Order and stability for general linear methods

J. C. Butcher
 The University of Auckland NZMC2006

Hamilton, New Zealand

Monday, 4 December to Wednesday, 6 December

Contents

- Padé approximations to the exponential function

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations
- Examples of generalized Padé approximations

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations
- Examples of generalized Padé approximations
- Order stars and order arrows

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations
- Examples of generalized Padé approximations
- Order stars and order arrows
- Order arrows and stability results

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations
- Examples of generalized Padé approximations
- Order stars and order arrows
- Order arrows and stability results
- The Daniel-Moore theorem

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations
- Examples of generalized Padé approximations
- Order stars and order arrows
- Order arrows and stability results
- The Daniel-Moore theorem
- The Ehle theorem

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations
- Examples of generalized Padé approximations
- Order stars and order arrows
- Order arrows and stability results
- The Daniel-Moore theorem
- The Ehle theorem
- Modifications to the arrow system

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations
- Examples of generalized Padé approximations
- Order stars and order arrows
- Order arrows and stability results
- The Daniel-Moore theorem
- The Ehle theorem
- Modifications to the arrow system
- The Butcher-Chipman conjecture

Contents

- Padé approximations to the exponential function
- Generalized Padé approximations
- Examples of generalized Padé approximations
- Order stars and order arrows
- Order arrows and stability results
- The Daniel-Moore theorem
- The Ehle theorem
- Modifications to the arrow system
- The Butcher-Chipman conjecture
- Proof outline

Padé approximations to the exponential function

Given non-negative integers n_{0}, n_{1} a rational function $N(z) / D(z)$ is the $\left[n_{0}, n_{1}\right]$ Padé approximation to the exponential function if
$\frac{N(z)}{D(z)}=\exp (z)+O\left(z^{p+1}\right)$,
where $\operatorname{deg}(D)=n_{0}, \quad \operatorname{deg}(N)=n_{1}, \quad p=n_{0}+n_{1}$.

Padé approximations to the exponential function

Given non-negative integers n_{0}, n_{1} a rational function $N(z) / D(z)$ is the $\left[n_{0}, n_{1}\right]$ Padé approximation to the exponential function if
$\frac{N(z)}{D(z)}=\exp (z)+O\left(z^{p+1}\right)$,
where $\operatorname{deg}(D)=n_{0}, \quad \operatorname{deg}(N)=n_{1}, \quad p=n_{0}+n_{1}$.
Some examples are

p	n_{0}	n_{1}	$D(z)$	$N(z)$
1	0	1	1	$1+z$
1	1	0	$1-z$	1
2	0	2	1	$1+z+\frac{1}{2} z^{2}$
2	1	1	$1-\frac{1}{2} z$	$1+\frac{1}{2} z$
2	2	0	$1-z+\frac{1}{2} z^{2}$	1

Generalized Padé approximations to exponential

Given a sequence of integers $\left[n_{0}, n_{1}, \ldots, n_{r}\right]$, consider a sequence of polynomials

$$
\left(P_{0}, P_{1}, \ldots, P_{r}\right),
$$

with degrees $n_{0}, n_{1}, \ldots, n_{r}$, and the corresponding polynomial in two variables

$$
\Phi(w, z)=P_{0}(z) w^{r}+P_{1}(z) w^{r-1}+\cdots+P_{r}(z) .
$$

Generalized Padé approximations to exponential

Given a sequence of integers $\left[n_{0}, n_{1}, \ldots, n_{r}\right]$, consider a sequence of polynomials

$$
\left(P_{0}, P_{1}, \ldots, P_{r}\right),
$$

with degrees $n_{0}, n_{1}, \ldots, n_{r}$, and the corresponding polynomial in two variables

$$
\Phi(w, z)=P_{0}(z) w^{r}+P_{1}(z) w^{r-1}+\cdots+P_{r}(z) .
$$

Φ is a generalized Padé approximation with degree vector $\left[n_{0}, n_{1}, \ldots, n_{r}\right]$, if

$$
\Phi(\exp (z), z)=O\left(z^{p+1}\right)
$$

Generalized Padé approximations to exponential

Given a sequence of integers $\left[n_{0}, n_{1}, \ldots, n_{r}\right]$, consider a sequence of polynomials

$$
\left(P_{0}, P_{1}, \ldots, P_{r}\right),
$$

with degrees $n_{0}, n_{1}, \ldots, n_{r}$, and the corresponding polynomial in two variables

$$
\Phi(w, z)=P_{0}(z) w^{r}+P_{1}(z) w^{r-1}+\cdots+P_{r}(z) .
$$

Φ is a generalized Padé approximation with degree vector $\left[n_{0}, n_{1}, \ldots, n_{r}\right]$, if

$$
\Phi(\exp (z), z)=O\left(z^{p+1}\right)
$$

where the "order" is

$$
p=\sum_{i=0}^{r}\left(n_{i}+1\right)-1 .
$$

Generalized Padé approximations to exponential

Given a sequence of integers $\left[n_{0}, n_{1}, \ldots, n_{r}\right]$, consider a sequence of polynomials

$$
\left(P_{0}, P_{1}, \ldots, P_{r}\right),
$$

with degrees $n_{0}, n_{1}, \ldots, n_{r}$, and the corresponding polynomial in two variables

$$
\Phi(w, z)=P_{0}(z) w^{r}+P_{1}(z) w^{r-1}+\cdots+P_{r}(z) .
$$

Φ is a generalized Padé approximation with degree vector $\left[n_{0}, n_{1}, \ldots, n_{r}\right]$, if

$$
\Phi(\exp (z), z)=O\left(z^{p+1}\right)
$$

where the "order" is

$$
p=\sum_{i=0}^{r}\left(n_{i}+1\right)-1 .
$$

To within a scale factor, $\left(P_{0}, P_{1}, \ldots, P_{r}\right)$ is unique.

This is an approximation to the exponential function in the sense that the polynomial equation

$$
P_{0}(z) w^{r}+P_{1}(z) w^{r-1}+\cdots+P_{r}(z)=0
$$

regarded as a function of w, has solutions some of which are approximations to $\exp (z)$.

This is an approximation to the exponential function in the sense that the polynomial equation

$$
P_{0}(z) w^{r}+P_{1}(z) w^{r-1}+\cdots+P_{r}(z)=0
$$

regarded as a function of w, has solutions some of which are approximations to $\exp (z)$.
Under certain conditions, there is a single "principal solution" $w(z)$, which exists in a neighbourhood of 0 , such that

$$
w(z)=\exp (z)+O\left(z^{p+1}\right)
$$

This is an approximation to the exponential function in the sense that the polynomial equation

$$
P_{0}(z) w^{r}+P_{1}(z) w^{r-1}+\cdots+P_{r}(z)=0
$$

regarded as a function of w, has solutions some of which are approximations to $\exp (z)$.
Under certain conditions, there is a single "principal solution" $w(z)$, which exists in a neighbourhood of 0 , such that

$$
w(z)=\exp (z)+O\left(z^{p+1}\right)
$$

In the case $r=1, w=-P_{1}(z) / P_{0}(z)$ is the $\left[n_{0}, n_{1}\right]$ Padé approximation to $\exp (z)$.

Generalized Padé approximations arise naturally when a numerical method is applied to the linear problem

$$
y^{\prime}=q y,
$$

where q is a complex number.

Generalized Padé approximations arise naturally when a numerical method is applied to the linear problem

$$
y^{\prime}=q y,
$$

where q is a complex number. Write $z=h q$, where h is the stepsize.

Generalized Padé approximations arise naturally when a numerical method is applied to the linear problem

$$
y^{\prime}=q y
$$

where q is a complex number. Write $z=h q$, where h is the stepsize.
In this situation, $\Phi(w, z)$ arises as the characteristic polynomial of a difference equation describing the behaviour of the numerical method applied to the linear problem (\star).

Generalized Padé approximations arise naturally when a numerical method is applied to the linear problem

$$
y^{\prime}=q y
$$

where q is a complex number. Write $z=h q$, where h is the stepsize.
In this situation, $\Phi(w, z)$ arises as the characteristic polynomial of a difference equation describing the behaviour of the numerical method applied to the linear problem ($*$).
If for any z in the left half-plane, all zeros of $\Phi(w, z)$ are in the unit disc then Φ is said to be "A-stable".

Generalized Padé approximations arise naturally when a numerical method is applied to the linear problem

$$
y^{\prime}=q y
$$

where q is a complex number. Write $z=h q$, where h is the stepsize.
In this situation, $\Phi(w, z)$ arises as the characteristic polynomial of a difference equation describing the behaviour of the numerical method applied to the linear problem ($*$).
If for any z in the left half-plane, all zeros of $\Phi(w, z)$ are in the unit disc then Φ is said to be "A-stable".
This is an important property of numerical methods for solving "stiff" problems.

Examples of generalized Padé approximations

The first example is the $[2,0,0,0]$ approximation

$$
\left(1-\frac{66}{85} z+\frac{18}{85} z^{2}\right) w^{3}-\frac{108}{85} w^{2}+\frac{27}{85} w-\frac{4}{85} .
$$

Examples of generalized Padé approximations

The first example is the $[2,0,0,0]$ approximation

$$
\left(1-\frac{66}{85} z+\frac{18}{85} z^{2}\right) w^{3}-\frac{108}{85} w^{2}+\frac{27}{85} w-\frac{4}{85} .
$$

This approximation is related to the Obreshkov method

$$
y_{n}=\frac{66}{85} h y_{n}^{\prime}-\frac{18}{85} h^{2} y_{n}^{\prime \prime}+\frac{108}{85} y_{n-1}-\frac{27}{85} y_{n-2}+\frac{4}{85} y_{n-3},
$$

which generalizes the $[1,0,0,0]$ "BDF3" method.

Examples of generalized Padé approximations

The first example is the $[2,0,0,0]$ approximation

$$
\left(1-\frac{66}{85} z+\frac{18}{85} z^{2}\right) w^{3}-\frac{108}{85} w^{2}+\frac{27}{85} w-\frac{4}{85} .
$$

This approximation is related to the Obreshkov method

$$
y_{n}=\frac{66}{85} h y_{n}^{\prime}-\frac{18}{85} h^{2} y_{n}^{\prime \prime}+\frac{108}{85} y_{n-1}-\frac{27}{85} y_{n-2}+\frac{4}{85} y_{n-3},
$$

which generalizes the $[1,0,0,0]$ "BDF3" method.
By substituting $w=\exp (z)$ and obtaining the result $O\left(z^{5}\right)$, we find the order to be 4 .

Examples of generalized Padé approximations

The first example is the $[2,0,0,0]$ approximation

$$
\left(1-\frac{66}{85} z+\frac{18}{85} z^{2}\right) w^{3}-\frac{108}{85} w^{2}+\frac{27}{85} w-\frac{4}{85} .
$$

This approximation is related to the Obreshkov method

$$
y_{n}=\frac{66}{85} h y_{n}^{\prime}-\frac{18}{85} h^{2} y_{n}^{\prime \prime}+\frac{108}{85} y_{n-1}-\frac{27}{85} y_{n-2}+\frac{4}{85} y_{n-3},
$$

which generalizes the $[1,0,0,0]$ "BDF3" method.
By substituting $w=\exp (z)$ and obtaining the result $O\left(z^{5}\right)$, we find the order to be 4 .
The order can also be verified using Taylor's theorem.

The second example has order 5 and corresponds to the Obreshkov method

$$
y_{n}=\frac{60}{83} h y_{n}^{\prime}-\frac{72}{415} h^{2} y_{n}^{\prime \prime}+\frac{576}{415} y_{n-1}-\frac{216}{415} y_{n-2}+\frac{64}{415} y_{n-3}-\frac{9}{415} y_{n-4},
$$

The second example has order 5 and corresponds to the Obreshkov method

$$
y_{n}=\frac{60}{83} h y_{n}^{\prime}-\frac{72}{415} h^{2} y_{n}^{\prime \prime}+\frac{576}{415} y_{n-1}-\frac{216}{415} y_{n-2}+\frac{64}{415} y_{n-3}-\frac{9}{415} y_{n-4},
$$

leading to the stability function

$$
\left(1-\frac{60}{83} z+\frac{72}{415} z^{2}\right) w^{4}-\frac{576}{415} w^{3}+\frac{216}{415} w^{2}-\frac{64}{415} w+\frac{9}{415} .
$$

The second example has order 5 and corresponds to the Obreshkov method

$$
y_{n}=\frac{60}{83} h y_{n}^{\prime}-\frac{72}{415} h^{2} y_{n}^{\prime \prime}+\frac{576}{415} y_{n-1}-\frac{216}{415} y_{n-2}+\frac{64}{415} y_{n-3}-\frac{9}{415} y_{n-4},
$$

leading to the stability function

$$
\left(1-\frac{60}{83} z+\frac{72}{415} z^{2}\right) w^{4}-\frac{576}{415} w^{3}+\frac{216}{415} w^{2}-\frac{64}{415} w+\frac{9}{415} .
$$

Again we can verify the order by substituting $w=\exp (z)$, this time obtaining the result $O\left(z^{6}\right)$.

The second example has order 5 and corresponds to the Obreshkov method

$$
y_{n}=\frac{60}{83} h y_{n}^{\prime}-\frac{72}{415} h^{2} y_{n}^{\prime \prime}+\frac{576}{415} y_{n-1}-\frac{216}{415} y_{n-2}+\frac{64}{415} y_{n-3}-\frac{9}{415} y_{n-4},
$$

leading to the stability function

$$
\left(1-\frac{60}{83} z+\frac{72}{415} z^{2}\right) w^{4}-\frac{576}{415} w^{3}+\frac{216}{415} w^{2}-\frac{64}{415} w+\frac{9}{415} .
$$

Again we can verify the order by substituting $w=\exp (z)$, this time obtaining the result $O\left(z^{6}\right)$.

This is the $[2,0,0,0,0]$ approximation.

The stability regions of these two methods are the unshaded regions in the diagrams:

[2, $0,0,0]$

[2, $0,0,0,0$]

The stability regions of these two methods are the unshaded regions in the diagrams:

[2, $0,0,0]$

[2, $0,0,0,0$]

The methods are A-stable

The stability regions of these two methods are the unshaded regions in the diagrams:

The methods are A-stable and $\mathrm{A}\left(89.365^{\circ}\right)$-stable respectively.

Order stars and order arrows

The use of order stars in settling stability questions is well-known.

Order stars and order arrows

The use of order stars in settling stability questions is well-known.

An alternative to order stars is "order arrows" and this is the approach we will emphasise.

Order stars and order arrows

The use of order stars in settling stability questions is well-known.

An alternative to order stars is "order arrows" and this is the approach we will emphasise.

In order stars we consider the sets of (w, z) pairs such that

$$
\Phi(w \exp (z), z)=0,
$$

and such that $|w|>1$ (or such that $|w|<1$).

Order stars and order arrows

The use of order stars in settling stability questions is well-known.

An alternative to order stars is "order arrows" and this is the approach we will emphasise.

In order stars we consider the sets of (w, z) pairs such that

$$
\Phi(w \exp (z), z)=0,
$$

and such that $|w|>1$ (or such that $|w|<1$).
For order arrows we consider the set of (w, z) pairs satisfying (\star), such that w is real and positive.

Before considering complicated examples like the $[2,0,0,0]$ and $[2,0,0,0,0]$ approximations we will look at standard Padé approximations to the exponential function.

Before considering complicated examples like the [$2,0,0,0]$ and $[2,0,0,0,0]$ approximations we will look at standard Padé approximations to the exponential function.

We consider the example of the $[2,1]$ Padé approximation for which

$$
R(z)=\frac{1+\frac{1}{3} z}{1-\frac{2}{3} z+\frac{1}{6} z^{2}}
$$

Before considering complicated examples like the [$2,0,0,0]$ and $[2,0,0,0,0]$ approximations we will look at standard Padé approximations to the exponential function.

We consider the example of the $[2,1]$ Padé approximation for which

$$
R(z)=\frac{1+\frac{1}{3} z}{1-\frac{2}{3} z+\frac{1}{6} z^{2}}
$$

The figure on the next slide gives information on both the order star and the order arrows:

Order and stability for general linear methods - p. 12/38

We can separate out the order star picture

Order and stability for general linear methods - p. 14/38

And the order arrow picture

Order and stability for general linear methods - p. 16/38

Now consider the $[2,0,0,0]$ approximation

Order and stability for general linear methods - p. 18/38

And the $[2,0,0,0,0]$ approximation

Order and stability for general linear methods - p. 20/38

Order arrows and stability results

For an A-stable approximation, an upward arrow from 0 cannot cross or be tangential to the imaginary axis.

Order arrows and stability results

For an A-stable approximation, an upward arrow from 0 cannot cross or be tangential to the imaginary axis.

This is similar to the observation that, in the order star analysis, a finger cannot overlap the imaginary axis if the method is to be A -stable.

Order arrows and stability results

For an A-stable approximation, an upward arrow from 0 cannot cross or be tangential to the imaginary axis.

This is similar to the observation that, in the order star analysis, a finger cannot overlap the imaginary axis if the method is to be A -stable.

In each case we also use the behaviour near zero of the locally defined function $w(z)=1+C z^{p+1}$.

The Daniel-Moore theorem

Theorem. For an A-stable method with n_{0} poles, the order cannot exceed $2 n_{0}$.

The Daniel-Moore theorem

Theorem. For an A-stable method with n_{0} poles, the order cannot exceed $2 n_{0}$. We illustrate how this theorem is proved by returning to the $[2,0,0,0,0]$ approximation.

The Daniel-Moore theorem

Theorem. For an A-stable method with n_{0} poles, the order cannot exceed $2 n_{0}$. We illustrate how this theorem is proved by returning to the $[2,0,0,0,0]$ approximation.

The Daniel-Moore theorem

Theorem. For an A-stable method with n_{0} poles, the order cannot exceed $2 n_{0}$. We illustrate how this theorem is proved by returning to the $[2,0,0,0,0]$ approximation.

The red lines are tangent to the arrows and are spaced at angles of $\pi /(p+1)=\pi / 6$.

The Daniel-Moore theorem

Theorem. For an A-stable method with n_{0} poles, the order cannot exceed $2 n_{0}$. We illustrate how this theorem is proved by returning to the $[2,0,0,0,0]$ approximation.

The red lines are tangent to the arrows and are spaced at angles of $\pi /(p+1)=\pi / 6$. Hence there exist up-arrows tangent to the imaginary axis.

The Ehle theorem

Theorem. A Padé approximation $\left[n_{0}, n_{1}\right]$ with order $p=n_{0}+n_{1}$, is A-stable only if

$$
2 n_{0}-p \leq 2
$$

The Ehle theorem

Theorem. A Padé approximation $\left[n_{0}, n_{1}\right]$ with order $p=n_{0}+n_{1}$, is A-stable only if

$$
2 n_{0}-p \leq 2 .
$$

Some of the up-arrows from zero terminate at poles and some terminate at $-\infty$ in the sense that the real part has this limit and the imaginary part has a finite limit.

The Ehle theorem

Theorem. A Padé approximation $\left[n_{0}, n_{1}\right]$ with order $p=n_{0}+n_{1}$, is A-stable only if

$$
2 n_{0}-p \leq 2 .
$$

Some of the up-arrows from zero terminate at poles and some terminate at $-\infty$ in the sense that the real part has this limit and the imaginary part has a finite limit.

We will assume that each of the poles is a termination point for an up-arrow from zero.

The Ehle theorem

Theorem. A Padé approximation $\left[n_{0}, n_{1}\right]$ with order $p=n_{0}+n_{1}$, is A-stable only if

$$
2 n_{0}-p \leq 2 .
$$

Some of the up-arrows from zero terminate at poles and some terminate at $-\infty$ in the sense that the real part has this limit and the imaginary part has a finite limit.

We will assume that each of the poles is a termination point for an up-arrow from zero.

This question will be discussed later.

Because adjacent up-arrows subtend an angle

$$
\frac{2 \pi}{p+1}
$$

and n_{0} of them terminate at poles, the total angle subtended is at least

$$
\frac{2\left(n_{0}-1\right)}{p+1} \pi \geq \pi \quad \text { if } \quad 2 n_{0}-p>2
$$

Because adjacent up-arrows subtend an angle

$$
\frac{2 \pi}{p+1}
$$

and n_{0} of them terminate at poles, the total angle subtended is at least

$$
\frac{2\left(n_{0}-1\right)}{p+1} \pi \geq \pi \quad \text { if } \quad 2 n_{0}-p>2
$$

Hence, either up-arrows terminating at poles are tangential to the imaginary axis or protrude into the left half-plane.

Because adjacent up-arrows subtend an angle

$$
\frac{2 \pi}{p+1}
$$

and n_{0} of them terminate at poles, the total angle subtended is at least

$$
\frac{2\left(n_{0}-1\right)}{p+1} \pi \geq \pi \quad \text { if } \quad 2 n_{0}-p>2
$$

Hence, either up-arrows terminating at poles are tangential to the imaginary axis or protrude into the left half-plane.
In the latter case, there are poles in the left half-plane or an up-arrow crosses back across the imaginary axis.

We will illustrate this result in the $[3,0]$ case.

Now return to a crucial part of the proof:
Why should every pole be at the end of an up-arrow from zero?

Now return to a crucial part of the proof:
Why should every pole be at the end of an up-arrow from zero?

For Padé approximations, this follows simply from the fact that up-arrows from zero and down-arrows from zero cannot cross.

Now return to a crucial part of the proof:
Why should every pole be at the end of an up-arrow from zero?

For Padé approximations, this follows simply from the fact that up-arrows from zero and down-arrows from zero cannot cross.

But in the general case, where everything happens on a Riemann surface, we cannot use this argument in a simple way.

Now return to a crucial part of the proof:
Why should every pole be at the end of an up-arrow from zero?

For Padé approximations, this follows simply from the fact that up-arrows from zero and down-arrows from zero cannot cross.

But in the general case, where everything happens on a Riemann surface, we cannot use this argument in a simple way.

Our approach will be based on modified arrows and homotopy.

Modifications to the arrow system

We want to simplify what happens when an arrow interacts with a stagnation point, a branch point, a pole or a zero.

Modifications to the arrow system

We want to simplify what happens when an arrow interacts with a stagnation point, a branch point, a pole or a zero.
We will adopt a "pass on the right" convention by moving each arrow, drawn in the increasing w sense, by an infinitesimal amount to the right.

Modifications to the arrow system

We want to simplify what happens when an arrow interacts with a stagnation point, a branch point, a pole or a zero.
We will adopt a "pass on the right" convention by moving each arrow, drawn in the increasing w sense, by an infinitesimal amount to the right.
We will remove all poles by replacing a polynomial sequence

$$
\left(P_{0}, P_{1}, \ldots, P_{r}\right) \quad \text { by } \quad\left(-t, P_{0}, P_{1}, \ldots, P_{r}\right)
$$

and take the limit as $t \rightarrow 0$. Although the limit does not exist on the Riemann surface, its projection onto the Z plane does.

Modifications to the arrow system

We want to simplify what happens when an arrow interacts with a stagnation point, a branch point, a pole or a zero.
We will adopt a "pass on the right" convention by moving each arrow, drawn in the increasing w sense, by an infinitesimal amount to the right.
We will remove all poles by replacing a polynomial sequence

$$
\left(P_{0}, P_{1}, \ldots, P_{r}\right) \quad \text { by } \quad\left(-t, P_{0}, P_{1}, \ldots, P_{r}\right)
$$

and take the limit as $t \rightarrow 0$. Although the limit does not exist on the Riemann surface, its projection onto the Z plane does.
Do the same with zeros.

We will illustrate these ideas with the $[2,0,1]$ approximation

Use right-oriented arrows

Replace poles and zeros using extra sheets

Now a generic diagram for $n_{0}=3, p=5$:

It could be $[3,2],[3,1,0],[3,0,1]$ etc

The Butcher-Chipman conjecture

After extensive searching, Fred Chipman and I formulated the following audacious statement: For generalized Padé approximations to the exponential function, the necessary condition for A-stability of linear Padé approximations also holds in the general case:

$$
2 n_{0}-p \in\{0,1,2\}
$$

The Butcher-Chipman conjecture

After extensive searching, Fred Chipman and I formulated the following audacious statement: For generalized Padé approximations to the exponential function, the necessary condition for A-stability of linear Padé approximations also holds in the general case:

$$
2 n_{0}-p \in\{0,1,2\}
$$

\square In the linear case this is also sufficient

The Butcher-Chipman conjecture

After extensive searching, Fred Chipman and I formulated the following audacious statement: For generalized Padé approximations to the exponential function, the necessary condition for A-stability of linear Padé approximations also holds in the general case:

$$
2 n_{0}-p \in\{0,1,2\}
$$

\square In the linear case this is also sufficient

- But there are counterexamples in the general case

The Butcher-Chipman conjecture

After extensive searching, Fred Chipman and I formulated the following audacious statement: For generalized Padé approximations to the exponential function, the necessary condition for A-stability of linear Padé approximations also holds in the general case:

$$
2 n_{0}-p \in\{0,1,2\}
$$

\square In the linear case this is also sufficient

- But there are counterexamples in the general case
$-2 n_{0}-p \geq 0$ follows from the Daniel-Moore theorem

The Butcher-Chipman conjecture

After extensive searching, Fred Chipman and I formulated the following audacious statement: For generalized Padé approximations to the exponential function, the necessary condition for A-stability of linear Padé approximations also holds in the general case:

$$
2 n_{0}-p \in\{0,1,2\}
$$

\square In the linear case this is also sufficient

- But there are counterexamples in the general case
- $2 n_{0}-p \geq 0$ follows from the Daniel-Moore theorem
- This leaves $2 n_{0}-p \leq 2$ as the remaining challenge

The Butcher-Chipman conjecture

After extensive searching, Fred Chipman and I formulated the following audacious statement: For generalized Padé approximations to the exponential function, the necessary condition for A-stability of linear Padé approximations also holds in the general case:

$$
2 n_{0}-p \in\{0,1,2\}
$$

\square In the linear case this is also sufficient

- But there are counterexamples in the general case
- $2 n_{0}-p \geq 0$ follows from the Daniel-Moore theorem
- This leaves $2 n_{0}-p \leq 2$ as the remaining challenge
- The proof outline I will give makes use of homotopy from lower order approximations

Proof outline

Once we have proved that n_{0} of the up-arrow from 0 terminate at poles, the proof is just the same as for the Ehle theorem.

Proof outline

Once we have proved that n_{0} of the up-arrow from 0 terminate at poles, the proof is just the same as for the Ehle theorem.

Hence we concentrate on this intermediate result.

Proof outline

Once we have proved that n_{0} of the up-arrow from 0 terminate at poles, the proof is just the same as for the Ehle theorem.

Hence we concentrate on this intermediate result.
Step 1: $n_{0}=p$

Proof outline

Once we have proved that n_{0} of the up-arrow from 0 terminate at poles, the proof is just the same as for the Ehle theorem.

Hence we concentrate on this intermediate result.
Step 1: $n_{0}=p$
Step 2: Induction on $p-n_{0}$

Proof outline

Once we have proved that n_{0} of the up-arrow from 0 terminate at poles, the proof is just the same as for the Ehle theorem.

Hence we concentrate on this intermediate result.
Step 1: $n_{0}=p$
Step 2: Induction on $p-n_{0}$
We will illustrate step 2 , in the case $n_{0}=4, p=5$

Proof outline

Once we have proved that n_{0} of the up-arrow from 0 terminate at poles, the proof is just the same as for the Ehle theorem.

Hence we concentrate on this intermediate result.
Step 1: $n_{0}=p$
Step 2: Induction on $p-n_{0}$
We will illustrate step 2 , in the case $n_{0}=4, p=5$
We use homotopy: as t moves from 0 to 1 we move from an approximation with $p-n_{0}=0$ to $p-n_{0}=1$

Proof outline

Once we have proved that n_{0} of the up-arrow from 0 terminate at poles, the proof is just the same as for the Ehle theorem.

Hence we concentrate on this intermediate result.
Step 1: $n_{0}=p$
Step 2: Induction on $p-n_{0}$
We will illustrate step 2 , in the case $n_{0}=4, p=5$
We use homotopy: as t moves from 0 to 1 we move from an approximation with $p-n_{0}=0$ to $p-n_{0}=1$

First see how the order increases as t approaches 1

Order and stability for general linear methods - p. 36/38

Is it possible that during the homotopy, one of the arrows which terminates on the top sheet gets detached from 0 ?

Is it possible that during the homotopy, one of the arrows which terminates on the top sheet gets detached from 0 ?

If so, an arrow from a lower sheet must connect to 0 at the same time to retain order $p-1$.

Is it possible that during the homotopy, one of the arrows which terminates on the top sheet gets detached from 0 ?

If so, an arrow from a lower sheet must connect to 0 at the same time to retain order $p-1$.

This means that for some $t \in(0,1)$, the order becomes p.

Is it possible that during the homotopy, one of the arrows which terminates on the top sheet gets detached from 0 ?

If so, an arrow from a lower sheet must connect to 0 at the same time to retain order $p-1$.

This means that for some $t \in(0,1)$, the order becomes p.
This is impossible, because of the uniqueness of generalized Padé approximations.

Thank you

