adopt a “pass on the right” convention by
moving each arrow, drawn in the increasingw sense, by
an infinitesimal amount to the right.

We will remove all poles by replacing a polynomial
sequence

(P0, P1, . . . , Pr) by (−t, P0, P1, . . . , Pr)
and take the limit ast → 0. Although the limit does not
exist on the Riemann surface, its projection onto theZ
plane does.

Do the same with zeros.
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We will illustrate these ideas with the[2, 0, 1] approximation

+
+ +

∞

1

0

w

x
Order and stability for general linear methods – p. 28/38



Use right-oriented arrows

+
+
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Replace poles and zeros using extra sheets
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Now a generic diagram forn0 = 3, p = 5:

It could be[3, 2], [3, 1, 0], [3, 0, 1] etc
Order and stability for general linear methods – p. 31/38



The Butcher–Chipman conjecture

After extensive searching, Fred Chipman and I
formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.

Order and stability for general linear methods – p. 32/38



The Butcher–Chipman conjecture

After extensive searching, Fred Chipman and I
formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.

In the linear case this is also sufficient
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The Butcher–Chipman conjecture

After extensive searching, Fred Chipman and I
formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.

In the linear case this is also sufficient

But there are counterexamples in the general case
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The Butcher–Chipman conjecture

After extensive searching, Fred Chipman and I
formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.

In the linear case this is also sufficient

But there are counterexamples in the general case

2n0 − p ≥ 0 follows from the Daniel-Moore theorem
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The Butcher–Chipman conjecture

After extensive searching, Fred Chipman and I
formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.

In the linear case this is also sufficient

But there are counterexamples in the general case

2n0 − p ≥ 0 follows from the Daniel-Moore theorem

This leaves2n0 − p ≤ 2 as the remaining challenge

The proof outline I will give makes use of homotopy
from lower order approximations
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Proof outline

Once we have proved thatn0 of the up-arrow from0
terminate at poles, the proof is just the same as for the
Ehle theorem.
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Ehle theorem.

Hence we concentrate on this intermediate result.

Step 1:n0 = p

Step 2: Induction onp − n0

We will illustrate step 2, in the casen0 = 4, p = 5

We use homotopy: ast moves from0 to 1 we move from
an approximation withp − n0 = 0 to p − n0 = 1
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Proof outline

Once we have proved thatn0 of the up-arrow from0
terminate at poles, the proof is just the same as for the
Ehle theorem.

Hence we concentrate on this intermediate result.

Step 1:n0 = p

Step 2: Induction onp − n0

We will illustrate step 2, in the casen0 = 4, p = 5

We use homotopy: ast moves from0 to 1 we move from
an approximation withp − n0 = 0 to p − n0 = 1

First see how the order increases ast approaches1
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t = 0
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t close to0
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t close to1
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Is it possible that during the homotopy, one of the arrows
which terminates on the top sheet gets detached from0?
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Is it possible that during the homotopy, one of the arrows
which terminates on the top sheet gets detached from0?

If so, an arrow from a lower sheet must connect to0 at
the same time to retain orderp − 1.
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Is it possible that during the homotopy, one of the arrows
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If so, an arrow from a lower sheet must connect to0 at
the same time to retain orderp − 1.

This means that for somet ∈ (0, 1), the order becomesp.
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Is it possible that during the homotopy, one of the arrows
which terminates on the top sheet gets detached from0?

If so, an arrow from a lower sheet must connect to0 at
the same time to retain orderp − 1.

This means that for somet ∈ (0, 1), the order becomesp.

This is impossible, because of the uniqueness of
generalized Padé approximations.
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Thank you
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