Order and stability for general linear methods

John Butcher

The University of Auckland
 New Zealand

SciCADE 2005, Nagoya

Contents

- General linear methods

Contents

- General linear methods
- Order of methods

Contents

- General linear methods
- Order of methods
- Stability of methods

Contents

- General linear methods
- Order of methods
- Stability of methods
- Example methods

Contents

- General linear methods
- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property

Contents

- General linear methods
- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

General linear methods

"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases.

General linear methods

"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases.

General linear methods

"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases.
A characteristic feature is that each step imports r quantities

General linear methods

"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases.
A characteristic feature is that each step imports r quantities, and exports the same quantities, updated in accordance with the development of the solution.

General linear methods

"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases.
A characteristic feature is that each step imports r quantities, and exports the same quantities, updated in accordance with the development of the solution.
A second characteristic feature is that, within the step, s stages are computed, together with the corresponding s stage derivatives.

- General linear methods
- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

Denote the output approximations from step number n by $y_{i}^{[n]}, i=1,2, \ldots, r$, the stage values by $Y_{i}, i=1,2, \ldots, s$ and the stage derivatives by $F_{i}, i=1,2, \ldots, s$.

Denote the output approximations from step number n by $y_{i}^{[n]}, i=1,2, \ldots, r$, the stage values by $Y_{i}, i=1,2, \ldots, s$ and the stage derivatives by $F_{i}, i=1,2, \ldots, s$.

For convenience, write

$$
y^{[n-1]}=\left[\begin{array}{c}
y_{1}^{[n-1]} \\
y_{2}^{[n-1]} \\
\vdots \\
y_{r}^{[n-1]}
\end{array}\right], \quad y^{[n]}=\left[\begin{array}{c}
y_{1}^{[n]} \\
y_{2}^{[n]} \\
\vdots \\
y_{r}^{[n]}
\end{array}\right], \quad Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{s}
\end{array}\right], \quad F=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{s}
\end{array}\right]
$$

Denote the output approximations from step number n by $y_{i}^{[n]}, i=1,2, \ldots, r$, the stage values by $Y_{i}, i=1,2, \ldots, s$ and the stage derivatives by $F_{i}, i=1,2, \ldots, s$.

For convenience, write

$$
y^{[n-1]}=\left[\begin{array}{c}
y_{1}^{[n-1]} \\
y_{2}^{[n-1]} \\
\vdots \\
y_{r}^{[n-1]}
\end{array}\right], \quad y^{[n]}=\left[\begin{array}{c}
y_{1}^{[n]} \\
y_{2}^{[n]} \\
\vdots \\
y_{r}^{[n]}
\end{array}\right], \quad Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{s}
\end{array}\right], \quad F=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{s}
\end{array}\right]
$$

It is assumed that Y and F are related by a differential equation.

The computation of the stages and the output from step number n is carried out according to the formulae

$$
\begin{aligned}
& Y_{i}=\sum_{j=1}^{s} a_{i j} h F_{j}+\sum_{j=1}^{r} u_{i j} y_{j}^{[n-1]}, \quad i=1,2, \ldots, s, \\
& y_{i}^{[n]}=\sum_{j=1}^{s} b_{i j} h F_{j}+\sum_{j=1}^{r} v_{i j} y_{j}^{[n-1]}, \quad i=1,2, \ldots, r,
\end{aligned}
$$

where the matrices $A=\left[a_{i j}\right], U=\left[u_{i j}\right], B=\left[b_{i j}\right]$, $V=\left[v_{i j}\right]$ are characteristic of a specific method.

- General linear methods
- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

We can write these relations more compactly in the form

$$
\left[\begin{array}{c}
Y \\
y^{[n]}
\end{array}\right]=\left[\begin{array}{cc}
A \otimes I & U \otimes I \\
B \otimes I & V \otimes I
\end{array}\right]\left[\begin{array}{c}
h F \\
y^{[n-1]}
\end{array}\right]
$$

- Order of methods

We can write these relations more compactly in the form

$$
\left[\begin{array}{c}
Y \\
y^{[n]}
\end{array}\right]=\left[\begin{array}{cc}
A \otimes I & U \otimes I \\
B \otimes I & V \otimes I
\end{array}\right]\left[\begin{array}{c}
h F \\
y^{[n-1]}
\end{array}\right]
$$

which we can simplify by making a harmless abuse of notation in the form

$$
\left[\begin{array}{c}
Y \\
y^{[n]}
\end{array}\right]=\left[\begin{array}{ll}
A & U \\
B & V
\end{array}\right]\left[\begin{array}{c}
h F \\
y^{[n-1]}
\end{array}\right]
$$

A Runge-Kutta method

The famous fourth order Runge-Kutta method is simply written as a general linear method

0			
$\frac{1}{2}$	$\frac{1}{2}$		
$\frac{1}{2}$	0	$\frac{1}{2}$	
1	0	0	1
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$

B \& V\end{array}\right]=\left[$$
\begin{array}{cccc|c}0 & 0 & 0 & 0 & 1 \\
\frac{1}{2} & 0 & 0 & 0 & 1 \\
0 & \frac{1}{2} & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
\hline \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} & 1\end{array}
$$\right]\)

Like all Runge-Kutta methods, $r=1$.

Linear multistep methods

The 2-step Adams-Bashforth and Adams-Moulton methods are, respectively,

$$
\begin{aligned}
& y_{n}=y_{n-1}+\frac{3}{2} h y_{n-1}^{\prime}-\frac{1}{2} h y_{n-2}^{\prime} \\
& y_{n}=y_{n-1}+\frac{5}{12} h y_{n}^{\prime}+\frac{2}{3} h y_{n-1}^{\prime}-\frac{1}{12} h y_{n-2}^{\prime}
\end{aligned}
$$

The $r=3$ inputs are $y_{n-1}, h y_{n-1}^{\prime}, h y_{n-2}^{\prime}$ with outputs y_{n}, $h y_{n}^{\prime}, h y_{n-1}^{\prime}$.
The general linear formulations are respectively,

$$
\left[\begin{array}{c|ccc}
0 & 1 & \frac{3}{2} & -\frac{1}{2} \\
\hline 0 & 1 & \frac{3}{2} & -\frac{1}{2} \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c|ccc}
\frac{5}{12} & 1 & \frac{2}{3} & -\frac{1}{12} \\
\hline \frac{5}{12} & 1 & \frac{2}{3} & -\frac{1}{12} \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Order of methods

The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1}.

Order of methods

The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1}. When the step has been completed, the vectors comprising the output are approximations to the same quantities, but now related to x_{n}.

Order of methods

The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1}. When the step has been completed, the vectors comprising the output are approximations to the same quantities, but now related to x_{n}.
If the input is exactly what it is supposed to approximate, then the "local truncation error" is defined as the error in the output after a single step.

Order of methods

The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1}.
When the step has been completed, the vectors comprising the output are approximations to the same quantities, but now related to x_{n}.
If the input is exactly what it is supposed to approximate, then the "local truncation error" is defined as the error in the output after a single step.
If this can be estimated in terms of h^{p+1}, then the method has order p.

Order of methods

The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1}.
When the step has been completed, the vectors comprising the output are approximations to the same quantities, but now related to x_{n}.
If the input is exactly what it is supposed to approximate, then the "local truncation error" is defined as the error in the output after a single step.
If this can be estimated in terms of h^{p+1}, then the method has order p.
We will refer to the calculation which produces $y^{[n-1]}$ from $y\left(x_{n-1}\right)$ as a "starting method".

Let \mathcal{S} denote the "starting method", that is a mapping from \mathbb{R}^{N} to $\mathbb{R}^{r N}$, and let $\mathcal{F}: \mathbb{R}^{r N} \rightarrow \mathbb{R}^{N}$ denote a corresponding finishing method, such that $\mathcal{F} \circ \mathcal{S}=\mathrm{id}$.

Let \mathcal{S} denote the "starting method", that is a mapping from \mathbb{R}^{N} to $\mathbb{R}^{r N}$, and let $\mathcal{F}: \mathbb{R}^{r N} \rightarrow \mathbb{R}^{N}$ denote a corresponding finishing method, such that $\mathcal{F} \circ \mathcal{S}=\mathrm{id}$.

The order of accuracy of a multivalue method is defined in terms of the diagram

Let \mathcal{S} denote the "starting method", that is a mapping from \mathbb{R}^{N} to $\mathbb{R}^{r N}$, and let $\mathcal{F}: \mathbb{R}^{r N} \rightarrow \mathbb{R}^{N}$ denote a corresponding finishing method, such that $\mathcal{F} \circ \mathcal{S}=\mathrm{id}$.

The order of accuracy of a multivalue method is defined in terms of the diagram

By duplicating this diagram over many steps, global error estimates may be found.

By duplicating this diagram over many steps, global error estimates may be found.

By duplicating this diagram over many steps, global error estimates may be found.

By duplicating this diagram over many steps, global error estimates may be found.

By duplicating this diagram over many steps, global error estimates may be found.

To represent \mathcal{S} and turn the definition of order into a practical algorithm for analysing a specific method, operations on the set of mappings $T^{\#} \rightarrow \mathbb{R}$ can be used, where $T^{\#}$ is the set of rooted trees, together with the empty tree.

To represent \mathcal{S} and turn the definition of order into a practical algorithm for analysing a specific method, operations on the set of mappings $T^{\#} \rightarrow \mathbb{R}$ can be used, where $T^{\#}$ is the set of rooted trees, together with the empty tree.
The conditions are

$$
\begin{aligned}
\xi & =A \xi D+U \eta, \\
E \eta & =B \xi D+V \eta,
\end{aligned}
$$

where $\eta \in X^{r}$ represents $y^{[n-1]}$ and $\xi \in X_{1}^{s}$ represents Y.

To represent \mathcal{S} and turn the definition of order into a practical algorithm for analysing a specific method, operations on the set of mappings $T^{\#} \rightarrow \mathbb{R}$ can be used, where $T^{\#}$ is the set of rooted trees, together with the empty tree.
The conditions are

$$
\begin{aligned}
\xi & =A \xi D+U \eta, \\
E \eta & =B \xi D+V \eta,
\end{aligned}
$$

where $\eta \in X^{r}$ represents $y^{[n-1]}$ and $\xi \in X_{1}^{s}$ represents Y.
To understand the operations ξD (or the operation for a single component $\xi_{i} D$) and $E \eta$ (or a single component $E \eta_{i}$) we need to use what I call the Runge-Kutta space (equivalent to the concept of B-series).

General linear methods

- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

The Runge-Kutta space

X is the set of mappings on the set $T^{\#}$ to \mathbb{R}.

The Runge-Kutta space

X is the set of mappings on the set $T^{\#}$ to \mathbb{R}. $T^{\#}$ consists of all rooted trees, (the set T) together with the empty tree, which we will write as \emptyset.

The Runge-Kutta space

X is the set of mappings on the set $T^{\#}$ to \mathbb{R}.
$T^{\#}$ consists of all rooted trees, (the set T) together with the empty tree, which we will write as \emptyset. $X_{0} \in X$ is defined by $\emptyset \mapsto 0$ and $X_{1} \in X$ is defined by $\emptyset \mapsto 1$.

The Runge-Kutta space

X is the set of mappings on the set $T^{\#}$ to \mathbb{R}.
$T^{\#}$ consists of all rooted trees, (the set T) together with the empty tree, which we will write as \emptyset.
$X_{0} \in X$ is defined by $\emptyset \mapsto 0$ and $X_{1} \in X$ is defined by
$\emptyset \mapsto 1$.
The product $\alpha \beta$, where $\alpha \in X_{1}$ and $\beta \in X$ is defined by a formula for $(\alpha \beta)(t)$.

The Runge-Kutta space

X is the set of mappings on the set $T^{\#}$ to \mathbb{R}. $T^{\#}$ consists of all rooted trees, (the set T) together with the empty tree, which we will write as \emptyset.
$X_{0} \in X$ is defined by $\emptyset \mapsto 0$ and $X_{1} \in X$ is defined by $\emptyset \mapsto 1$.
The product $\alpha \beta$, where $\alpha \in X_{1}$ and $\beta \in X$ is defined by a formula for $(\alpha \beta)(t)$. Before we show the details, we note that

$$
(\alpha \beta)(t)=\alpha(t) \beta(\emptyset)+\sum \phi(t, u, \alpha) \beta(u)
$$

where ϕ vanishes if u has order greater than t.

The Runge-Kutta space

X is the set of mappings on the set $T^{\#}$ to \mathbb{R}. $T^{\#}$ consists of all rooted trees, (the set T) together with the empty tree, which we will write as \emptyset.
$X_{0} \in X$ is defined by $\emptyset \mapsto 0$ and $X_{1} \in X$ is defined by
$\emptyset \mapsto 1$.
The product $\alpha \beta$, where $\alpha \in X_{1}$ and $\beta \in X$ is defined by a formula for $(\alpha \beta)(t)$.
Before we show the details, we note that

$$
(\alpha \beta)(t)=\alpha(t) \beta(\emptyset)+\sum \phi(t, u, \alpha) \beta(u)
$$

where ϕ vanishes if u has order $\stackrel{u \in T}{ }$ greater than t.
A table of ϕ up to t of order 4 is shown on the next slide.

- General linear methods
- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

The values of D and E are shown in the following table

t	\emptyset	•	!	γ	\vdots	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\mathbf{~}$	\vdots
$D(t)$	0	1	0	0	0	0	0	0	0
$E(t)$	1	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{24}$

The values of D and E are shown in the following table

Note than D denotes differentiation and E represents flow through a single time step.

The values of D and E are shown in the following table

t	\emptyset	-	!	$\boldsymbol{\gamma}$	\vdots	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	ソ	\vdots
$D(t)$	0	1	0	0	0	0	0	0	0
$E(t)$	1	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{24}$

Note than D denotes differentiation and E represents flow through a single time step. If we are interested in order not exceeding p, then we will interpret such expressions as $\eta, E \eta, \xi$ and ξD as mappings restricted to trees of order not exceeding p.

With these interpretations we look at the order criteria again:

$$
\xi=A(\xi D)+U \eta .
$$

With these interpretations we look at the order criteria again:

$$
\xi=A(\xi D)+U \eta .
$$

This equation is a recursive definition of $\xi(t)$ in terms of the stage derivatives up to order p trees. It is a consistency requirement that every component of $\xi(\emptyset)$ is equal to 1 .

With these interpretations we look at the order criteria again:

$$
\xi=A(\xi D)+U \eta .
$$

This equation is a recursive definition of $\xi(t)$ in terms of the stage derivatives up to order p trees. It is a consistency requirement that every component of $\xi(\emptyset)$ is equal to 1 .
Now the output equation:

$$
E \eta=B(\xi D)+V \eta
$$

With these interpretations we look at the order criteria again:

$$
\xi=A(\xi D)+U \eta .
$$

This equation is a recursive definition of $\xi(t)$ in terms of the stage derivatives up to order p trees. It is a consistency requirement that every component of $\xi(\emptyset)$ is equal to 1 .
Now the output equation:

$$
E \eta=B(\xi D)+V \eta
$$

To within order p, this states that the output values are equal to the composition of the flow and the starting process.

Effective order of Runge-Kutta methods

We now interpret the definition of order in the case of Runge-Kutta methods.

Effective order of Runge-Kutta methods

We now interpret the definition of order in the case of Runge-Kutta methods.
In the classical view of order, the input approximation, represented by η, corresponds to the exact solution at a step point.

Effective order of Runge-Kutta methods

We now interpret the definition of order in the case of Runge-Kutta methods.
In the classical view of order, the input approximation, represented by η, corresponds to the exact solution at a step point.
This means that $\eta=1$, the group identity.

Effective order of Runge-Kutta methods

We now interpret the definition of order in the case of Runge-Kutta methods.
In the classical view of order, the input approximation, represented by η, corresponds to the exact solution at a step point.
This means that $\eta=1$, the group identity.
If α denotes the mapping from trees to elementary weights for a specific method,

$$
\alpha=E,
$$

up to trees of order p.

If we allow the possibility that η is the result of a single step with some other Runge-Kutta method, then the order conditions become

$$
\eta \alpha=E \eta .
$$

If we allow the possibility that η is the result of a single step with some other Runge-Kutta method, then the order conditions become

$$
\eta \alpha=E \eta .
$$

This is the meaning of effective order.

If we allow the possibility that η is the result of a single step with some other Runge-Kutta method, then the order conditions become

$$
\eta \alpha=E \eta .
$$

This is the meaning of effective order.
A particular consequence is that, although 5 stage explicit Runge-Kutta methods cannot have order 5, they can have effective order 5.

Methods with high stage order
If we want not only order p but also "stage-order" q equal to p (or possibly $p-1$), things become simpler.

- Order of methods
- Methods with the RK stability property
- Stability of methods

Methods with high stage order
If we want not only order p but also "stage-order" q equal to p (or possibly $p-1$), things become simpler.

$$
\exp (c z)=z A \exp (c z)+U \phi(z)+O\left(z^{q+1}\right)
$$

- Order of methods

Methods with high stage order

If we want not only order p but also "stage-order" q equal to p (or possibly $p-1$), things become simpler.

$$
\begin{aligned}
\exp (c z) & =z A \exp (c z)+U \phi(z)+O\left(z^{q+1}\right) \\
\exp (z) \phi(z) & =z B \exp (c z)+V \phi(z)+O\left(z^{p+1}\right)
\end{aligned}
$$

Methods with high stage order

If we want not only order p but also "stage-order" q equal to p (or possibly $p-1$), things become simpler.

$$
\begin{aligned}
\exp (c z) & =z A \exp (c z)+U \phi(z)+O\left(z^{q+1}\right) \\
\exp (z) \phi(z) & =z B \exp (c z)+V \phi(z)+O\left(z^{p+1}\right)
\end{aligned}
$$

where it is assumed the input is

$$
y_{i}^{[n-1]}=\alpha_{i 1} y\left(x_{n-1}\right)+\alpha_{i 2} h y^{\prime}\left(x_{n-1}\right)+\cdots+\alpha_{i, p+1} h^{p} y^{(p)}\left(x_{n-1}\right)
$$

Methods with high stage order

If we want not only order p but also "stage-order" q equal to p (or possibly $p-1$), things become simpler.

$$
\begin{aligned}
\exp (c z) & =z A \exp (c z)+U \phi(z)+O\left(z^{q+1}\right) \\
\exp (z) \phi(z) & =z B \exp (c z)+V \phi(z)+O\left(z^{p+1}\right)
\end{aligned}
$$

where it is assumed the input is

$$
y_{i}^{[n-1]}=\alpha_{i 1} y\left(x_{n-1}\right)+\alpha_{i 2} h y^{\prime}\left(x_{n-1}\right)+\cdots+\alpha_{i, p+1} h^{p} y^{(p)}\left(x_{n-1}\right)
$$

and where

$$
\phi_{i}(z)=\alpha_{i 1}+\alpha_{i 2} z+\cdots+\alpha_{i, p+1} z^{p}
$$

Stability of methods

In our discussion of errors, we assumed that V is power bounded.

Stability of methods

In our discussion of errors, we assumed that V is power bounded.

This is necessary for convergence in the sense of Dahlquist and is sometimes referred to as "zero-stability".

Stability of methods

In our discussion of errors, we assumed that V is power bounded.

This is necessary for convergence in the sense of Dahlquist and is sometimes referred to as "zero-stability".

We will consider only methods which are strongly zero-stable, so that only the principal eigenvalue of V lies on the unit circle.

By formulating the method appropriately, that is by making a simple change of basis transformation:

$$
[A, U, B, V] \rightarrow\left[A, U T, T^{-1} B, T^{-1} V T\right]
$$

we can assume that V has the form

$$
V=\left[\begin{array}{cc}
1 & v^{T} \\
0 & \dot{V}
\end{array}\right]
$$

where

$$
\rho(\dot{V})<1
$$

General linear methods

- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

Stability matrix and stability function

By considering the linear test problem $y^{\prime}=q y$ and defining $z=h q$, we arrive at the stability matrix

$$
M(z)=V+z B(I-z A)^{-1} U
$$

Stability matrix and stability function

By considering the linear test problem $y^{\prime}=q y$ and defining $z=h q$, we arrive at the stability matrix

$$
M(z)=V+z B(I-z A)^{-1} U .
$$

For the linear test problem, the sequence of approximations are related by

$$
y^{[n]}=M(z) y^{[n-1]} .
$$

Stability matrix and stability function

By considering the linear test problem $y^{\prime}=q y$ and defining $z=h q$, we arrive at the stability matrix

$$
M(z)=V+z B(I-z A)^{-1} U .
$$

For the linear test problem, the sequence of approximations are related by

$$
y^{[n]}=M(z) y^{[n-1]} .
$$

We define the "stability region" as the set of points in the complex plane such that $M(z)$ is power bounded.

Stability matrix and stability function

By considering the linear test problem $y^{\prime}=q y$ and defining $z=h q$, we arrive at the stability matrix

$$
M(z)=V+z B(I-z A)^{-1} U
$$

For the linear test problem, the sequence of approximations are related by

$$
y^{[n]}=M(z) y^{[n-1]} .
$$

We define the "stability region" as the set of points in the complex plane such that $M(z)$ is power bounded.
We also define the "stability function" as

$$
\Phi(w, z)=\operatorname{det}(w I-M(z)) .
$$

Finding new methods from stability

There seem to be two main approaches in the search for new methods with good stability.

Finding new methods from stability

There seem to be two main approaches in the search for new methods with good stability.

- The first is to decide what the method should look like, possibly by modifying a classical method. Then construct it and investigate its stability.

Finding new methods from stability

There seem to be two main approaches in the search for new methods with good stability.

■ The first is to decide what the method should look like, possibly by modifying a classical method. Then construct it and investigate its stability.

- The second approach is to decide first what its stability function should be and then search for methods with this stability function.

Finding new methods from stability

There seem to be two main approaches in the search for new methods with good stability.

■ The first is to decide what the method should look like, possibly by modifying a classical method. Then construct it and investigate its stability.

- The second approach is to decide first what its stability function should be and then search for methods with this stability function.

Before going on to look at examples based on modifying classical methods, we look briefly at some ramifications of the second approach.

Generalized Padé approximations

The following function represents an approximation of order 3 to exp:

$$
\Phi(w, z)=\left(7-6 z+2 z^{2}\right) w^{2}-8 w+1 .
$$

Generalized Padé approximations

The following function represents an approximation of order 3 to exp:

$$
\Phi(w, z)=\left(7-6 z+2 z^{2}\right) w^{2}-8 w+1 .
$$

It happens to be the stability function of the rather contrived general linear method:

$$
\left[\begin{array}{cc|cc}
\frac{2}{7} & -\frac{2}{7} & 1 & 0 \\
\frac{3}{7} & \frac{4}{7} & 1 & \frac{\sqrt{7}}{7} \\
\hline \frac{6-\sqrt{7}}{7} & \frac{1+\sqrt{7}}{7} & 1 & 0 \\
\frac{343-131 \sqrt{7}}{98} & -\frac{\sqrt{7}}{49} & 0 & \frac{1}{7}
\end{array}\right]
$$

It is also the stability function of the Obreshkov method

$$
y\left(x_{n}\right) \approx \frac{6}{7} h y^{\prime}\left(x_{n}\right)-\frac{2}{7} h^{2} y^{\prime \prime}\left(x_{n}\right)+\frac{8}{7} y\left(x_{n-1}\right)-\frac{1}{7} y\left(x_{n-2}\right)
$$

It is also the stability function of the Obreshkov method

$$
y\left(x_{n}\right) \approx \frac{6}{7} h y^{\prime}\left(x_{n}\right)-\frac{2}{7} h^{2} y^{\prime \prime}\left(x_{n}\right)+\frac{8}{7} y\left(x_{n-1}\right)-\frac{1}{7} y\left(x_{n-2}\right)
$$

The function $\Phi(w, z)$ is an order 2 approximation to \exp because

$$
\Phi(\exp (z), z)=O\left(z^{4}\right)
$$

It is also the stability function of the Obreshkov method

$$
y\left(x_{n}\right) \approx \frac{6}{7} h y^{\prime}\left(x_{n}\right)-\frac{2}{7} h^{2} y^{\prime \prime}\left(x_{n}\right)+\frac{8}{7} y\left(x_{n-1}\right)-\frac{1}{7} y\left(x_{n-2}\right)
$$

The function $\Phi(w, z)$ is an order 2 approximation to \exp because

$$
\Phi(\exp (z), z)=O\left(z^{4}\right)
$$

or alternatively because one of the solutions to the quadratic equation in w is

$$
\begin{aligned}
w & =\frac{4+\sqrt{9+6 z-2 z^{2}}}{7-6 z+2 z^{2}} \\
& =1+z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}-\frac{1}{72} z^{4}+\cdots \\
& =\exp (z)-\frac{1}{18} z^{4}-\cdots
\end{aligned}
$$

For any sequence of integers $\left[d_{0}, d_{1}, \ldots, d_{n}\right]$ such that

$$
d_{0} \geq 0, d_{n} \geq 0, \quad d_{j} \geq-1, j=1,2, \ldots, n-1,
$$

there exists polynomials P_{j} of degree $d_{j}, j=0,1, \ldots, n$ such that

$$
\sum_{j=0}^{n} \exp ((n-j) z) P_{j}(z)=O\left(z^{p+1}\right)
$$

where the "order" p is

$$
p=\sum_{j=0}^{n}\left(d_{j}+1\right)-1
$$

Such a sequence of polynomials is known as a $\left[d_{0}, d_{1}, \ldots, d_{n}\right]$ generalized Padé approximation to exp.

Such a sequence of polynomials is known as a $\left[d_{0}, d_{1}, \ldots, d_{n}\right]$ generalized Padé approximation to exp.

In the special case $n=1,-P_{1}(z) / P_{0}(z)$ is a Padé approximation.

Such a sequence of polynomials is known as a $\left[d_{0}, d_{1}, \ldots, d_{n}\right]$ generalized Padé approximation to exp.

In the special case $n=1,-P_{1}(z) / P_{0}(z)$ is a Padé approximation.

If generalized Padé approximations are going to be used as a starting point in the search for A-stable general linear methods, it is appropriate to ask which approximations have acceptable stability functions.

Such a sequence of polynomials is known as a $\left[d_{0}, d_{1}, \ldots, d_{n}\right]$ generalized Padé approximation to exp.

In the special case $n=1,-P_{1}(z) / P_{0}(z)$ is a Padé approximation.

If generalized Padé approximations are going to be used as a starting point in the search for A-stable general linear methods, it is appropriate to ask which approximations have acceptable stability functions.

That is, we want to know which approximations have the property that there do not exist (w, z) such that

$$
\Phi(w, z)=0, \quad|w|>1, \quad \operatorname{Re}(z)<0 .
$$

Approximations which possess this property seem to be confined to those for which

$$
2 d_{0}-p \in\{0,1,2\} .
$$

Approximations which possess this property seem to be confined to those for which

$$
2 d_{0}-p \in\{0,1,2\} .
$$

If $n=1$, and $2 d_{0}<p$, acceptability is impossible because

$$
\lim _{z \rightarrow-\infty}\left|\frac{-P_{1}(z)}{P_{0}(z)}\right|=\infty
$$

Approximations which possess this property seem to be confined to those for which

$$
2 d_{0}-p \in\{0,1,2\} .
$$

If $n=1$, and $2 d_{0}<p$, acceptability is impossible because

$$
\lim _{z \rightarrow-\infty}\left|\frac{-P_{1}(z)}{P_{0}(z)}\right|=\infty
$$

If $n=1$, and $2 d_{0}>p+2$, the impossibility of acceptability is known as the Ehle barrier and was famously proved using order stars.

For general n and $2 d_{0}<p$, the impossibility of acceptability is known as the Daniel-Moore barrier and was also proved using order stars.

For general n and $2 d_{0}<p$, the impossibility of acceptability is known as the Daniel-Moore barrier and was also proved using order stars.
For general n and $2 d_{0}>p+2$, the impossibility of acceptability is supported by evidence but not yet proved for all cases.

For general n and $2 d_{0}<p$, the impossibility of acceptability is known as the Daniel-Moore barrier and was also proved using order stars.
For general n and $2 d_{0}>p+2$, the impossibility of acceptability is supported by evidence but not yet proved for all cases.

Quick review of order stars and order arrows

Stability results such as the Ehle barrier and the Daniel-Moore barrier can be conveniently proved using order stars.

For general n and $2 d_{0}<p$, the impossibility of acceptability is known as the Daniel-Moore barrier and was also proved using order stars.
For general n and $2 d_{0}>p+2$, the impossibility of acceptability is supported by evidence but not yet proved for all cases.

Quick review of order stars and order arrows

Stability results such as the Ehle barrier and the Daniel-Moore barrier can be conveniently proved using order stars.
Order arrows are an alternative tool for deriving these and similar results and sometimes give a slightly different emphasis.

For the Padé approximation $\left(1+\frac{1}{3} z\right) /\left(1-\frac{2}{3} z+\frac{1}{6} z^{2}\right)$, we present its order star

General linear methods

- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

For the Padé approximation $\left(1+\frac{1}{3} z\right) /\left(1-\frac{2}{3} z+\frac{1}{6} z^{2}\right)$, we present its order star

For the Padé approximation $\left(1+\frac{1}{3} z\right) /\left(1-\frac{2}{3} z+\frac{1}{6} z^{2}\right)$, we present its order star and replace it by the order arrow

General linear methods

- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

For the Padé approximation $\left(1+\frac{1}{3} z\right) /\left(1-\frac{2}{3} z+\frac{1}{6} z^{2}\right)$, we present its order star and replace it by the order arrow

Principal properties of order arrows

Consider a rational approximation to exp, of order p with error constant C, defined by

$$
\exp (z)-R(z)=C z^{p+1}+O\left(z^{p+2}\right)
$$

Principal properties of order arrows

Consider a rational approximation to exp, of order p with error constant C, defined by

$$
\exp (z)-R(z)=C z^{p+1}+O\left(z^{p+2}\right)
$$

then there are $p+1$ up-arrows tangential at 0 to the vectors
$\exp (2 \pi k i /(p+1)), k=0,1, \ldots, p$

$$
\text { if } C<0
$$

Principal properties of order arrows

Consider a rational approximation to exp, of order p with error constant C, defined by

$$
\exp (z)-R(z)=C z^{p+1}+O\left(z^{p+2}\right)
$$

then there are $p+1$ up-arrows (respectively down-arrows) tangential at 0 to the vectors
$\exp (2 \pi k i /(p+1)), k=0,1, \ldots, p$

$$
\text { if } C<0
$$

($C>0$ respectively).

Principal properties of order arrows

Consider a rational approximation to exp, of order p with error constant C, defined by

$$
\exp (z)-R(z)=C z^{p+1}+O\left(z^{p+2}\right)
$$

then there are $p+1$ up-arrows (respectively down-arrows) tangential at 0 to the vectors $\exp (2 \pi k i /(p+1)), k=0,1, \ldots, p$ and $p+1$ down-arrows tangential at 0 to $\exp (\pi(2 k+1) i /(p+1)), k=0,1, \ldots, p$ if $C<0$ ($C>0$ respectively).

Principal properties of order arrows

Consider a rational approximation to exp, of order p with error constant C, defined by

$$
\exp (z)-R(z)=C z^{p+1}+O\left(z^{p+2}\right)
$$

then there are $p+1$ up-arrows (respectively down-arrows) tangential at 0 to the vectors $\exp (2 \pi k i /(p+1)), k=0,1, \ldots, p$ and $p+1$ down-arrows (respectively up-arrows) tangential at 0 to $\exp (\pi(2 k+1) i /(p+1)), k=0,1, \ldots, p$ if $C<0$ ($C>0$ respectively).

Principal properties of order arrows

Consider a rational approximation to exp, of order p with error constant C, defined by

$$
\exp (z)-R(z)=C z^{p+1}+O\left(z^{p+2}\right)
$$

then there are $p+1$ up-arrows (respectively down-arrows) tangential at 0 to the vectors $\exp (2 \pi k i /(p+1)), k=0,1, \ldots, p$ and $p+1$ down-arrows (respectively up-arrows) tangential at 0 to $\exp (\pi(2 k+1) i /(p+1)), k=0,1, \ldots, p$ if $C<0$ ($C>0$ respectively).

Every up-arrow emanating from 0 terminates at a pole or on $-\infty+i \mathbb{R}$

Principal properties of order arrows

Consider a rational approximation to exp, of order p with error constant C, defined by

$$
\exp (z)-R(z)=C z^{p+1}+O\left(z^{p+2}\right)
$$

then there are $p+1$ up-arrows (respectively down-arrows) tangential at 0 to the vectors $\exp (2 \pi k i /(p+1)), k=0,1, \ldots, p$ and $p+1$ down-arrows (respectively up-arrows) tangential at 0 to $\exp (\pi(2 k+1) i /(p+1)), k=0,1, \ldots, p$ if $C<0$ ($C>0$ respectively).

Every up-arrow emanating from 0 terminates at a pole or on $-\infty+i \mathbb{R}$ and every down-arrow terminates at a zero or on $\infty+i \mathbb{R}$

Criterion for \boldsymbol{A}-stability
If a rational approximation is A -stable then

1. It has no poles in the left half-plane

Criterion for \boldsymbol{A}-stability

If a rational approximation is A -stable then

1. It has no poles in the left half-plane
2. No up-arrow emanating from 0 can cross or be tangential to the imaginary axis.

Criterion for \boldsymbol{A}-stability

If a rational approximation is A -stable then

1. It has no poles in the left half-plane
2. No up-arrow emanating from 0 can cross or be tangential to the imaginary axis.

Note

Although these properties are necessary, they do not appear to be sufficient for A-stability.

Order arrow proof of the Daniel-Moore barrier
We now have to work on a Riemann surface but the behaviour on the "principal sheet" is what matters.

Order arrow proof of the Daniel-Moore barrier
We now have to work on a Riemann surface but the behaviour on the "principal sheet" is what matters.
Because no more than s up-arrows terminate at 0 , we can bound the angular sector containing the tangents to these arrows and to the next two up-arrows which terminate at $-\infty$.

Order arrow proof of the Daniel-Moore barrier

We now have to work on a Riemann surface but the behaviour on the "principal sheet" is what matters.
Because no more than s up-arrows terminate at 0 , we can bound the angular sector containing the tangents to these arrows and to the next two up-arrows which terminate at $-\infty$.

The size of this sector is no more than $2 \pi(s+1) /(p+1)$ and for A-stability this must exceed π.

Order arrow proof of the Daniel-Moore barrier

We now have to work on a Riemann surface but the behaviour on the "principal sheet" is what matters.
Because no more than s up-arrows terminate at 0 , we can bound the angular sector containing the tangents to these arrows and to the next two up-arrows which terminate at $-\infty$.
The size of this sector is no more than $2 \pi(s+1) /(p+1)$ and for A-stability this must exceed π.

Hence

$$
2 s+2>p+1
$$

and the result follows.

General linear methods

- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

Example of Daniel-Moore barrier: BDF3 method

General linear methods

- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

Example of Daniel-Moore barrier: BDF3 method

Example methods

We will give the following examples;

1. "Reuse" modifications of a Runge-Kutta method
2. Pseudo Runge-Kutta methods
3. ARK ("Almost Runge-Kutta") methods
4. Hybrid methods
5. Cyclic composite methods

From one of Kutta's fourth order families, we substitute $c_{2}=-1$:

0				
c_{2}	c_{2}			
$\frac{1}{2}$	$\frac{1}{2}-\frac{1}{8 c_{2}}$	$\frac{1}{8 c_{2}}$		
1	$\frac{1}{2 c_{2}}-1$	$-\frac{1}{2 c_{2}}$	2	
	$\frac{1}{6}$	0	$\frac{2}{3}$	$\frac{1}{6}$

Example methods

- Methods with the RK stability property

Reuse modifications of a Runge-Kutta method

From one of Kutta's fourth order families, we substitute $c_{2}=-1$:

0						0			
c_{2}	c_{2}					-1	-1		
$\frac{1}{2}$	$\frac{1}{2}-\frac{1}{8 c_{2}}$	$\frac{1}{8 c_{2}}$			\rightarrow	$\frac{1}{2}$	$\frac{5}{8}$	$-\frac{1}{8}$	
1	$\frac{1}{2 c_{2}}-1$	$-\frac{1}{2 c_{2}}$	2			1	$-\frac{3}{2}$	$\frac{1}{2}$	2
	$\frac{1}{6}$	0	$\frac{2}{3}$	$\frac{1}{6}$			$\frac{1}{6}$	0	$\frac{2}{3}$

We can interpret the abscissa at -1 as reuse of the derivative found as the beginning of the previous step.

We can interpret the abscissa at -1 as reuse of the derivative found as the beginning of the previous step. We then have the method

$$
\begin{array}{ll}
Y_{1}=y_{n-1}+\frac{5}{8} h f\left(y_{n-1}\right)-\frac{1}{8} h f\left(y_{n-2}\right), & F_{1}=f\left(Y_{1}\right) \\
Y_{2}=y_{n-1}-\frac{3}{2} h f\left(y_{n-1}\right)+\frac{1}{2} h f\left(y_{n-2}\right)+2 h F_{1}, & F_{2}=f\left(Y_{2}\right) \\
y_{n}=y_{n-1}+\frac{1}{6} h f\left(y_{n-1}\right)+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2} &
\end{array}
$$

We can interpret the abscissa at -1 as reuse of the derivative found as the beginning of the previous step.

We then have the method

$Y_{1}=y_{n-1}+\frac{5}{8} h f\left(y_{n-1}\right)-\frac{1}{8} h f\left(y_{n-2}\right), \quad F_{1}=f\left(Y_{1}\right)$
$Y_{2}=y_{n-1}-\frac{3}{2} h f\left(y_{n-1}\right)+\frac{1}{2} h f\left(y_{n-2}\right)+2 h F_{1}, \quad F_{2}=f\left(Y_{2}\right)$
$y_{n}=y_{n-1}+\frac{1}{6} h f\left(y_{n-1}\right)+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2}$
Like the Runge-Kutta method, this retains order 4.

We can interpret the abscissa at -1 as reuse of the derivative found as the beginning of the previous step. We then have the method

$$
\begin{array}{ll}
Y_{1}=y_{n-1}+\frac{5}{8} h f\left(y_{n-1}\right)-\frac{1}{8} h f\left(y_{n-2}\right), & F_{1}=f\left(Y_{1}\right) \\
Y_{2}=y_{n-1}-\frac{3}{2} h f\left(y_{n-1}\right)+\frac{1}{2} h f\left(y_{n-2}\right)+2 h F_{1}, & F_{2}=f\left(Y_{2}\right) \\
y_{n}=y_{n-1}+\frac{1}{6} h f\left(y_{n-1}\right)+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2} &
\end{array}
$$

Like the Runge-Kutta method, this retains order 4. This evaluates f only 3 times per timestep compared with 4 for the original method.

We can interpret the abscissa at -1 as reuse of the derivative found as the beginning of the previous step.
We then have the method

$$
\begin{array}{ll}
Y_{1}=y_{n-1}+\frac{5}{8} h f\left(y_{n-1}\right)-\frac{1}{8} h f\left(y_{n-2}\right), & F_{1}=f\left(Y_{1}\right) \\
Y_{2}=y_{n-1}-\frac{3}{2} h f\left(y_{n-1}\right)+\frac{1}{2} h f\left(y_{n-2}\right)+2 h F_{1}, & F_{2}=f\left(Y_{2}\right) \\
y_{n}=y_{n-1}+\frac{1}{6} h f\left(y_{n-1}\right)+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2} &
\end{array}
$$

Like the Runge-Kutta method, this retains order 4.
This evaluates f only 3 times per timestep compared with 4 for the original method.
We can understand something about the behaviour of the new method by plotting its stability region.

General linear methods

- Order of methods
- Stability of methods

Example methods

- Methods with the RK stability property
- Implementation questions for IRKS methods

"Reuse" method
- Order of methods
- Methods with the RK stability property

Stability of methods

"Reuse" method

Runge-Kutta method

Runge-Kutta method

Rescaled reuse method

As a General Linear Method, the reuse method has the following matrices:

$$
\left[\begin{array}{ll}
A & U \\
B & V
\end{array}\right]=\left[\begin{array}{rrr|rr}
0 & 0 & 0 & 1 & 0 \\
\frac{5}{8} & 0 & 0 & 1 & -\frac{1}{8} \\
-\frac{3}{2} & 2 & 0 & 1 & \frac{1}{2} \\
\hline \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Pseudo Runge-Kutta methods
Recall the conditions for a Runge-Kutta method to have order p.

Pseudo Runge-Kutta methods

Recall the conditions for a Runge-Kutta method to have order p.
Let T denote the set of rooted trees:

$$
\{0 \text { o i }
$$

Pseudo Runge-Kutta methods

Recall the conditions for a Runge-Kutta method to have order p.
Let T denote the set of rooted trees:

$$
\{.: \vee \vdots \vee \vee Y \vdots \ldots\}
$$

Associated with each $t \in T$ is an equation

$$
\Phi(t)=E(t)=\frac{1}{\gamma(t)}
$$

where the "elementary weight" $\Phi(t)$ is a function of the coefficients of the method.

Pseudo Runge-Kutta methods

Recall the conditions for a Runge-Kutta method to have order p.
Let T denote the set of rooted trees:

Associated with each $t \in T$ is an equation

$$
\Phi(t)=E(t)=\frac{1}{\gamma(t)}
$$

where the "elementary weight" $\Phi(t)$ is a function of the coefficients of the method.
Expressions for Φ and γ are given on the next slide.

t	$\Phi(t)$	$\gamma(t)$
\vdots	$\sum b_{i}$	1
\vdots	$\sum b_{i} c_{i}$	2
\vdots	$\sum b_{i} c_{i}^{2}$	3
\vdots	$\sum b_{i} a_{i j} c_{j}$	6
	$\sum b_{i} c_{i}^{3}$	4
\vdots	$\sum b_{i} c_{i} a_{i j} c_{j}$	8
\vdots	$\sum b_{i} a_{i j} c_{j}^{2}$	12
\vdots	$\sum b_{i} a_{i j} a_{j k} c_{k}$	24

t	$\Phi(t)$	$\gamma(t)$	$\widehat{\Phi}(t)$
\vdots	$\sum b_{i}$	1	$\sum \widehat{b}_{i}$
\vdots	$\sum b_{i} c_{i}$	2	$\sum \widehat{b}_{i}\left(c_{i}-1\right)$
\vdots	$\sum b_{i} c_{i}^{2}$	3	$\sum \widehat{b}_{i}\left(c_{i}-1\right)^{2}$
\vdots	$\sum b_{i} a_{i j} c_{j}$	6	$\sum \widehat{b}_{i}\left(a_{i j} c_{j}-c_{i}+\frac{1}{2}\right)$
\forall	$\sum b_{i} c_{i}^{3}$	4	$\sum \widehat{b}_{i}\left(c_{i}-1\right)^{3}$
\vdots	$\sum b_{i} c_{i} a_{i j} c_{j}$	8	$\sum \widehat{b}_{i}\left(c_{i}-1\right)\left(a_{i j} c_{j}-c_{i}+\frac{1}{2}\right)$
\vdots	$\sum b_{i} a_{i j} c_{j}^{2}$	12	$\sum \widehat{b}_{i}\left(a_{i j}\left(c_{j}^{2}-2 c_{j}\right)+c_{i}-\frac{1}{3}\right)$
\vdots	$\sum b_{i} a_{i j} a_{j k} c_{k}$	24	$\sum \widehat{b}_{i}\left(a_{i j}\left(a_{j k} c_{k}-c_{j}\right)+\frac{1}{2} c_{i}-\frac{1}{6}\right)$

- Example methods
- Methods with the RK stability property

The expression $\widehat{\Phi}$ would be used in modified order conditions in which stage derivatives are used from the previous step.

The expression $\widehat{\Phi}$ would be used in modified order conditions in which stage derivatives are used from the previous step.
In a pseudo-Runge-Kutta method stage derivatives are used from both the previous and the current step.

The expression $\widehat{\Phi}$ would be used in modified order conditions in which stage derivatives are used from the previous step.
In a pseudo-Runge-Kutta method stage derivatives are used from both the previous and the current step.
The order conditions thus become

$$
\widehat{\Phi}(t)+\Phi(t)=\frac{1}{\gamma(t)}
$$

The expression $\widehat{\Phi}$ would be used in modified order conditions in which stage derivatives are used from the previous step.
In a pseudo-Runge-Kutta method stage derivatives are used from both the previous and the current step.
The order conditions thus become

$$
\widehat{\Phi}(t)+\Phi(t)=\frac{1}{\gamma(t)}
$$

A third order method can be constructed with two stages:

$$
\begin{aligned}
F_{1}^{[n]} & =f\left(y_{n-1}\right) \\
F_{2}^{[n]} & =f\left(y_{n-1}+h F_{1}^{[n]}\right) \\
y_{n} & =y_{n-1}-\frac{1}{12} h F_{1}^{[n-1]}-\frac{5}{12} h F_{2}^{[n-1]}+\frac{13}{12} h F_{1}^{[n]}+\frac{5}{12} h F_{2}^{[n]}
\end{aligned}
$$

The idea of using information from a previous step can be taken much further.

The idea of using information from a previous step can be taken much further.

One possible generalization is known as "Two Step Runge-Kutta" methods in which all quantities computed in one step are available for the evaluation of the stages and the output value in the following step.

ARK ("Almost Runge-Kutta") methods

The idea of reuse of stage derivatives can be taken further to produce "Almost Runge-Kutta" methods.

ARK ("Almost Runge-Kutta") methods

The idea of reuse of stage derivatives can be taken further to produce "Almost Runge-Kutta" methods. To introduce this generalization we reformulate the reuse method

ARK ("Almost Runge-Kutta") methods

The idea of reuse of stage derivatives can be taken further to produce "Almost Runge-Kutta" methods. To introduce this generalization we reformulate the reuse method

$$
\begin{array}{ll}
Y_{1}=y_{n-1}+\frac{5}{8} h f\left(y_{n-1}\right)-\frac{1}{8} h f\left(y_{n-2}\right), & F_{1}=h f\left(Y_{1}\right) \\
Y_{2}=y_{n-1}-\frac{3}{2} h f\left(y_{n-1}\right)+\frac{1}{2} h f\left(y_{n-2}\right)+2 h F_{1}, & F_{2}=f\left(Y_{2}\right) \\
y_{n}=y_{n-1}+\frac{1}{6} h f\left(y_{n-1}\right)+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2} &
\end{array}
$$

ARK ("Almost Runge-Kutta") methods

The idea of reuse of stage derivatives can be taken further to produce "Almost Runge-Kutta" methods. To introduce this generalization we reformulate the reuse method

$$
\begin{array}{ll}
Y_{1}=y_{n-1}+\frac{5}{8} h f\left(y_{n-1}\right)-\frac{1}{8} h f\left(y_{n-2}\right), & F_{1}=h f\left(Y_{1}\right) \\
Y_{2}=y_{n-1}-\frac{3}{2} h f\left(y_{n-1}\right)+\frac{1}{2} h f\left(y_{n-2}\right)+2 h F_{1}, & F_{2}=h f\left(Y_{2}\right) \\
y_{n}=y_{n-1}+\frac{1}{6} h f\left(y_{n-1}\right)+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2} &
\end{array}
$$

$$
y_{n} \rightarrow y_{1}^{[n]}, \quad h f\left(y_{n}\right) \rightarrow y_{2}^{[n]}
$$

ARK ("Almost Runge-Kutta") methods

The idea of reuse of stage derivatives can be taken further to produce "Almost Runge-Kutta" methods. To introduce this generalization we reformulate the reuse method

$$
\begin{array}{rlrl}
Y_{1} & =y_{1}^{[n-1]}+\frac{1}{2} y_{2}^{[n-1]}+\frac{1}{8}\left(y_{2}^{[n-1]}-y_{2}^{[n-2]}\right), & & F_{1}=f\left(Y_{1}\right) \\
Y_{2} & =y_{1}^{[n-1]}-y_{2}^{[n-1]}-\frac{1}{2}\left(y_{2}^{[n-1]}-y_{2}^{[n-2]}\right)+2 h F_{1}, & F_{2}=f\left(Y_{2}\right) \\
y_{1}^{[n]} & =y_{1}^{[n-1]}+\frac{1}{6} y_{2}^{[n-1]}+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2} & & \\
y_{2}^{[n]} & =h f\left(y_{1}^{[n]}\right) & &
\end{array}
$$

ARK ("Almost Runge-Kutta") methods

The idea of reuse of stage derivatives can be taken further to produce "Almost Runge-Kutta" methods. To introduce this generalization we reformulate the reuse method

$$
\begin{array}{rlr}
Y_{1} & =y_{1}^{[n-1]}+\frac{1}{2} y_{2}^{[n-1]}+\frac{1}{8}\left(y_{2}^{[n-1]}-y_{2}^{[n-2]}\right), \quad F_{1}=f\left(Y_{1}\right) \\
Y_{2} & =y_{1}^{[n-1]}-y_{2}^{[n-1]}-\frac{1}{2}\left(y_{2}^{[n-1]}-y_{2}^{[n-2]}\right)+2 h F_{1}, \quad F_{2}=f\left(Y_{2}\right) \\
y_{1}^{[n]} & =y_{1}^{[n-1]}+\frac{1}{6} y_{2}^{[n-1]}+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2} & \\
y_{2}^{[n]} & =h f\left(y_{1}^{[n]}\right) \\
& y_{2}^{[n]}-\boldsymbol{y}_{2}^{[n-1]} \rightarrow \boldsymbol{y}_{3}^{[n]} &
\end{array}
$$

ARK ("Almost Runge-Kutta") methods

The idea of reuse of stage derivatives can be taken further to produce "Almost Runge-Kutta" methods. To introduce this generalization we reformulate the reuse method

$$
\begin{array}{rlr}
Y_{1} & =y_{1}^{[n-1]}+\frac{1}{2} y_{2}^{[n-1]}+\frac{1}{8} y_{3}^{[n-1]}, & F_{1}=f\left(Y_{1}\right) \\
Y_{2} & =y_{1}^{[n-1]}-y_{2}^{[n-1]}-\frac{1}{2} y_{3}^{[n-1]}+2 h F_{1}, & F_{2}=f\left(Y_{2}\right) \\
y_{1}^{[n]} & =y_{1}^{[n-1]}+\frac{1}{6} y_{2}^{[n-1]}+\frac{2}{3} h F_{1}+\frac{1}{6} h F_{2} & \\
y_{2}^{[n]} & =h f\left(y_{1}^{[n]}\right) & \\
y_{3}^{[n]} & =y_{2}^{[n]}-y_{2}^{[n-1]} &
\end{array}
$$

Note that in this formulation there are three quantities passed from step to step and three derivative computations within each step.
The three input and output quantities approximate scaled derivatives as follows

$$
\begin{array}{ll}
y_{1}^{[n-1]} \approx y\left(x_{n-1}\right) & y_{1}^{[n]} \approx y\left(x_{n}\right) \\
y_{2}^{[n-1]} \approx h y^{\prime}\left(x_{n-1}\right) & y_{2}^{[n]} \approx h y^{\prime}\left(x_{n}\right) \\
y_{3}^{[n-1]} \approx h^{2} y^{\prime \prime}\left(x_{n-1}\right) & y_{3}^{[n]} \approx h^{2} y^{\prime \prime}\left(x_{n}\right)
\end{array}
$$

Even though the method has order 4, the third output quantity is accurate only to order 2.

We now extend this idea by restoring a fourth stage and making $y_{3}^{[n]}$ depend on quantities computed in the step.

We now extend this idea by restoring a fourth stage and making $y_{3}^{[n]}$ depend on quantities computed in the step. For example
$\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ Y_{3} \\ Y_{4} \\ \hline y_{1}^{[n]} \\ y_{2}^{[n]} \\ y_{3}^{[n]}\end{array}\right]=\left[\begin{array}{rrrr|rrr}0 & 0 & 0 & 0 & 1 & 1 & \frac{1}{2} \\ \frac{1}{16} & 0 & 0 & 0 & 1 & \frac{7}{16} & \frac{1}{16} \\ -\frac{4}{3} & 2 & 0 & 0 & 1 & -\frac{3}{4} & -\frac{1}{4} \\ 0 & \frac{2}{3} & \frac{1}{6} & 0 & 1 & \frac{1}{6} & 0 \\ \hline 0 & \frac{2}{3} & \frac{1}{6} & 0 & 1 & \frac{1}{6} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -\frac{1}{3} & 0 & -\frac{2}{3} & 2 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{c}h F_{1} \\ h F_{2} \\ h F_{3} \\ h F_{4} \\ \hline y_{1}^{[n-1]} \\ y_{2}^{[n-1]} \\ y_{3}^{[n-1]}\end{array}\right]$

- The abscissae for this method are $\left[\begin{array}{lll}1 & \frac{1}{2} & 1\end{array}\right]$.
\square The abscissae for this method are $\left[\begin{array}{llll}1 & \frac{1}{2} & 1 & 1\end{array}\right]$.
- It has exactly the same stability region as for a classical fourth order Runge-Kutta method.
- The abscissae for this method are $\left[\begin{array}{lll}1 & \frac{1}{2} & 1\end{array}\right]$.
- It has exactly the same stability region as for a classical fourth order Runge-Kutta method.
- The stage-order is 2 rather than 1 as for a classical method.
- The abscissae for this method are $\left[\begin{array}{lll}1 & \frac{1}{2} & 1\end{array}\right]$.
- It has exactly the same stability region as for a classical fourth order Runge-Kutta method.
- The stage-order is 2 rather than 1 as for a classical method.
- A possible starting method is

$$
y_{1}^{[0]}=y_{0}, \quad y_{2}^{[0]}=h f\left(y_{1}^{[0]}\right), \quad y_{3}^{[0]}=h f\left(y_{0}+y_{2}^{[0]}\right)-y_{2}^{[0]}
$$

\square The abscissae for this method are $\left[\begin{array}{llll}1 & \frac{1}{2} & 1 & 1\end{array}\right]$.

- It has exactly the same stability region as for a classical fourth order Runge-Kutta method.
- The stage-order is 2 rather than 1 as for a classical method.
- A possible starting method is

$$
y_{1}^{[0]}=y_{0}, \quad y_{2}^{[0]}=h f\left(y_{1}^{[0]}\right), \quad y_{3}^{[0]}=h f\left(y_{0}+y_{2}^{[0]}\right)-y_{2}^{[0]}
$$

- Stepsize change $h \rightarrow r h$ can be achieved without loss of order by

$$
y_{1}^{[n]} \rightarrow y_{1}^{[n]}, \quad y_{2}^{[n]} \rightarrow r y_{2}^{[n]}, \quad y_{3}^{[n]} \rightarrow r^{2} y_{3}^{[n]}
$$

\square The abscissae for this method are $\left[\begin{array}{llll}1 & \frac{1}{2} & 1 & 1\end{array}\right]$.

- It has exactly the same stability region as for a classical fourth order Runge-Kutta method.
- The stage-order is 2 rather than 1 as for a classical method.
- A possible starting method is

$$
y_{1}^{[0]}=y_{0}, \quad y_{2}^{[0]}=h f\left(y_{1}^{[0]}\right), \quad y_{3}^{[0]}=h f\left(y_{0}+y_{2}^{[0]}\right)-y_{2}^{[0]}
$$

- Stepsize change $h \rightarrow r h$ can be achieved without loss of order by

$$
y_{1}^{[n]} \rightarrow y_{1}^{[n]}, \quad y_{2}^{[n]} \rightarrow r y_{2}^{[n]}, \quad y_{3}^{[n]} \rightarrow r^{2} y_{3}^{[n]}
$$

- A method like this is an "Almost Runge-Kutta method" (ARK method).

Hybrid methods

Rather than methods like Adams-Bashforth

$$
y_{n}^{*}=y_{n-1}+\frac{3}{2} h f_{n-1}-\frac{1}{2} h f_{n-2}
$$

Hybrid methods

Rather than methods like Adams-Bashforth -

 Adams-Moulton$$
\begin{aligned}
& y_{n}^{*}=y_{n-1}+\frac{3}{2} h f_{n-1}-\frac{1}{2} h f_{n-2} \\
& y_{n}=y_{n-1}+\frac{1}{2} h f_{n}^{*}+\frac{1}{2} h f_{n-1}
\end{aligned}
$$

Hybrid methods

Rather than methods like Adams-Bashforth -Adams-Moulton predictor-corrector pairs:

$$
\begin{aligned}
& y_{n}^{*}=y_{n-1}+\frac{3}{2} h f_{n-1}-\frac{1}{2} h f_{n-2} \\
& y_{n}=y_{n-1}+\frac{1}{2} h f_{n}^{*}+\frac{1}{2} h f_{n-1}
\end{aligned}
$$

Hybrid methods

Rather than methods like Adams-Bashforth -Adams-Moulton predictor-corrector pairs:

$$
\begin{aligned}
& y_{n}^{*}=y_{n-1}+\frac{3}{2} h f_{n-1}-\frac{1}{2} h f_{n-2} \\
& y_{n}=y_{n-1}+\frac{1}{2} h f_{n}^{*}+\frac{1}{2} h f_{n-1}
\end{aligned}
$$

we can include an "off-step point" as an additional predictor:

Hybrid methods

Rather than methods like Adams-Bashforth -Adams-Moulton predictor-corrector pairs:

$$
\begin{aligned}
& y_{n}^{*}=y_{n-1}+\frac{3}{2} h f_{n-1}-\frac{1}{2} h f_{n-2} \\
& y_{n}=y_{n-1}+\frac{1}{2} h f_{n}^{*}+\frac{1}{2} h f_{n-1}
\end{aligned}
$$

we can include an "off-step point" as an additional predictor:

$$
\begin{aligned}
y_{n-\frac{1}{2}}^{*} & =y_{n-2}+\frac{9}{8} h f_{n-1}+\frac{3}{8} h f_{n-2} \\
y_{n}^{*} & =\frac{28}{5} y_{n-1}-\frac{23}{5} y_{n-2}+\frac{32}{15} h f_{n-\frac{1}{2}}^{*}-4 h f_{n-1}-\frac{26}{15} h f_{n-2} \\
y_{n} & =\frac{32}{31} y_{n-1}-\frac{1}{31} y_{n-2}+\frac{5}{31} h f_{n}^{*}+\frac{64}{93} h f_{n-\frac{1}{2}}^{*}+\frac{4}{31} h f_{n-1}-\frac{1}{93} h f_{n-2}
\end{aligned}
$$

This particular method overcomes the (first) Dahlquist barrier and has order 5.

This particular method overcomes the (first) Dahlquist barrier and has order 5 .
The defining matrices are as follows:

$$
\left[\begin{array}{ll}
A & U \\
B & V
\end{array}\right]=\left[\begin{array}{ccc|cccc}
0 & 0 & 0 & 0 & 1 & \frac{9}{8} & \frac{3}{8} \\
\frac{32}{15} & 0 & 0 & \frac{28}{5} & -\frac{23}{5} & -4 & -\frac{26}{15} \\
\frac{64}{93} & \frac{5}{31} & 0 & \frac{32}{31} & -\frac{1}{31} & \frac{4}{31} & -\frac{1}{93} \\
\hline \frac{64}{93} & \frac{5}{31} & 0 & \frac{32}{31} & -\frac{1}{31} & \frac{4}{31} & -\frac{1}{93} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

This particular method overcomes the (first) Dahlquist barrier and has order 5.
The defining matrices are as follows:

$$
\left[\begin{array}{ll}
A & U \\
B & V
\end{array}\right]=\left[\begin{array}{ccc|cccc}
0 & 0 & 0 & 0 & 1 & \frac{9}{8} & \frac{3}{8} \\
\frac{32}{15} & 0 & 0 & \frac{28}{5} & -\frac{23}{5} & -4 & -\frac{26}{15} \\
\frac{64}{93} & \frac{5}{31} & 0 & \frac{32}{31} & -\frac{1}{31} & \frac{4}{31} & -\frac{1}{93} \\
\hline \frac{64}{93} & \frac{5}{31} & 0 & \frac{32}{31} & -\frac{1}{31} & \frac{4}{31} & -\frac{1}{93} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Methods like this exist up to $k=7$ with order $2 k+1$.

Cyclic composite methods

Given m linear multistep methods

$$
y_{n}=\sum_{i=1}^{k} \alpha_{i}^{[j]} y_{n-i}+\sum_{i=0}^{k} \beta_{i}^{[j]} h f_{n-i}, \quad j=1, \ldots, m
$$

apply them cyclically.

Cyclic composite methods

Given m linear multistep methods

$$
y_{n}=\sum_{i=1}^{k} \alpha_{i}^{[j]} y_{n-i}+\sum_{i=0}^{k} \beta_{i}^{[j]} h f_{n-i}, \quad j=1, \ldots, m
$$

apply them cyclically.
By careful choice of the m constituent methods, many limitations of single methods can be overcome.

As a trivial example, consider the following two methods based on (open) Newton-Cotes formulae:

$$
\begin{equation*}
y_{n}=y_{n-2}+2 h f_{n-1} \tag{*}
\end{equation*}
$$

(**)

As a trivial example, consider the following two methods based on (open) Newton-Cotes formulae:

$$
\begin{align*}
& y_{n}=y_{n-2}+2 h f_{n-1} \tag{*}\\
& y_{n}=y_{n-3}+\frac{3}{2} h f_{n-1}+\frac{3}{2} h f_{n-2} \tag{**}
\end{align*}
$$

As a trivial example, consider the following two methods based on (open) Newton-Cotes formulae:

$$
\begin{align*}
& y_{n}=y_{n-2}+2 h f_{n-1} \tag{*}\\
& y_{n}=y_{n-3}+\frac{3}{2} h f_{n-1}+\frac{3}{2} h f_{n-2} \tag{**}
\end{align*}
$$

By itself each of these methods is weakly stable

As a trivial example, consider the following two methods based on (open) Newton-Cotes formulae:

$$
\begin{align*}
& y_{n}=y_{n-2}+2 h f_{n-1} \tag{*}\\
& y_{n}=y_{n-3}+\frac{3}{2} h f_{n-1}+\frac{3}{2} h f_{n-2} \tag{**}
\end{align*}
$$

By itself each of these methods is weakly stable but this handicap is overcome if the pair of methods is used in alternation.

As a trivial example, consider the following two methods based on (open) Newton-Cotes formulae:

$$
\begin{align*}
& y_{n}=y_{n-2}+2 h f_{n-1} \tag{*}\\
& y_{n}=y_{n-3}+\frac{3}{2} h f_{n-1}+\frac{3}{2} h f_{n-2} \tag{**}
\end{align*}
$$

By itself each of these methods is weakly stable but this handicap is overcome if the pair of methods is used in alternation.

That is, if n is odd then $\left({ }^{*}\right)$ is used and if n is even then ($* *$) is used.

To put this method into general linear formulation, treat each pair of steps as a single step

$$
\left[\begin{array}{ll}
A & U \\
B & V
\end{array}\right]=\left[\begin{array}{cc|ccc}
0 & 0 & 1 & 1 & 0 \\
\frac{3}{2} & 0 & 1 & \frac{3}{4} & \frac{3}{4} \\
\hline 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The desirable stability of the cyclic method is seen from the fact that V has eigenvalues $\{1,0,0\}$.

Cycles of explicit methods can be constructed which overcome the first Dahlquist barrier.

Cycles of explicit methods can be constructed which overcome the first Dahlquist barrier.

For example:

$$
\begin{aligned}
& y_{n}=-\frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \\
& \quad \\
& \quad+\frac{10}{11} h f_{n}+\frac{19}{11} h f_{n-1}+\frac{8}{11} h f_{n-2}-\frac{1}{33} h f_{n-3} \\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \\
& \quad \\
& \quad+\frac{251}{720} h f_{n}+\frac{19}{30} h f_{n-1}-\frac{449}{240} h f_{n-2}-\frac{35}{72} h f_{n-3}
\end{aligned}
$$

Cycles of explicit methods can be constructed which overcome the first Dahlquist barrier.

For example:

$$
\begin{aligned}
& y_{n}=- \frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \\
& \quad+\frac{10}{11} h f_{n}+\frac{19}{11} h f_{n-1}+\frac{8}{11} h f_{n-2}-\frac{1}{33} h f_{n-3} \\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \\
& \quad+\frac{251}{720} h f_{n}+\frac{19}{30} h f_{n-1}-\frac{449}{240} h f_{n-2}-\frac{35}{72} h f_{n-3}
\end{aligned}
$$

Each of these methods has order 5 and each is unstable.

Cycles of explicit methods can be constructed which overcome the first Dahlquist barrier.

For example:

$$
\begin{aligned}
& y_{n}=- \frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \\
& \quad+\frac{10}{11} h f_{n}+\frac{19}{11} h f_{n-1}+\frac{8}{11} h f_{n-2}-\frac{1}{33} h f_{n-3} \\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \\
&+\frac{251}{720} h f_{n}+\frac{19}{30} h f_{n-1}-\frac{449}{240} h f_{n-2}-\frac{35}{72} h f_{n-3}
\end{aligned}
$$

Each of these methods has order 5 and each is unstable. The corresponding cyclic method has perfect stability.

To verify these remarks, analyse stability using $y^{\prime}=0$

$$
\begin{align*}
& y_{n}=-\frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \tag{*}\\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \tag{**}
\end{align*}
$$

To verify these remarks, analyse stability using $y^{\prime}=0$

$$
\begin{align*}
& y_{n}=-\frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \tag{*}\\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \tag{**}
\end{align*}
$$

The difference equation for $y_{n}-y_{n-1}$ is

$$
\left[\begin{array}{c}
y_{n}-y_{n-1} \\
y_{n-1}-y_{n-2}
\end{array}\right]=X\left[\begin{array}{l}
y_{n-1}-y_{n-2} \\
y_{n-2}-y_{n-3}
\end{array}\right]
$$

To verify these remarks, analyse stability using $y^{\prime}=0$

$$
\begin{align*}
& y_{n}=-\frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \tag{*}\\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \tag{**}
\end{align*}
$$

The difference equation for $y_{n}-y_{n-1}$ is

$$
\left[\begin{array}{c}
y_{n}-y_{n-1} \\
y_{n-1}-y_{n-2}
\end{array}\right]=X\left[\begin{array}{l}
y_{n-1}-y_{n-2} \\
y_{n-2}-y_{n-3}
\end{array}\right]
$$

where X is $\left[\begin{array}{rr}-\frac{19}{11} & 0 \\ 1 & 0\end{array}\right]$ for (*)

Example methods

- Order of methods

To verify these remarks, analyse stability using $y^{\prime}=0$

$$
\begin{align*}
& y_{n}=-\frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \tag{*}\\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \tag{**}
\end{align*}
$$

The difference equation for $y_{n}-y_{n-1}$ is

$$
\left[\begin{array}{c}
y_{n}-y_{n-1} \\
y_{n-1}-y_{n-2}
\end{array}\right]=X\left[\begin{array}{l}
y_{n-1}-y_{n-2} \\
y_{n-2}-y_{n-3}
\end{array}\right]
$$

where X is $\left[\begin{array}{cc}-\frac{19}{11} & 0 \\ 1 & 0\end{array}\right]$ for $(*)$ or $\left[\begin{array}{cc}\frac{209}{240} & \frac{361}{240} \\ 1 & 0\end{array}\right]$ for $(* *)$.

To verify these remarks, analyse stability using $y^{\prime}=0$

$$
\begin{align*}
& y_{n}=-\frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \tag{*}\\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \tag{**}
\end{align*}
$$

The difference equation for $y_{n}-y_{n-1}$ is

$$
\left[\begin{array}{c}
y_{n}-y_{n-1} \\
y_{n-1}-y_{n-2}
\end{array}\right]=X\left[\begin{array}{l}
y_{n-1}-y_{n-2} \\
y_{n-2}-y_{n-3}
\end{array}\right]
$$

where X is $\left[\begin{array}{cc}-\frac{19}{11} & 0 \\ 1 & 0\end{array}\right]$ for $(*)$ or $\left[\begin{array}{cc}\frac{209}{240} & \frac{361}{240} \\ 1 & 0\end{array}\right]$ for $(* *)$.
Neither matrix is power-bounded

To verify these remarks, analyse stability using $y^{\prime}=0$

$$
\begin{align*}
& y_{n}=-\frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \tag{*}\\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \tag{**}
\end{align*}
$$

The difference equation for $y_{n}-y_{n-1}$ is

$$
\left[\begin{array}{c}
y_{n}-y_{n-1} \\
y_{n-1}-y_{n-2}
\end{array}\right]=X\left[\begin{array}{c}
y_{n-1}-y_{n-2} \\
y_{n-2}-y_{n-3}
\end{array}\right]
$$

where X is $\left[\begin{array}{cc}-\frac{19}{11} & 0 \\ 1 & 0\end{array}\right]$ for $(*)$ or $\left[\begin{array}{cc}\frac{209}{240} & \frac{361}{240} \\ 1 & 0\end{array}\right]$ for $(* *)$.
Neither matrix is power-bounded but their product is nilpotent.

To verify these remarks, analyse stability using $y^{\prime}=0$

$$
\begin{align*}
& y_{n}=-\frac{8}{11} y_{n-1}+\frac{19}{11} y_{n-2} \tag{*}\\
& y_{n}=\frac{449}{240} y_{n-1}+\frac{19}{30} y_{n-2}-\frac{361}{240} y_{n-3} \tag{**}
\end{align*}
$$

The difference equation for $y_{n}-y_{n-1}$ is

$$
\left[\begin{array}{c}
y_{n}-y_{n-1} \\
y_{n-1}-y_{n-2}
\end{array}\right]=X\left[\begin{array}{l}
y_{n-1}-y_{n-2} \\
y_{n-2}-y_{n-3}
\end{array}\right]
$$

where X is $\left[\begin{array}{cc}-\frac{19}{11} & 0 \\ 1 & 0\end{array}\right]$ for $(*)$ or $\left[\begin{array}{cc}\frac{209}{240} & \frac{361}{240} \\ 1 & 0\end{array}\right]$ for $(* *)$.
Neither matrix is power-bounded but their product is nilpotent.
We omit the exercise of writing this method in GL form.

Methods with the RK stability property

By "Runge-Kutta stability" we mean the property a method might have in which the characteristic polynomial of its stability matrix has all except one of its zeros equal to zero.

General linear methods

- Order of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

Methods with the RK stability property

By "Runge-Kutta stability" we mean the property a method might have in which the characteristic polynomial of its stability matrix has all except one of its zeros equal to zero.

$$
\operatorname{det}(w I-M(z))=w^{r-1}(w-R(z))
$$

Methods with the RK stability property

By "Runge-Kutta stability" we mean the property a

 method might have in which the characteristic polynomial of its stability matrix has all except one of its zeros equal to zero.$$
\operatorname{det}(w I-M(z))=w^{r-1}(w-R(z))
$$

Although methods exist with this property with $r=s=p=q$, it is difficult to construct them.

Methods with the RK stability property

By "Runge-Kutta stability" we mean the property a method might have in which the characteristic polynomial of its stability matrix has all except one of its zeros equal to zero.

$$
\operatorname{det}(w I-M(z))=w^{r-1}(w-R(z))
$$

Although methods exist with this property with $r=s=p=q$, it is difficult to construct them.
If $s \geq r=p+1$, it is possible to construct the methods in a systematic way by imposing a condition known as "Inherent Runge-Kutta Stability".

Doubly companion matrics

Matrices like the following are "companion matrices" for the polynomial

$$
z^{n}+\alpha_{1} z^{n-1}+\cdots+\alpha_{n}
$$

$\left[\begin{array}{cccccc}-\alpha_{1}-\alpha_{2}-\alpha_{3} & \cdots & -\alpha_{n-1}-\alpha_{n} \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0\end{array}\right]$

Doubly companion matrics

Matrices like the following are "companion matrices" for the polynomial
or

$$
\begin{aligned}
& z^{n}+\alpha_{1} z^{n-1}+\cdots+\alpha_{n} \\
& z^{n}+\beta_{1} z^{n-1}+\cdots+\beta_{n}
\end{aligned}
$$

respectively:
$\left[\begin{array}{cccccc}-\alpha_{1}-\alpha_{2}-\alpha_{3} & \cdots & -\alpha_{n-1}-\alpha_{n} \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0\end{array}\right], \quad\left[\begin{array}{cccccc}0 & 0 & 0 & \cdots & 0 & -\beta_{n} \\ 1 & 0 & 0 & \cdots & 0 & -\beta_{n-1} \\ 0 & 1 & 0 & \cdots & 0 & -\beta_{n-2} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -\beta_{2} \\ 0 & 0 & 0 & \cdots & 1 & -\beta_{1}\end{array}\right]$

Their characteristic polynomials can be found from $\operatorname{det}(I-z A)=\alpha(z)$ or $\beta(z)$, respectively, where, $\alpha(z)=1+\alpha_{1} z+\cdots+\alpha_{n} z^{n}, \quad \beta(z)=1+\beta_{1} z+\cdots+\beta_{n} z^{n}$.

Their characteristic polynomials can be found from $\operatorname{det}(I-z A)=\alpha(z)$ or $\beta(z)$, respectively, where, $\alpha(z)=1+\alpha_{1} z+\cdots+\alpha_{n} z^{n}, \quad \beta(z)=1+\beta_{1} z+\cdots+\beta_{n} z^{n}$. A matrix with both α and β terms:

$$
X=\left[\begin{array}{cccccc}
-\alpha_{1} & -\alpha_{2} & -\alpha_{3} & \cdots & -\alpha_{n-1} & -\alpha_{n}-\beta_{n} \\
1 & 0 & 0 & \cdots & 0 & -\beta_{n-1} \\
0 & 1 & 0 & \cdots & 0 & -\beta_{n-2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & -\beta_{2} \\
0 & 0 & 0 & \cdots & 1 & -\beta_{1}
\end{array}\right]
$$

is known as a "doubly companion matrix"

Their characteristic polynomials can be found from $\operatorname{det}(I-z A)=\alpha(z)$ or $\beta(z)$, respectively, where, $\alpha(z)=1+\alpha_{1} z+\cdots+\alpha_{n} z^{n}, \quad \beta(z)=1+\beta_{1} z+\cdots+\beta_{n} z^{n}$. A matrix with both α and β terms:

$$
X=\left[\begin{array}{cccccc}
-\alpha_{1} & -\alpha_{2} & -\alpha_{3} & \cdots & -\alpha_{n-1} & -\alpha_{n}-\beta_{n} \\
1 & 0 & 0 & \cdots & 0 & -\beta_{n-1} \\
0 & 1 & 0 & \cdots & 0 & -\beta_{n-2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & -\beta_{2} \\
0 & 0 & 0 & \cdots & 1 & -\beta_{1}
\end{array}\right]
$$

is known as a "doubly companion matrix" and has characteristic polynomial defined by

$$
\operatorname{det}(I-z X)=\alpha(z) \beta(z)+O\left(z^{n+1}\right)
$$

Matrices Ψ^{-1} and Ψ transforming X to Jordan canonical form are known.

Matrices Ψ^{-1} and Ψ transforming X to Jordan canonical form are known.

In the special case of a single Jordan block with n-fold eigenvalue λ, we have

$$
\Psi^{-1}=\left[\begin{array}{cccc}
1 & \lambda+\alpha_{1} & \lambda^{2}+\alpha_{1} \lambda+\alpha_{2} & \cdots \\
0 & 1 & 2 \lambda+\alpha_{1} & \cdots \\
0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Matrices Ψ^{-1} and Ψ transforming X to Jordan canonical form are known.

In the special case of a single Jordan block with n-fold eigenvalue λ, we have

$$
\Psi^{-1}=\left[\begin{array}{cccc}
1 & \lambda+\alpha_{1} & \lambda^{2}+\alpha_{1} \lambda+\alpha_{2} & \cdots \\
0 & 1 & 2 \lambda+\alpha_{1} & \cdots \\
0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

where row number $i+1$ is formed from row number i by differentiating with respect to λ and dividing by i.

Matrices Ψ^{-1} and Ψ transforming X to Jordan canonical form are known.

In the special case of a single Jordan block with n-fold eigenvalue λ, we have

$$
\Psi^{-1}=\left[\begin{array}{cccc}
1 & \lambda+\alpha_{1} & \lambda^{2}+\alpha_{1} \lambda+\alpha_{2} & \cdots \\
0 & 1 & 2 \lambda+\alpha_{1} & \cdots \\
0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

where row number $i+1$ is formed from row number i by differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ :

- Order of methods
- Methods with the RK stability property
- Stability of methods
- Implementation questions for IRKS methods

$$
\Psi=\left[\begin{array}{cccc}
\ddots & \vdots & \vdots & \vdots \\
\cdots & 1 & 2 \lambda+\beta_{1} & \lambda^{2}+\beta_{1} \lambda+\beta_{2} \\
\cdots & 0 & 1 & \lambda+\beta_{1} \\
\cdots & 0 & 0 & 1
\end{array}\right]
$$

$$
\Psi=\left[\begin{array}{cccc}
\ddots & \vdots & \vdots & \vdots \\
\cdots & 1 & 2 \lambda+\beta_{1} & \lambda^{2}+\beta_{1} \lambda+\beta_{2} \\
\cdots & 0 & 1 & \lambda+\beta_{1} \\
\cdots & 0 & 0 & 1
\end{array}\right]
$$

The Jordan form is $\Psi^{-1} X \Psi=J+\lambda I$, where $J_{i j}=\delta_{i, j+1}$.

$$
\Psi=\left[\begin{array}{cccc}
\ddots & \vdots & \vdots & \vdots \\
\cdots & 1 & 2 \lambda+\beta_{1} & \lambda^{2}+\beta_{1} \lambda+\beta_{2} \\
\cdots & 0 & 1 & \lambda+\beta_{1} \\
\cdots & 0 & 0 & 1
\end{array}\right]
$$

The Jordan form is $\Psi^{-1} X \Psi=J+\lambda I$, where $J_{i j}=\delta_{i, j+1}$. That is

$$
\Psi^{-1} X \Psi=\left[\begin{array}{ccccc}
\lambda & 0 & \cdots & 0 & 0 \\
1 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & \lambda & 0 \\
0 & 0 & \cdots & 1 & \lambda
\end{array}\right]
$$

Construction of methods

Using doubly companion matrices, it is possible to construct GL methods possessing RK stability with rational operations.

Construction of methods

Using doubly companion matrices, it is possible to construct GL methods possessing RK stability with rational operations.

The methods constructed in this way are said to possess "Inherent Runge-Kutta Stability".

Construction of methods

Using doubly companion matrices, it is possible to construct GL methods possessing RK stability with rational operations.

The methods constructed in this way are said to possess "Inherent Runge-Kutta Stability".

Apart from exceptional cases, (in which certain matrices are singular), we characterize the method with $r=s=p+1=q+1$ by several parameters.

Parameters for construction of methods

■ λ single eigenvalue of lower triangular matrix A

Parameters for construction of methods

- λ single eigenvalue of lower triangular matrix A
$\square c_{1}, c_{2}, \ldots, c_{s}$ stage abscissae

Parameters for construction of methods

- λ single eigenvalue of lower triangular matrix A
- $c_{1}, c_{2}, \ldots, c_{s}$ stage abscissae
- Error constant

Parameters for construction of methods

- λ single eigenvalue of lower triangular matrix A
- $c_{1}, c_{2}, \ldots, c_{s}$ stage abscissae
- Error constant
- $\beta_{1}, \beta_{2}, \ldots, \beta_{p}$ elements in last column of $s \times s$ doubly companion matrix X

Parameters for construction of methods

- λ single eigenvalue of lower triangular matrix A
- $c_{1}, c_{2}, \ldots, c_{s}$ stage abscissae
- Error constant
- $\beta_{1}, \beta_{2}, \ldots, \beta_{p}$ elements in last column of $s \times s$ doubly companion matrix X
- Information on the structure of V
- Example methods
- Methods with the RK stability property

Consider only methods for which the step n outputs approximate the "Nordsieck vector"

Consider only methods for which the step n outputs approximate the "Nordsieck vector":

$$
\left[\begin{array}{c}
y_{1}^{[n]} \\
y_{2}^{[n]} \\
y_{3}^{[n]} \\
\vdots \\
y_{p+1}^{[n]}
\end{array}\right] \approx\left[\begin{array}{c}
y\left(x_{n}\right) \\
h y^{\prime}\left(x_{n}\right) \\
h^{2} y^{\prime \prime}\left(x_{n}\right) \\
\vdots \\
h^{p} y^{(p)}\left(x_{n}\right)
\end{array}\right]
$$

General linear methods

- Order of methods
- Example methods
- Methods with the RK stability property

Consider only methods for which the step n outputs approximate the "Nordsieck vector":

$$
\left[\begin{array}{c}
y_{1}^{[n]} \\
y_{2}^{[n]} \\
y_{3}^{[n]} \\
\vdots \\
y_{p+1}^{[n]}
\end{array}\right] \approx\left[\begin{array}{c}
y\left(x_{n}\right) \\
h y^{\prime}\left(x_{n}\right) \\
h^{2} y^{\prime \prime}\left(x_{n}\right) \\
\vdots \\
h^{p} y^{(p)}\left(x_{n}\right)
\end{array}\right]
$$

For such methods, V has the form

$$
V=\left[\begin{array}{cc}
1 & v^{T} \\
0 & \dot{V}
\end{array}\right]
$$

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ,

$$
B A=X B,
$$

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ,

$$
B A=X B, \quad B U=X V-V X+e_{1} \xi^{T},
$$

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ,

$$
B A=X B, \quad B U=X V-V X+e_{1} \xi^{T}, \quad \rho(\dot{V})=0
$$

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ,

$$
B A=X B, \quad B U=X V-V X+e_{1} \xi^{T}, \quad \rho(\dot{V})=0
$$

It can be shown that, for such methods, the stability matrix satisfies

$$
M(z) \sim V+z e_{1} \xi^{T}(I-z X)^{-1}
$$

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ,

$$
B A=X B, \quad B U=X V-V X+e_{1} \xi^{T}, \quad \rho(\dot{V})=0
$$

It can be shown that, for such methods, the stability matrix satisfies

$$
M(z) \sim V+z e_{1} \xi^{T}(I-z X)^{-1}
$$

which has all except one of its eigenvalues zero.

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ,

$$
B A=X B, \quad B U=X V-V X+e_{1} \xi^{T}, \quad \rho(\dot{V})=0
$$

It can be shown that, for such methods, the stability matrix satisfies

$$
M(z) \sim V+z e_{1} \xi^{T}(I-z X)^{-1}
$$

which has all except one of its eigenvalues zero. The non-zero eigenvalue has the role of stability function

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ,

$$
B A=X B, \quad B U=X V-V X+e_{1} \xi^{T}, \quad \rho(\dot{V})=0
$$

It can be shown that, for such methods, the stability matrix satisfies

$$
M(z) \sim V+z e_{1} \xi^{T}(I-z X)^{-1}
$$

which has all except one of its eigenvalues zero. The non-zero eigenvalue has the role of stability function

$$
R(z)=\frac{N(z)}{(1-\lambda z)^{s}}
$$

Construction of methods

From the order and stage-order conditions, we can write U and V in terms of A and B :

Construction of methods

From the order and stage-order conditions, we can write U and V in terms of A and B :

$$
\begin{aligned}
& U=C-A C K, \\
& V=E-B C K,
\end{aligned}
$$

Construction of methods

From the order and stage-order conditions, we can write U and V in terms of A and B :

$$
\begin{aligned}
U & =C-A C K, \\
V & =E-B C K,
\end{aligned}
$$

where
$C=\left[\begin{array}{ccccc}1 & c_{1} & \frac{1}{2} c_{1}^{2} & \cdots & \frac{1}{p!} c_{1}^{p} \\ 1 & c_{2} & \frac{1}{2} c_{2}^{2} & \cdots & \frac{1}{p!} c_{2}^{p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & c_{s} & \frac{1}{2} c_{s}^{2} & \cdots & \frac{1}{p!} c_{s}^{p}\end{array}\right], \quad K^{T}=J=\left[\begin{array}{ccccc}0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0\end{array}\right]$.

General linear methods
Order of methods
Stability of methods

- Example methods
- Methods with the RK stability property

Substitute these formulae for U and V into

 $B U=X V-V X+e_{1} \xi^{T}$ and, after some simplification, we find$$
\dot{B} C\left[\begin{array}{c}
\beta_{p} \\
\beta_{p-1} \\
\vdots \\
\beta_{1} \\
1
\end{array}\right]=\left[\begin{array}{c}
\beta_{p-1}+\frac{1}{2!} \beta_{p-2}+\cdots+\frac{1}{p!} \\
\beta_{p-2}+\frac{1}{2!} \beta_{p-3}+\cdots+\frac{1}{(p-1)!} \\
\vdots \\
\beta_{1}+\frac{1}{2!} \\
1
\end{array}\right]
$$

where \dot{B} denotes the last p rows of B.

Substitute these formulae for U and V into $B U=X V-V X+e_{1} \xi^{T}$ and, after some simplification, we find

$$
\dot{B} C\left[\begin{array}{c}
\beta_{p} \\
\beta_{p-1} \\
\vdots \\
\beta_{1} \\
1
\end{array}\right]=\left[\begin{array}{c}
\beta_{p-1}+\frac{1}{2!} \beta_{p-2}+\cdots+\frac{1}{p!} \\
\beta_{p-2}+\frac{1}{2!} \beta_{p-3}+\cdots+\frac{1}{(p-1)!} \\
\vdots \\
\beta_{1}+\frac{1}{2!} \\
1
\end{array}\right]
$$

where \dot{B} denotes the last p rows of B.
By taking account of the error constant prescribed for the method, we can find a similar formula involving the first row of B.

To simplify the construction we introduce a matrix $\widetilde{B}=\Psi^{-1} B$, assumed to be non-singular.
Because

$$
\widetilde{B} A=(\lambda I+J) \widetilde{B}
$$

we know that \widetilde{B} is lower triangular. Using the known value for $\widetilde{B} C\left[\begin{array}{lllll}\beta_{p} & \beta_{p-1} & \cdots & \beta_{1} & 1\end{array}\right]^{T}$ and the fact that the $\rho(\dot{V})=0$, where

$$
V=E-\Psi \widetilde{B} C K,
$$

we can find a suitable value of \widetilde{B}.

Once \widetilde{B} is known, we find the defining matrices for the method from

$$
\begin{aligned}
A & =\widetilde{B}^{-1}(J+\lambda I) \widetilde{B}, \\
U & =C-A C K, \\
B & =\Psi \widetilde{B} \\
V & =E-B C K .
\end{aligned}
$$

Collaboration with Will Wright

 When two people work together, it is often hard to untangle the contributions that each makes.Will's contributions include, but are not confined to,
■ Showing how to extend the original formulation of stiff IRKS methods to explicit non-stiff methods.

- Showing how to use doubly companion matrices in the formulation of IRKS methods.
- Relating the principal error coefficients to the β values.

Example methods

The following third order method is explicit and suitable for the solution of non-stiff problems

$$
\left[\begin{array}{l}
A U \\
B V
\end{array}\right]=\left[\begin{array}{cccc|cccc}
0 & 0 & 0 & 0 & 1 & \frac{1}{4} & \frac{1}{32} & \frac{1}{384} \\
-\frac{176}{1885} & 0 & 0 & 0 & 1 & \frac{2237}{3770} & \frac{2237}{15080} & \frac{2149}{90480} \\
-\frac{35624}{31025} & \frac{29}{55} & 0 & 0 & 1 & \frac{1669591}{124100} & \frac{260007}{904807} & \frac{1557801}{3981200} \\
-\frac{67843}{6435} & \frac{395}{33} & -5 & 0 & 1 & \frac{29428}{6435} & \frac{527}{585} & \frac{41819}{102960} \\
\hline-\frac{67833}{6435} & \frac{395}{33} & -5 & 0 & 1 & \frac{29428}{6435} & \frac{527}{585} & \frac{4819}{102960} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\frac{82}{33} & -\frac{274}{11} & \frac{170}{9} & -\frac{4}{3} & 0 & \frac{482}{99} & 0 & -\frac{161}{264} \\
-8 & -12 & \frac{40}{3} & -2 & 0 & \frac{26}{3} & 0 & 0
\end{array}\right]
$$

The following fourth order method is implicit, L-stable, and suitable for the solution of stiff problems
$\left[\begin{array}{ccccc|ccccc}\frac{1}{4} & 0 & 0 & 0 & 0 & 1 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\ -\frac{513}{54272} & \frac{1}{4} & 0 & 0 & 0 & 1 & \frac{27649}{54272} & \frac{5601}{27136} & \frac{1539}{54272} & -\frac{459}{6784} \\ \frac{3706119}{69088256} & -\frac{488}{3819} & \frac{1}{4} & 0 & 0 & 1 & \frac{15366379}{207264768} & \frac{756057}{34544128} & \frac{1620299}{69088256} & -\frac{4854}{454528} \\ \frac{32161061}{197549232} & -\frac{111814}{232959} & \frac{134}{183} & \frac{1}{4} & 0 & 1 & -\frac{32609017}{197549232} & \frac{929753}{32924872} & \frac{4008881}{32924872} & \frac{174981}{3465776} \\ -\frac{135425}{2948496} & -\frac{641}{10431} & \frac{73}{183} & \frac{1}{2} & \frac{1}{4} & 1 & -\frac{367313}{8845488} & -\frac{22727}{1474248} & \frac{40979}{982832} & \frac{323}{25864} \\ \hline-\frac{135425}{2948496} & -\frac{641}{10431} & \frac{73}{183} & \frac{1}{2} & \frac{1}{4} & 1 & -\frac{367313}{8845488} & -\frac{22727}{1474248} & \frac{40979}{982832} & \frac{323}{25864} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{2255}{2318} & -\frac{47125}{20862} & \frac{447}{122} & -\frac{11}{4} & \frac{4}{3} & 0 & -\frac{28745}{20862} & -\frac{1937}{13908} & \frac{351}{18544} & \frac{65}{976} \\ \frac{12620}{10431} & -\frac{96388}{31293} & \frac{3364}{549} & -\frac{10}{3} & \frac{4}{3} & 0 & -\frac{70634}{31293} & -\frac{2050}{10431} & -\frac{187}{2318} & \frac{113}{366} \\ \frac{414}{1159} & -\frac{29954}{31293} & \frac{130}{61} & -1 & \frac{1}{3} & 0 & -\frac{27052}{31293} & -\frac{113}{10431} & -\frac{491}{4636} & \frac{161}{732}\end{array}\right]$

General linear methods
 - Order of methods
 - Stability of methods
 - Example methods
 - Methods with the RK stability property
 - Implementation questions for IRKS methods

 Implementation questions for IRKS methods

 Implementation questions for IRKS methods}

- Initial stepsize
- General linear methods
- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
\square Implementation questions for IRKS methods

Implementation questions for IRKS methods

- Initial stepsize
- Starting method

Implementation questions for IRKS methods

- Initial stepsize
- Starting method
- Evaluation of stages

Implementation questions for IRKS methods

- Initial stepsize
- Starting method
- Evaluation of stages
- Interpolation for continuous output

Implementation questions for IRKS methods

■ Initial stepsize

- Starting method
- Evaluation of stages
- Interpolation for continuous output
- Error estimation

Implementation questions for IRKS methods

■ Initial stepsize

- Starting method
- Evaluation of stages
- Interpolation for continuous output
- Error estimation

■ Variable stepsize

Implementation questions for IRKS methods

■ Initial stepsize

- Starting method
- Evaluation of stages
- Interpolation for continuous output
- Error estimation

■ Variable stepsize

- Variable order

Implementation questions for IRKS methods

- Initial stepsize
- Starting method
- Evaluation of stages
- Interpolation for continuous output
- Error estimation

Variable stepsize
Variable order

- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

Variable stepsize stability

Zero stability, in the constant stepsize case, is concerned with the power-boundedness of V.

Variable stepsize stability

Zero stability, in the constant stepsize case, is concerned with the power-boundedness of V.
The naive method of achieving variable stepsize ($h \rightarrow r h$) is to rescale the Nordsieck vector by a matrix

$$
D(r)=\operatorname{diag}\left(1, r, r^{2}, \ldots, r^{p}\right) .
$$

Variable stepsize stability

Zero stability, in the constant stepsize case, is concerned with the power-boundedness of V.
The naive method of achieving variable stepsize ($h \rightarrow r h$) is to rescale the Nordsieck vector by a matrix

$$
D(r)=\operatorname{diag}\left(1, r, r^{2}, \ldots, r^{p}\right)
$$

If r is constrained to lie in an interval $I=\left[r_{\text {min }}, r_{\text {max }}\right]$ then zero-stability generalizes to the existence of a uniform bound on

$$
\left\|D\left(r_{n}\right) V D\left(r_{n-1}\right) V \cdots D\left(r_{2}\right) V D\left(r_{1}\right) V\right\|
$$

when $r_{1}, r_{2}, \ldots, r_{n} \in I$.

For implicit methods, we might also want "infinity-stability" by requiring a uniform bound on

$$
\left\|D\left(r_{n}\right) \widehat{V} D\left(r_{n-1}\right) \widehat{V} \cdots D\left(r_{2}\right) \widehat{V} D\left(r_{1}\right) \widehat{V}\right\|,
$$

where

$$
\widehat{V}=M(\infty)=V-B A^{-1} U .
$$

For implicit methods, we might also want "infinity-stability" by requiring a uniform bound on

$$
\left\|D\left(r_{n}\right) \widehat{V} D\left(r_{n-1}\right) \widehat{V} \cdots D\left(r_{2}\right) \widehat{V} D\left(r_{1}\right) \widehat{V}\right\|,
$$

where

$$
\widehat{V}=M(\infty)=V-B A^{-1} U .
$$

This naive approach is very unsatisfactory from the stability point of view and it has other disadvantages, as we will see.

Less naive is to modify the rescaled Nordsieck vector by adding quantities computed from
$h F_{1}, h F_{2}, \ldots, h F_{p+1}, y_{2}^{[n-1]}, y_{3}^{[n-1]}, \ldots, y_{p+1}^{[n-1]}$, such that the order remains p

Less naive is to modify the rescaled Nordsieck vector by adding quantities computed from
$h F_{1}, h F_{2}, \ldots, h F_{p+1}, y_{2}^{[n-1]}, y_{3}^{[n-1]}, \ldots, y_{p+1}^{[n-1]}$, such that the order remains p, but variable stepsize stability is achieved.

Less naive is to modify the rescaled Nordsieck vector by adding quantities computed from
$h F_{1}, h F_{2}, \ldots, h F_{p+1}, y_{2}^{[n-1]}, y_{3}^{[n-1]}, \ldots, y_{p+1}^{[n-1]}$, such that the order remains p, but variable stepsize stability is achieved.

There are other issues to consider in making the modification, as we will see.

Less naive is to modify the rescaled Nordsieck vector by adding quantities computed from
$h F_{1}, h F_{2}, \ldots, h F_{p+1}, y_{2}^{[n-1]}, y_{3}^{[n-1]}, \ldots, y_{p+1}^{[n-1]}$, such that the order remains p, but variable stepsize stability is achieved.

There are other issues to consider in making the modification, as we will see.

In particular we need to consider the effect of variable h on the error constants in incoming approximations.

Less naive is to modify the rescaled Nordsieck vector by adding quantities computed from
$h F_{1}, h F_{2}, \ldots, h F_{p+1}, y_{2}^{[n-1]}, y_{3}^{[n-1]}, \ldots, y_{p+1}^{[n-1]}$, such that the order remains p, but variable stepsize stability is achieved.

There are other issues to consider in making the modification, as we will see.

In particular we need to consider the effect of variable h on the error constants in incoming approximations.

We introduce these ideas in the context of the underlying one-step method.

To introduce the underlying one-step method, consider a modification of the diagram relating the starting method and a single step of the method.

To introduce the underlying one-step method, consider a modification of the diagram relating the starting method and a single step of the method.

To introduce the underlying one-step method, consider a modification of the diagram relating the starting method and a single step of the method.

In the modified diagram, the perturbed starting method, shown as \mathcal{S}^{*}, is chosen to obtain a commutative diagram if \mathcal{E} is replaced by the underlying one-step method \mathcal{E}^{*}.

If \mathcal{S} maps $y(x)$ to

$\left[\begin{array}{c}y(x) \\ h y^{\prime}(x) \\ \vdots \\ h^{p} y^{(p)}(x)\end{array}\right]$

then ...

If \mathcal{S} maps $y(x)$ to

$$
\left[\begin{array}{c}
y(x) \\
h y^{\prime}(x) \\
\vdots \\
h^{p} y^{(p)}(x)
\end{array}\right]
$$

then \mathcal{S}^{*} maps $y(x)$ to
$\left[\begin{array}{c}y(x) \\ h y^{\prime}(x)-\theta_{1} h^{p+1} y^{(p+1)}(x)-\phi_{1} h^{p+2} y^{(p+2)}(x)-\psi_{1} h^{p+2} \frac{\partial f}{\partial y} y^{(p+1)}(x)+O\left(h^{p+3}\right) \\ \vdots \\ h^{p} y^{(p)}(x)-\theta_{p} h^{p+1} y^{(p+1)}(x)-\phi_{p} h^{p+2} y^{(p+2)}(x)-\psi_{p} h^{p+2} \frac{\partial f}{\partial y} y^{(p+1)}(x)+O\left(h^{p+3}\right)\end{array}\right]$

Values of the coefficients $\theta_{i}, \phi_{i}, \psi_{i}(i=1,2, \ldots, p)$ are

 known.
Values of the coefficients $\theta_{i}, \phi_{i}, \psi_{i}(i=1,2, \ldots, p)$ are

 known.If h is constant, we can rely on the values of these coefficients as possible ingrediants of the error estimation formulae.

Values of the coefficients $\theta_{i}, \phi_{i}, \psi_{i}(i=1,2, \ldots, p)$ are known.
If h is constant, we can rely on the values of these coefficients as possible ingrediants of the error estimation formulae.
However, for variable h, the coefficients vary as functions of the step-size history.

Values of the coefficients $\theta_{i}, \phi_{i}, \psi_{i}(i=1,2, \ldots, p)$ are known.
If h is constant, we can rely on the values of these coefficients as possible ingrediants of the error estimation formulae.
However, for variable h, the coefficients vary as functions of the step-size history.
Hence, management of the coefficients must become part of the modification process which follows scaling of the Nordsieck vector.

Values of the coefficients $\theta_{i}, \phi_{i}, \psi_{i}(i=1,2, \ldots, p)$ are known.
If h is constant, we can rely on the values of these coefficients as possible ingrediants of the error estimation formulae.
However, for variable h, the coefficients vary as functions of the step-size history.
Hence, management of the coefficients must become part of the modification process which follows scaling of the Nordsieck vector.
We now know how to do this so that behaviour is stabilised and so that at least the θ values effectively retain their constant values.

It is now possible to estimate

\square The value of $h^{p+1} y^{(p+1)}\left(x_{n}\right)$ to within $O\left(h^{p+2}\right)$.

- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

It is now possible to estimate

- The value of $h^{p+1} y^{(p+1)}\left(x_{n}\right)$ to within $O\left(h^{p+2}\right)$.
- Hence the local truncation error in a step.
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

It is now possible to estimate

- The value of $h^{p+1} y^{(p+1)}\left(x_{n}\right)$ to within $O\left(h^{p+2}\right)$.
- Hence the local truncation error in a step.
- The value of $h^{p+2} y^{(p+2)}\left(x_{n}\right)$ to within $O\left(h^{p+3}\right)$.

It is now possible to estimate

- The value of $h^{p+1} y^{(p+1)}\left(x_{n}\right)$ to within $O\left(h^{p+2}\right)$.
- Hence the local truncation error in a step.
- The value of $h^{p+2} y^{(p+2)}\left(x_{n}\right)$ to within $O\left(h^{p+3}\right)$.
\square Hence the local truncation error of a contending method of order $p+1$.

It is now possible to estimate

- The value of $h^{p+1} y^{(p+1)}\left(x_{n}\right)$ to within $O\left(h^{p+2}\right)$.
- Hence the local truncation error in a step.
- The value of $h^{p+2} y^{(p+2)}\left(x_{n}\right)$ to within $O\left(h^{p+3}\right)$.
\square Hence the local truncation error of a contending method of order $p+1$.
We believe we now have the ingredients for constructing a variable order, variable stepsize code based on the new methods.
- General linear methods
- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

Acknowledgements

Zdzisław Jackiewicz

Helmut Podhaisky Will Wright

General linear methods

- Order of methods
- Stability of methods
- Example methods
- Methods with the RK stability property
- Implementation questions for IRKS methods

Acknowledgements

Zdzisław Jackiewicz
Helmut Podhaisky Will Wright

Allison Heard Gustaf Söderlind

Acknowledgements

Zdzisław Jackiewicz
Helmut Podhaisky Will Wright

Allison Heard
Gustaf Söderlind

Shirley Huang
Jane Lee

