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There is always a conflict between three basic aims in the
design of algorithms to solve ordinary differential
equations.
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There is always a conflict between three basic aims in the
design of algorithms to solve ordinary differential
equations. These aims are

Good accuracy using high order methods

Good stability — A-stability in the case of stiff
methods

Modest computational costs

A fourth unwritten aim is to keep the method as simple
as possible but this is related to the other aims.

I will discuss some of the conflicts between order and
stability using order arrows and order stars to illustrate
how they are inter-connected.
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General linear methods and Obrechkov methods

General linear methods are multivalue-multistage
methods in which the input to a stepy[n−1] and the output
from the stepy[n] are related to the stage valuesY and
the stage derivativesF = f(Y ) by the equations

[

Y

y[n]

]

=

[

A U

B V

] [

hF

y[n−1]

]
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General linear methods and Obrechkov methods

General linear methods are multivalue-multistage
methods in which the input to a stepy[n−1] and the output
from the stepy[n] are related to the stage valuesY and
the stage derivativesF = f(Y ) by the equations

[

Y

y[n]

]

=

[

A U

B V

] [

hF

y[n−1]

]

For the “linear test problem”y′(x) = qy(x), we obtain
the solution in the form

y[n] = M(z)ny[0], z = hq,

where M(z) = V + zB(I − zA)−1U.
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Because we are interested in stable behaviour of powers
of M(z), we want to know properties of the stability
functionΦ(w, z) given by

Φ(w, z)

det(I − zA)
= det(wI − M(z)).
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Because we are interested in stable behaviour of powers
of M(z), we want to know properties of the stability
functionΦ(w, z) given by

Φ(w, z)

det(I − zA)
= det(wI − M(z)).

The open stability region is the set of values ofz in the
complex plane for which any solution to the equation

Φ(w, z) = 0

lies in the interior of the unit disc.
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A necessary condition for orderp is that
exp(z) + O(zp+1) is an eigenvalue ofM(z) for smallz.
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A necessary condition for orderp is that
exp(z) + O(zp+1) is an eigenvalue ofM(z) for smallz.

Because we will not consider details of the method, but
only the stability function, we will regard this as the
definition of the order ofΦ(w, z).
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If we have available not only a formula for the first
derivativey′(x) = f(y(x)), but also higher derivatives
y′′(x) = f2(y(x)), . . . , we can widen the type of method
considerably.
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If we have available not only a formula for the first
derivativey′(x) = f(y(x)), but also higher derivatives
y′′(x) = f2(y(x)), . . . , we can widen the type of method
considerably. In particular we can include Obrechkov
methods or multiderivative linear multistep methods.
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If we have available not only a formula for the first
derivativey′(x) = f(y(x)), but also higher derivatives
y′′(x) = f2(y(x)), . . . , we can widen the type of method
considerably. In particular we can include Obrechkov
methods or multiderivative linear multistep methods.

We will look at two examples, each of which is a
second-derivative generalization of a BDF method.
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The first example has order4

yn = 66
85hy′n −

18
85h

2y′′n + 108
85 yn−1 −

27
85yn−2 + 4

85yn−3,

Order and stability for general linear methods – p. 8/37



The first example has order4

yn = 66
85hy′n −

18
85h

2y′′n + 108
85 yn−1 −

27
85yn−2 + 4

85yn−3,

leading to the stability function

(1 − 66
85z + 18

85z
2)w3 − 108

85 w2 + 27
85w − 4

85.
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The first example has order4

yn = 66
85hy′n −

18
85h

2y′′n + 108
85 yn−1 −

27
85yn−2 + 4

85yn−3,

leading to the stability function

(1 − 66
85z + 18

85z
2)w3 − 108

85 w2 + 27
85w − 4

85.

We can verify the order by substitutingw = exp(z) and
obtaining the resultO(z5).
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The first example has order4

yn = 66
85hy′n −

18
85h

2y′′n + 108
85 yn−1 −

27
85yn−2 + 4

85yn−3,

leading to the stability function

(1 − 66
85z + 18

85z
2)w3 − 108

85 w2 + 27
85w − 4

85.

We can verify the order by substitutingw = exp(z) and
obtaining the resultO(z5).

We will refer to this method as[2, 0, 0, 0], where the
name gives the degrees of the polynomials inz which
appear as the coefficients ofw3, w2, w1, w0.
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The first example has order4

yn = 66
85hy′n −

18
85h

2y′′n + 108
85 yn−1 −

27
85yn−2 + 4

85yn−3,

leading to the stability function

(1 − 66
85z + 18

85z
2)w3 − 108

85 w2 + 27
85w − 4

85.

We can verify the order by substitutingw = exp(z) and
obtaining the resultO(z5).

We will refer to this method as[2, 0, 0, 0], where the
name gives the degrees of the polynomials inz which
appear as the coefficients ofw3, w2, w1, w0. The
approximation has maximal order for these degrees.
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The second example has order5

yn = 60
83hy′n−

72
415h

2y′′n+
576
415yn−1−

216
415yn−2+

64
415yn−3−

9
415yn−4,
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The second example has order5

yn = 60
83hy′n−

72
415h

2y′′n+
576
415yn−1−

216
415yn−2+

64
415yn−3−

9
415yn−4,

leading to the stability function

(1 − 60
83z + 72

415z
2)w4 − 576

415w
3 + 216

415w
2 − 64

415w + 9
415 .
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The second example has order5

yn = 60
83hy′n−

72
415h

2y′′n+
576
415yn−1−

216
415yn−2+

64
415yn−3−

9
415yn−4,

leading to the stability function

(1 − 60
83z + 72

415z
2)w4 − 576

415w
3 + 216

415w
2 − 64

415w + 9
415 .

Again we can verify the order by substituting
w = exp(z), this time obtaining the resultO(z6).
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The second example has order5

yn = 60
83hy′n−

72
415h

2y′′n+
576
415yn−1−

216
415yn−2+

64
415yn−3−

9
415yn−4,

leading to the stability function

(1 − 60
83z + 72

415z
2)w4 − 576

415w
3 + 216

415w
2 − 64

415w + 9
415 .

Again we can verify the order by substituting
w = exp(z), this time obtaining the resultO(z6).

This is the[2, 0, 0, 0, 0] approximation.
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The stability regions of these two methods are the
unshaded regions in the diagrams:

2

0

−2

4

[2, 0, 0, 0]

2

0

−2

5

[2, 0, 0, 0, 0]
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The stability regions of these two methods are the
unshaded regions in the diagrams:

2

0

−2

4

[2, 0, 0, 0]

2

0

−2

5

[2, 0, 0, 0, 0]

The methods are A-stable
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The stability regions of these two methods are the
unshaded regions in the diagrams:

2

0

−2

4

[2, 0, 0, 0]

2

0

−2

5

[2, 0, 0, 0, 0]

The methods are A-stable and A(89.365◦)-stable
respectively.
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Order stars and order arrows

The use of order stars in settling stability questions is
well-known.
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The use of order stars in settling stability questions is
well-known.

An alternative to order stars is “order arrows” and this is
the approach we will emphasise.
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Order stars and order arrows

The use of order stars in settling stability questions is
well-known.

An alternative to order stars is “order arrows” and this is
the approach we will emphasise.

In order stars we consider the sets of(w, z) pairs such
that

Φ(w exp(z), z) = 0, (⋆)

and such that|w| > 1 (or such that|w| < 1).
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Order stars and order arrows

The use of order stars in settling stability questions is
well-known.

An alternative to order stars is “order arrows” and this is
the approach we will emphasise.

In order stars we consider the sets of(w, z) pairs such
that

Φ(w exp(z), z) = 0, (⋆)

and such that|w| > 1 (or such that|w| < 1).

For order arrows we consider the set of(w, z) pairs
satisfying (⋆) such thatw is real and positive.
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Before considering complicated examples like the
[2, 0, 0, 0] and[2, 0, 0, 0, 0] approximations we will look
at standard Padé approximations to the exponential
function.
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Before considering complicated examples like the
[2, 0, 0, 0] and[2, 0, 0, 0, 0] approximations we will look
at standard Padé approximations to the exponential
function.

We consider the example of the[2, 1] Padé
approximation for which

R(z) =
1 + 1

3z

1 − 2
3z + 1

6z
2
.
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Before considering complicated examples like the
[2, 0, 0, 0] and[2, 0, 0, 0, 0] approximations we will look
at standard Padé approximations to the exponential
function.

We consider the example of the[2, 1] Padé
approximation for which

R(z) =
1 + 1

3z

1 − 2
3z + 1

6z
2
.

The figure on the next slide gives information on both the
order star and the order arrows:
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We can separate out the order star picture
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And the order arrow picture
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Now consider the[2, 0, 0, 0] approximation
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And the [2, 0, 0, 0, 0] approximation
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Order arrows and stability results

For an A-stable approximation, an upward arrow from0
cannot cross or be tangential to the imaginary axis.
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Order arrows and stability results

For an A-stable approximation, an upward arrow from0
cannot cross or be tangential to the imaginary axis.

This is similar to the observation that, in the order star
analysis, a finger cannot overlap the imaginary axis if the
method is to be A-stable.
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Order arrows and stability results

For an A-stable approximation, an upward arrow from0
cannot cross or be tangential to the imaginary axis.

This is similar to the observation that, in the order star
analysis, a finger cannot overlap the imaginary axis if the
method is to be A-stable.

In each case we also use the behaviour near zero of the
locally defined functionw(z) = 1 + Czp+1.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
We illustrate how this theorem is proved by returning to
the[2, 0, 0, 0, 0] approximation.
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Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
We illustrate how this theorem is proved by returning to
the[2, 0, 0, 0, 0] approximation.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
We illustrate how this theorem is proved by returning to
the[2, 0, 0, 0, 0] approximation.

The red lines are tangent to the arrows and are spaced at
angles ofπ/(p + 1) = π/6.
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The Daniel-Moore theorem

Theorem. For an A-stable method withn0 poles, the
order cannot exceed2n0.
We illustrate how this theorem is proved by returning to
the[2, 0, 0, 0, 0] approximation.

The red lines are tangent to the arrows and are spaced at
angles ofπ/(p + 1) = π/6.
Hence there exist up-arrows tangent to the imaginary
axis. Order and stability for general linear methods – p. 23/37



Padé approximations to the exponential function

We consider approximations of the form

w =
N(z)

D(z)
= exp(z) + O(zp+1),

where

deg(D) = n0, deg(N) = n1, p = n0 + n1.
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Padé approximations to the exponential function

We consider approximations of the form

w =
N(z)

D(z)
= exp(z) + O(zp+1),

where

deg(D) = n0, deg(N) = n1, p = n0 + n1.

It is known that this approximation is A-stable iff

2n0 − p ∈ {0, 1, 2}.
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Padé approximations to the exponential function

We consider approximations of the form

w =
N(z)

D(z)
= exp(z) + O(zp+1),

where

deg(D) = n0, deg(N) = n1, p = n0 + n1.

It is known that this approximation is A-stable iff

2n0 − p ∈ {0, 1, 2}.

The final step of this result, that2n0 − p ≤ 2 is necessary
for A-stability, was proved in the famous Order Star
paper of Hairer, Nørsett and Wanner.
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Padé approximations to the exponential function

We consider approximations of the form

w =
N(z)

D(z)
= exp(z) + O(zp+1),

where

deg(D) = n0, deg(N) = n1, p = n0 + n1.

It is known that this approximation is A-stable iff

2n0 − p ∈ {0, 1, 2}.

The final step of this result, that2n0 − p ≤ 2 is necessary
for A-stability, was proved in the famous Order Star
paper of Hairer, Nørsett and Wanner.
An alternative proof will be outlined using order arrows.
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The Ehle theorem

Theorem. A Pad́e approximation[n0, n1] with order
p = n0 + n1, is A-stable only if

2n0 − p ≤ 2.
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The Ehle theorem

Theorem. A Pad́e approximation[n0, n1] with order
p = n0 + n1, is A-stable only if

2n0 − p ≤ 2.

Some of the up-arrows from zero terminate at poles and
some terminate at−∞ in the sense that the real part has
this limit and the imaginary part has a finite limit.
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The Ehle theorem

Theorem. A Pad́e approximation[n0, n1] with order
p = n0 + n1, is A-stable only if

2n0 − p ≤ 2.

Some of the up-arrows from zero terminate at poles and
some terminate at−∞ in the sense that the real part has
this limit and the imaginary part has a finite limit.

We will assume that each of the poles is a termination
point for an up-arrow from zero.
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The Ehle theorem

Theorem. A Pad́e approximation[n0, n1] with order
p = n0 + n1, is A-stable only if

2n0 − p ≤ 2.

Some of the up-arrows from zero terminate at poles and
some terminate at−∞ in the sense that the real part has
this limit and the imaginary part has a finite limit.

We will assume that each of the poles is a termination
point for an up-arrow from zero.

This question will be discussed later.
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Because adjacent up-arrows subtend an angle
2π

p + 1

andn0 of them terminate at poles, the total angle
subtended is at least

2(n0 − 1)

p + 1
π ≥ π if 2n0 − p > 2.
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Because adjacent up-arrows subtend an angle
2π

p + 1

andn0 of them terminate at poles, the total angle
subtended is at least

2(n0 − 1)

p + 1
π ≥ π if 2n0 − p > 2.

Hence, either up-arrows terminating at poles are
tangential to the imaginary axis or protrude into the left
half-plane.
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Because adjacent up-arrows subtend an angle
2π

p + 1

andn0 of them terminate at poles, the total angle
subtended is at least

2(n0 − 1)

p + 1
π ≥ π if 2n0 − p > 2.

Hence, either up-arrows terminating at poles are
tangential to the imaginary axis or protrude into the left
half-plane.

In the latter case, there are poles in the left half-plane or
an up-arrow crosses back across the imaginary axis.
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We will illustrate this result in the[3, 0] case.
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Now return to a crucial part of the proof:

Why should every pole be at the end of an up-arrow
from zero?
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Now return to a crucial part of the proof:

Why should every pole be at the end of an up-arrow
from zero?

For Padé approximations this follows simply from the
fact that up-arrows from zero and down-arrows from
zero cannot cross.
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Now return to a crucial part of the proof:

Why should every pole be at the end of an up-arrow
from zero?

For Padé approximations this follows simply from the
fact that up-arrows from zero and down-arrows from
zero cannot cross.

But in the general case, where everything happens on a
Riemann surface, we cannot use this argument in a
simple way.
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Now return to a crucial part of the proof:

Why should every pole be at the end of an up-arrow
from zero?

For Padé approximations this follows simply from the
fact that up-arrows from zero and down-arrows from
zero cannot cross.

But in the general case, where everything happens on a
Riemann surface, we cannot use this argument in a
simple way.

We will look to see if homotopy might be a useful
approach.
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Φt(w, z) = (1−t)
(

w(1−z)−1
)

+ t
(

w(1−z+ 1
2
z2)−1

)

= (1−t)Φ[1,0](w, z) + tΦ[2,0](w, z)
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Φt(w, z) = (1−t)
(

w(1−z)−1
)

+ t
(

w(1−z+ 1
2
z2)−1

)

= (1−t)Φ[1,0](w, z) + tΦ[2,0](w, z)

t = 0
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Φt(w, z) = (1−t)
(

w(1−z)−1
)

+ t
(

w(1−z+ 1
2
z2)−1

)

= (1−t)Φ[1,0](w, z) + tΦ[2,0](w, z)

t = 0

t = 1
3
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Φt(w, z) = (1−t)
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w(1−z)−1
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+ t
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w(1−z+ 1
2
z2)−1

)

= (1−t)Φ[1,0](w, z) + tΦ[2,0](w, z)
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t = 1
3
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Φt(w, z) = (1−t)
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w(1−z)−1
)

+ t
(

w(1−z+ 1
2
z2)−1

)

= (1−t)Φ[1,0](w, z) + tΦ[2,0](w, z)

t = 0

t = 1
3

t = 1
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t = 3
4

t = 1
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Quadratic approximations to the exponential

Given [n0, n1, n2], there exist polynomialsPi, i = 0, 1, 2,
of degreesn0, n1, n2 respectively, such that

exp(2z)P0(z) + exp(z)P1(z) + P2(z) = O(zp+1),
wherep = n0 + n1 + n2 + 1.
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Quadratic approximations to the exponential

Given [n0, n1, n2], there exist polynomialsPi, i = 0, 1, 2,
of degreesn0, n1, n2 respectively, such that

exp(2z)P0(z) + exp(z)P1(z) + P2(z) = O(zp+1),
wherep = n0 + n1 + n2 + 1.
Theorem. Let

(1+t)−n1−1(2+t)−n2−1 =a0 + a1t + · · · + an0
tn0 + O(tn0+1),

(−1+t)−n0−1(1+t)−n2−1 =b0 + b1t + · · · + bn1
tn1 + O(tn1+1),

(−2+t)−n0−1(−1+t)−n1−1 =c0 + c1t + · · · + cn2
tn2 + O(tn2+1),

then(P0, P1, P2) is the[n0, n1, n2] quadratic Pad́e
approximation toexp if
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Theorem. Let
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(−1+t)−n0−1(1+t)−n2−1 =b0 + b1t + · · · + bn1
tn1 + O(tn1+1),

(−2+t)−n0−1(−1+t)−n1−1 =c0 + c1t + · · · + cn2
tn2 + O(tn2+1),

then(P0, P1, P2) is the[n0, n1, n2] quadratic Pad́e
approximation toexp if

P0(z)=

n0
∑

i=0

an0−iz
i

i!
,
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Quadratic approximations to the exponential

Given [n0, n1, n2], there exist polynomialsPi, i = 0, 1, 2,
of degreesn0, n1, n2 respectively, such that

exp(2z)P0(z) + exp(z)P1(z) + P2(z) = O(zp+1),
wherep = n0 + n1 + n2 + 1.
Theorem. Let

(1+t)−n1−1(2+t)−n2−1 =a0 + a1t + · · · + an0
tn0 + O(tn0+1),

(−1+t)−n0−1(1+t)−n2−1 =b0 + b1t + · · · + bn1
tn1 + O(tn1+1),

(−2+t)−n0−1(−1+t)−n1−1 =c0 + c1t + · · · + cn2
tn2 + O(tn2+1),

then(P0, P1, P2) is the[n0, n1, n2] quadratic Pad́e
approximation toexp if

P0(z)=

n0
∑

i=0

an0−iz
i

i!
, P1(z)=

n1
∑

i=0

bn1−iz
i

i!
, P2(z)=

n2
∑

i=0

cn2−iz
i

i!
.
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The Butcher–Chipman conjecture

After extensive searching, Fred Chipman and I
formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.
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exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:
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But there are counterexamples in the general case
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formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.

In the linear case this is also sufficient

But there are counterexamples in the general case

2n0 − p ≥ 0 follows from the Daniel-Moore theorem

Order and stability for general linear methods – p. 31/37



The Butcher–Chipman conjecture

After extensive searching, Fred Chipman and I
formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.

In the linear case this is also sufficient

But there are counterexamples in the general case

2n0 − p ≥ 0 follows from the Daniel-Moore theorem

This leaves2n0 − p ≤ 2 as the remaining challenge
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The Butcher–Chipman conjecture

After extensive searching, Fred Chipman and I
formulated the following audacious statement:
For generalized Pad́e approximations to the
exponential function, the necessary condition for
A-stability of linear Padé approximations also holds
in the general case:

2n0 − p ∈ {0, 1, 2}.

In the linear case this is also sufficient

But there are counterexamples in the general case

2n0 − p ≥ 0 follows from the Daniel-Moore theorem

This leaves2n0 − p ≤ 2 as the remaining challenge

I will concentrate on the quadratic case
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We are only interested in “genuine” order. For example,
consider the approximations
Φ[2,0,2](w, z)=w2(1− 5

8z+ 1
8z

2)−2w+(1+ 5
8z+ 1

8z
2), (1)

Φ[1,0,1](w, z)=w2(1 − 1
2z) − 2w + (1 + 1

2z). (2)
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We are only interested in “genuine” order. For example,
consider the approximations
Φ[2,0,2](w, z)=w2(1− 5

8z+ 1
8z

2)−2w+(1+ 5
8z+ 1

8z
2), (1)

Φ[1,0,1](w, z)=w2(1 − 1
2z) − 2w + (1 + 1

2z). (2)

(1) is order5 in the sense thatΦ(exp(z), z) = O(z6), but
there is a branch-point atz = 0, and the order seems to
be shared between two sheets of the Riemann surface.
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We are only interested in “genuine” order. For example,
consider the approximations
Φ[2,0,2](w, z)=w2(1− 5

8z+ 1
8z

2)−2w+(1+ 5
8z+ 1

8z
2), (1)

Φ[1,0,1](w, z)=w2(1 − 1
2z) − 2w + (1 + 1

2z). (2)

(1) is order5 in the sense thatΦ(exp(z), z) = O(z6), but
there is a branch-point atz = 0, and the order seems to
be shared between two sheets of the Riemann surface.

(2) factorizes into the product of the zero order
approximationw − 1 and the order 2 approximation
w(1 − 1

2z) − (1 + 1
2z).
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We are only interested in “genuine” order. For example,
consider the approximations
Φ[2,0,2](w, z)=w2(1− 5

8z+ 1
8z

2)−2w+(1+ 5
8z+ 1

8z
2), (1)

Φ[1,0,1](w, z)=w2(1 − 1
2z) − 2w + (1 + 1

2z). (2)

(1) is order5 in the sense thatΦ(exp(z), z) = O(z6), but
there is a branch-point atz = 0, and the order seems to
be shared between two sheets of the Riemann surface.

(2) factorizes into the product of the zero order
approximationw − 1 and the order 2 approximation
w(1 − 1

2z) − (1 + 1
2z).

To make sure that we never deal with such irrelevancies,
we will consider only cases for whichn0 > n1 + n2.
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The final step of the proof of the BC conjecture would be
exactly the same as for the Ehle theorem if we could first
prove that every pole is at the end of an up-arrow from
zero on the “principal sheet”.
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The final step of the proof of the BC conjecture would be
exactly the same as for the Ehle theorem if we could first
prove that every pole is at the end of an up-arrow from
zero on the “principal sheet”.

We will use homotopy to connect an orderp
approximation[n0, n1, n2] to the orderp − 1
approximation[n0, n1, n2 − 1].
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The final step of the proof of the BC conjecture would be
exactly the same as for the Ehle theorem if we could first
prove that every pole is at the end of an up-arrow from
zero on the “principal sheet”.

We will use homotopy to connect an orderp
approximation[n0, n1, n2] to the orderp − 1
approximation[n0, n1, n2 − 1].

This will be illustrated by a single example:

Φt = (1 − t)Φ[2,1,−1] + tΦ[2,1,0],
where
Φ[2,1,−1](w, z) = w2(1 − 2

3z + 1
6z

2) − w(1 + 1
3z),

Φ[2,1,0](w, z) = w2(1 − 10
17z + 2

17z
2) − w(16

17 + 8
17z) − 1

17 .
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As soon ast becomes positive, the zero at−3 is replaced
by a double branch point which breaks into two complex
conjugate branch points.

Order and stability for general linear methods – p. 34/37



As soon ast becomes positive, the zero at−3 is replaced
by a double branch point which breaks into two complex
conjugate branch points. Also, ast becomes positive, a
stagnation point suddenly appears atz = −4.

Order and stability for general linear methods – p. 34/37



As soon ast becomes positive, the zero at−3 is replaced
by a double branch point which breaks into two complex
conjugate branch points. Also, ast becomes positive, a
stagnation point suddenly appears atz = −4. To see how
this happens, we find thew-resultant ofΦt(w, z) and

( ∂
∂z

+ w ∂
∂w

)Φt(w, z).

This has a factorz3, corresponding to the order3
stagnation point at0, and the additional factor

(289 + 238t − 95t2)z + (1156 − 1088t − 68t2),
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As soon ast becomes positive, the zero at−3 is replaced
by a double branch point which breaks into two complex
conjugate branch points. Also, ast becomes positive, a
stagnation point suddenly appears atz = −4. To see how
this happens, we find thew-resultant ofΦt(w, z) and

( ∂
∂z

+ w ∂
∂w

)Φt(w, z).

This has a factorz3, corresponding to the order3
stagnation point at0, and the additional factor

(289 + 238t − 95t2)z + (1156 − 1088t − 68t2),

with zero atz = −4, whent = 0, and atz = 0, when
t = 1.
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Φt = (1 − t)Φ[2,1,−1] + tΦ[2,1,0]

Φ[2,1,−1](w, z) = w2(1 − 2
3
z + 1

6
z2) − w(1 + 1

3
z)

Φ[2,1,0](w, z) = w2(1 − 10
17

z + 2
17

z2) − w(16
17

+ 8
17

z) − 1
17
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Φt = (1 − t)Φ[2,1,−1] + tΦ[2,1,0]

Φ[2,1,−1](w, z) = w2(1 − 2
3
z + 1

6
z2) − w(1 + 1

3
z)

Φ[2,1,0](w, z) = w2(1 − 10
17

z + 2
17

z2) − w(16
17

+ 8
17

z) − 1
17t = 0
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Φt = (1 − t)Φ[2,1,−1] + tΦ[2,1,0]

Φ[2,1,−1](w, z) = w2(1 − 2
3
z + 1

6
z2) − w(1 + 1

3
z)

Φ[2,1,0](w, z) = w2(1 − 10
17

z + 2
17

z2) − w(16
17

+ 8
17

z) − 1
17t = 0

t = 1

20
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t = 1

2

t = 3

4
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Many thanks
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