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General linear methods

“General linear methods” is a large family of numerical
methods for ordinary differential equations, which includes
linear multistep, predictor-corrector and Runge-Kutta
methods as special cases.
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General linear methods
“General linear methods” is a large family of numerical
methods for ordinary differential equations, which includes
linear multistep, predictor-corrector and Runge-Kutta
methods as special cases.

A characteristic feature is that each step
imports r quantities, and exports the
same quantities, updated in accordance
with the development of the solution.
A second characteristic feature is that,
within the step, s stages are computed,
together with the corresponding s stage
derivatives.

RK LMS

Euler

GLM
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Denote the output approximations from step number n by

y
[n]
i , i = 1, 2, . . . , r, the stage values by Yi, i = 1, 2, . . . , s

and the stage derivatives by Fi, i = 1, 2, . . . , s.

For convenience, write

y[n−1] =




y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r


 , y[n] =




y
[n]
1

y
[n]
2
...

y
[n]
r


 , Y =




Y1

Y2
...
Ys


 , F =




F1

F2
...
Fs


 .

It is assumed that Y and F are related by a differential
equation.
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The computation of the stages and the output from step
number n is carried out according to the formulae

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i =

s∑

j=1

bijhFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

where the matrices A = [aij ], U = [uij], B = [bij],
V = [vij] are characteristic of a specific method.
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We can write these relations more compactly in the form
[
Y

y[n]

]
=

[
A⊗ I U ⊗ I

B ⊗ I V ⊗ I

] [
hF

y[n−1]

]

which we can simplify by making a harmless abuse of
notation in the form

[
Y

y[n]

]
=

[
A U

B V

] [
hF

y[n−1]

]
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A Runge-Kutta method
The famous fourth order Runge-Kutta method is simply
written as a general linear method

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

−→
[
A U

B V

]
=




0 0 0 0 1
1
2 0 0 0 1

0 1
2 0 0 1

0 0 1 0 1
1
6

1
3

1
3

1
6 1




Like all Runge-Kutta methods, r = 1.
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Linear multistep methods
The 2-step Adams-Bashforth and Adams-Moulton
methods are, respectively,

yn = yn−1 + 3
2hy

′
n−1 − 1

2hy
′
n−2,

yn = yn−1 + 5
12hy

′
n + 2

3hy
′
n−1 − 1

12hy
′
n−2.

The r = 3 inputs are yn−1, hy′n−1, hy′n−2 with outputs yn,
hy′n, hy′n−1.
The general linear formulations are respectively,



0 1 3
2 −1

2

0 1 3
2 −1

2

1 0 0 0

0 0 1 0


 and




5
12 1 2

3 − 1
12

5
12 1 2

3 − 1
12

1 0 0 0

0 0 1 0


 .
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Order of methods
The input to a step is an approximation to some vector of
quantities related to the exact solution at xn−1.
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Order of methods
The input to a step is an approximation to some vector of
quantities related to the exact solution at xn−1.
When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related to xn.

If the input is exactly what it is supposed to approximate,
then the “local truncation error” is defined as the error in
the output after a single step.

If this can be estimated in terms of hp+1, then the method
has order p.

We will refer to the calculation which produces y[n−1]

from y(xn−1) as a “starting method”.
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Let S denote the “starting method”, that is a mapping
from R

N to R
rN , and let F : R

rN → R
N denote a

corresponding finishing method, such that F ◦ S = id.

The order of accuracy of a multivalue method is defined
in terms of the diagram

E

S S

M
O(hp+1)

(h = stepsize)
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By duplicating this diagram over many steps, global
error estimates may be found.

E E E

S S S S S

M M
M

O(hp)

F

O(hp)
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To represent S and turn the definition of order into a
practical algorithm for analysing a specific method,
operations on the set of mappings T# → R can be used,
where T# is the set of rooted trees, together with the
empty tree.

The conditions are
ξ = AξD + Uη,

Eη = BξD + V η,

where η ∈ Xr represents y[n−1] and ξ ∈ Xs
1 represents Y .

To understand the operations ξD (or the operation for a
single component ξiD) and Eη (or a single component
Eηi) we need to use what I call the Runge-Kutta space
(equivalent to the concept of B-series).
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The Runge-Kutta space
X is the set of mappings on the set T# to R.

T# consists of all rooted trees, (the set T ) together with
the empty tree, which we will write as ∅.
X0 ∈ X is defined by ∅ 7→ 0 and X1 ∈ X is defined by
∅ 7→ 1.
The product αβ, where α ∈ X1 and β ∈ X is defined by
a formula for (αβ)(t).
Before we show the details, we note that

(αβ)(t) = α(t)β(∅) +
∑

u∈T

φ(t, u, α)β(u)

where φ vanishes if u has order greater than t.
A table of φ up to t of order 4 is shown on the next slide.
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t
u

1

α() 1

α()2 2α() 1

α( ) α() 1

α()3 3α( ) 3α() 1

α()α( ) α()2+α( ) α() α() 1

α( ) α()2 2α() 1

α
()

α( ) α() 1
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The values of D and E are shown in the following table

t ∅
D(t) 0 1 0 0 0 0 0 0 0

E(t) 1 1 1
2

1
3

1
6

1
4

1
8

1
12

1
24

Note than D denotes differentiation and E represents
flow through a single time step.
If we are interested in order not exceeding p, then we
will interpret such expressions as η, Eη, ξ and ξD as
mappings restricted to trees of order not exceeding p.
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With these interpretations we look at the order criteria
again:

ξ = A(ξD) + Uη.

This equation is a recursive definition of ξ(t) in terms of
the stage derivatives up to order p trees. It is a
consistency requirement that every component of ξ(∅) is
equal to 1.
Now the output equation:

Eη = B(ξD) + V η.

To within order p, this states that the output values are
equal to the composition of the flow and the starting
process.
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Effective order of Runge-Kutta methods
We now interpret the definition of order in the case of
Runge-Kutta methods.

In the classical view of order, the input approximation,
represented by η, corresponds to the exact solution at a
step point.

This means that η = 1, the group identity.

If α denotes the mapping from trees to elementary
weights for a specific method,

α = E,

up to trees of order p.
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If we allow the possibility that η is the result of a single
step with some other Runge-Kutta method, then the
order conditions become

ηα = Eη.

This is the meaning of effective order.

A particular consequence is that, although 5 stage
explicit Runge-Kutta methods cannot have order 5, they
can have effective order 5.
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Methods with high stage order
If we want not only order p but also “stage-order” q
equal to p (or possibly p− 1), things become simpler.

exp(cz) = zA exp(cz) + Uφ(z) +O(zq+1)

exp(z)φ(z) = zB exp(cz) + V φ(z) +O(zp+1)

where it is assumed the input is

y
[n−1]
i = αi1y(xn−1)+αi2hy

′(xn−1)+· · ·+αi,p+1h
py(p)(xn−1)

and where

φi(z) = αi1 + αi2z + · · ·+ αi,p+1z
p
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Stability of methods
In our discussion of errors, we assumed that V is power

bounded.
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Stability of methods
In our discussion of errors, we assumed that V is power
bounded.

This is necessary for convergence in the sense of
Dahlquist and is sometimes referred to as
“zero-stability”.

We will consider only methods which are strongly
zero-stable, so that only the principal eigenvalue of V
lies on the unit circle.
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By formulating the method appropriately, that is by
making a simple change of basis transformation:

[
A, U, B, V

]
→

[
A, UT, T−1B, T−1V T

]

we can assume that V has the form

V =

[
1 vT

0 V̇

]

where
ρ(V̇ ) < 1.
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Stability matrix and stability function
By considering the linear test problem y′ = qy and
defining z = hq, we arrive at the stability matrix

M(z) = V + zB(I − zA)−1U.

For the linear test problem, the sequence of
approximations are related by

y[n] = M(z)y[n−1].

We define the “stability region” as the set of points in the
complex plane such that M(z) is power bounded.

We also define the “stability function” as

Φ(w, z) = det(wI −M(z)).
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Finding new methods from stability
There seem to be two main approaches in the search for
new methods with good stability.

The first is to decide what the method should look
like, possibly by modifying a classical method.
Then construct it and investigate its stability.

The second approach is to decide first what its
stability function should be and then search for
methods with this stability function.

Before going on to look at examples based on modifying
classical methods, we look briefly at some ramifications
of the second approach.
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Generalized Padé approximations
The following function represents an approximation of
order 3 to exp:

Φ(w, z) = (7− 6z + 2z2)w2 − 8w + 1.

It happens to be the stability function of the rather
contrived general linear method:




2
7 −2

7 1 0
3
7

4
7 1

√
7

7
6−
√

7
7

1+
√

7
7 1 0

343−131
√

7
98 −

√
7

49 0 1
7



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It is also the stability function of the Obreshkov method

y(xn) ≈ 6
7hy

′(xn)− 2
7h

2y′′(xn) + 8
7y(xn−1)− 1

7y(xn−2)

The function Φ(w, z) is an order 2 approximation to exp
because

Φ(exp(z), z) = O(z4)

or alternatively because one of the solutions to the
quadratic equation in w is

w = 4+
√

9+6z−2z2

7−6z+2z2

= 1 + z + 1
2z

2 + 1
6z

3 − 1
72z

4 + · · ·
= exp(z)− 1

18z
4 − · · ·
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For any sequence of integers [d0, d1, . . . , dn] such that

d0 ≥ 0, dn ≥ 0, dj ≥ −1, j = 1, 2, . . . , n− 1,

there exists polynomials Pj of degree dj , j = 0, 1, . . . , n
such that

n∑

j=0

exp((n− j)z)Pj(z) = O(zp+1)

where the “order” p is

p =
n∑

j=0

(dj + 1)− 1.
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Such a sequence of polynomials is known as a
[d0, d1, . . . , dn] generalized Padé approximation to exp.

In the special case n = 1, −P1(z)/P0(z) is a Padé
approximation.

If generalized Padé approximations are going to be used
as a starting point in the search for A-stable general
linear methods, it is appropriate to ask which
approximations have acceptable stability functions.

That is, we want to know which approximations have the
property that there do not exist (w, z) such that

Φ(w, z) = 0, |w| > 1, Re(z) < 0.
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Approximations which possess this property seem to be
confined to those for which

2d0 − p ∈ {0, 1, 2}.

If n = 1, and 2d0 < p, acceptability is impossible
because

lim
z→−∞

∣∣∣∣
−P1(z)

P0(z)

∣∣∣∣ = ∞.

If n = 1, and 2d0 > p+ 2, the impossibility of
acceptability is known as the Ehle barrier and was
famously proved using order stars.
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For general n and 2d0 < p, the impossibility of
acceptability is known as the Daniel-Moore barrier and
was also proved using order stars.

For general n and 2d0 > p+ 2, the impossibility of
acceptability is supported by evidence but not yet proved
for all cases.

Quick review of order stars and order arrows
Stability results such as the Ehle barrier and the
Daniel-Moore barrier can be conveniently proved using
order stars.
Order arrows are an alternative tool for deriving these
and similar results and sometimes give a slightly
different emphasis.
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For the Padé approximation (1 + 1
3z)/(1− 2

3z + 1
6z

2), we
present its order star

and replace it by the order arrow
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Principal properties of order arrows
Consider a rational approximation to exp, of order p with
error constant C, defined by

exp(z)−R(z) = Czp+1 +O(zp+2),

then there are p+ 1 up-arrows (respectively
down-arrows) tangential at 0 to the vectors
exp(2πki/(p+ 1)), k = 0, 1, . . . , p and p+ 1
down-arrows (respectively up-arrows) tangential at 0 to
exp(π(2k + 1)i/(p + 1)), k = 0, 1, . . . , p if C < 0
(C > 0 respectively).

Every up-arrow emanating from 0 terminates at a pole or
on −∞+ iR and every down-arrow terminates at a zero
or on ∞+ iR
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Criterion for A-stability
If a rational approximation is A-stable then

1. It has no poles in the left half-plane

2. No up-arrow emanating from 0 can cross or be
tangential to the imaginary axis.

Note
Although these properties are necessary, they do not
appear to be sufficient for A-stability.
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Order arrow proof of the Daniel-Moore barrier
We now have to work on a Riemann surface but the
behaviour on the “principal sheet” is what matters.

Because no more than s up-arrows terminate at 0, we can
bound the angular sector containing the tangents to these
arrows and to the next two up-arrows which terminate at
−∞.

The size of this sector is no more than 2π(s+ 1)/(p + 1)
and for A-stability this must exceed π.

Hence
2s+ 2 > p+ 1

and the result follows.
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Example of Daniel-Moore barrier: BDF3 method

2π(s+1)
p+1
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Example methods
We will give the following examples;

1. “Reuse” modifications of a Runge–Kutta method

2. Pseudo Runge-Kutta methods

3. ARK (“Almost Runge-Kutta”) methods

4. Hybrid methods

5. Cyclic composite methods

Order and stability – p. 38/84



General linear methods
Order of methods
Stability of methods

Example methods
Methods with the RK stability property
Implementation questions for IRKS methods

Reuse modifications of a Runge-Kutta method

From one of Kutta’s fourth order families, we substitute
c2 = −1:

0

c2 c2
1
2

1
2− 1

8c2

1
8c2

1 1
2c2

−1 − 1
2c2

2
1
6 0 2

3
1
6

→

0

−1 −1
1
2

5
8 −1

8

1 −3
2

1
2 2

1
6 0 2

3
1
6
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We can interpret the abscissa at −1 as reuse of the
derivative found as the beginning of the previous step.

We then have the method
Y1 = yn−1 + 5

8hf(yn−1)− 1
8hf(yn−2), F1 = f(Y1)

Y2 = yn−1 − 3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2

Like the Runge-Kutta method, this retains order 4.
This evaluates f only 3 times per timestep compared
with 4 for the original method.
We can understand something about the behaviour of the
new method by plotting its stability region.
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As a General Linear Method, the reuse method has the
following matrices:

[
A U

B V

]
=




0 0 0 1 0
5
8 0 0 1 −1

8

−3
2 2 0 1 1

2
1
6

2
3

1
6 1 0

1 0 0 0 0



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Pseudo Runge-Kutta methods
Recall the conditions for a Runge-Kutta method to have
order p.

Let T denote the set of rooted trees:{

. . .

}

Associated with each t ∈ T is an equation

Φ(t) = E(t) = 1
γ(t)

where the “elementary weight” Φ(t) is a function of the
coefficients of the method.
Expressions for Φ and γ are given on the next slide.
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We will now introduce an
additional column Φ̂(t)

t Φ(t) γ(t)

Φ̂(t)

∑
bi 1

∑
b̂i

∑
bici 2

∑
b̂i(ci − 1)

∑
bic

2
i 3

∑
b̂i(ci − 1)2

∑
biaijcj 6

∑
b̂i(aijcj − ci + 1

2)

∑
bic

3
i 4

∑
b̂i(ci − 1)3

∑
biciaijcj 8

∑
b̂i(ci − 1)(aijcj − ci + 1

2)

∑
biaijc

2
j 12

∑
b̂i(aij(c

2
j − 2cj) + ci − 1

3)

∑
biaijajkck 24

∑
b̂i(aij(ajkck − cj) + 1

2ci − 1
6)
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The expression Φ̂ would be used in modified order
conditions in which stage derivatives are used from the
previous step.

In a pseudo-Runge-Kutta method stage derivatives are
used from both the previous and the current step.
The order conditions thus become

Φ̂(t) + Φ(t) = 1
γ(t)

A third order method can be constructed with two stages:

F
[n]
1 = f(yn−1)

F
[n]
2 = f(yn−1 + hF

[n]
1 )

yn = yn−1 − 1
12hF

[n−1]
1 − 5

12hF
[n−1]
2 + 13

12hF
[n]
1 + 5

12hF
[n]
2
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The idea of using information from a previous step can
be taken much further.

One possible generalization is known as “Two Step
Runge-Kutta” methods in which all quantities computed
in one step are available for the evaluation of the stages
and the output value in the following step.
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ARK (“Almost Runge-Kutta”) methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods.

To introduce this generalization we reformulate the reuse
method
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ARK (“Almost Runge-Kutta”) methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods.
To introduce this generalization we reformulate the reuse
method
Y1 = yn−1 + 5

8hf(yn−1)− 1
8hf(yn−2), F1 = hf(Y1)

Y2 = yn−1 − 3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2
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2 − 1
2(y

[n−1]
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y
[n]
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6y
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Note that in this formulation there are three quantities
passed from step to step and three derivative
computations within each step.
The three input and output quantities approximate scaled
derivatives as follows

y
[n−1]
1 ≈ y(xn−1) y

[n]
1 ≈ y(xn)

y
[n−1]
2 ≈ hy′(xn−1) y

[n]
2 ≈ hy′(xn)

y
[n−1]
3 ≈ h2y′′(xn−1) y

[n]
3 ≈ h2y′′(xn)

Even though the method has order 4, the third output
quantity is accurate only to order 2.
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We now extend this idea by restoring a fourth stage and

making y[n]
3 depend on quantities computed in the step.

For example


Y1

Y2

Y3

Y4

y
[n]
1

y
[n]
2

y
[n]
3




=




0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−4
3 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0







hF1

hF2

hF3

hF4

y
[n−1]
1

y
[n−1]
2

y
[n−1]
3



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The abscissae for this method are [1 1
2 1 1].

It has exactly the same stability region as for a
classical fourth order Runge-Kutta method.
The stage-order is 2 rather than 1 as for a classical
method.
A possible starting method is

y
[0]
1 = y0, y

[0]
2 = hf(y

[0]
1 ), y

[0]
3 = hf(y0+y

[0]
2 )−y[0]

2

Stepsize change h→ rh can be achieved without
loss of order by

y
[n]
1 → y

[n]
1 , y

[n]
2 → ry

[n]
2 , y

[n]
3 → r2y

[n]
3

A method like this is an “Almost Runge-Kutta
method” (ARK method).
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Hybrid methods
Rather than methods like Adams-Bashforth

-
Adams-Moulton predictor-corrector pairs:

y∗n = yn−1 + 3
2hfn−1 − 1

2hfn−2

yn = yn−1 + 1
2hf

∗
n + 1

2hfn−1

we can include an “off-step point” as an additional
predictor:

y∗
n− 1

2

= yn−2 + 9
8hfn−1 + 3

8hfn−2

y∗n = 28
5 yn−1 − 23

5 yn−2 + 32
15hf

∗
n− 1

2

− 4hfn−1 − 26
15hfn−2

yn = 32
31yn−1− 1

31yn−2+
5
31hf

∗
n+ 64

93hf
∗
n− 1

2

+ 4
31hfn−1− 1

93hfn−2
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This particular method overcomes the (first) Dahlquist
barrier and has order 5.

The defining matrices are as follows:

[
A U

B V

]
=




0 0 0 0 1 9
8

3
8

32
15 0 0 28

5 −23
5 −4 −26

15
64
93

5
31 0 32

31 − 1
31

4
31 − 1

93
64
93

5
31 0 32

31 − 1
31

4
31 − 1

93

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0




Methods like this exist up to k = 7 with order 2k + 1.
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Cyclic composite methods

Given m linear multistep methods

yn =
k∑

i=1

α
[j]
i yn−i +

k∑

i=0

β
[j]
i hfn−i, j = 1, . . . ,m

apply them cyclically.

By careful choice of the m constituent methods, many
limitations of single methods can be overcome.
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As a trivial example, consider the following two methods
based on (open) Newton-Cotes formulae:

yn = yn−2 + 2hfn−1 (*)

yn = yn−3 + 3
2hfn−1 + 3

2hfn−2

(**)

By itself each of these methods is weakly stable but this
handicap is overcome if the pair of methods is used in
alternation.

That is, if n is odd then (*) is used and if n is even then
(**) is used.
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To put this method into general linear formulation, treat
each pair of steps as a single step

[
A U

B V

]
=




0 0 1 1 0
3
2 0 1 3

4
3
4

0 0 1 1 0

0 1 0 0 0

1 0 0 0 0




The desirable stability of the cyclic method is seen from
the fact that V has eigenvalues {1, 0, 0}.
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Cycles of explicit methods can be constructed which
overcome the first Dahlquist barrier.

For example:

yn = − 8
11yn−1 + 19

11yn−2

+ 10
11hfn + 19

11hfn−1 + 8
11hfn−2 − 1

33hfn−3

yn = 449
240yn−1 + 19

30yn−2 − 361
240yn−3

+ 251
720hfn + 19

30hfn−1 − 449
240hfn−2 − 35

72hfn−3

Each of these methods has order 5 and each is unstable.

The corresponding cyclic method has perfect stability.
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To verify these remarks, analyse stability using y′ = 0

yn = − 8
11yn−1 + 19

11yn−2 (*)

yn = 449
240yn−1 + 19

30yn−2 − 361
240yn−3 (**)

The difference equation for yn − yn−1 is[
yn − yn−1

yn−1 − yn−2

]
= X

[
yn−1 − yn−2

yn−2 − yn−3

]

where X is

[
−19

11 0

1 0

]
for (*) or

[
209
240

361
240

1 0

]
for (**).

Neither matrix is power-bounded but their product is
nilpotent.
We omit the exercise of writing this method in GL form.
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Methods with the RK stability property
By “Runge-Kutta stability” we mean the property a

method might have in which the characteristic
polynomial of its stability matrix has all except one of its
zeros equal to zero.
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Methods with the RK stability property
By “Runge-Kutta stability” we mean the property a
method might have in which the characteristic
polynomial of its stability matrix has all except one of its
zeros equal to zero.

det(wI −M(z)) = wr−1(w −R(z))

Although methods exist with this property with
r = s = p = q, it is difficult to construct them.

If s ≥ r = p+ 1, it is possible to construct the methods
in a systematic way by imposing a condition known as
“Inherent Runge-Kutta Stability”.
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Doubly companion matrics
Matrices like the following are “companion matrices” for
the polynomial

zn + α1z
n−1 + · · ·+ αn

or
zn + β1z

n−1 + · · ·+ βn,
respectively:




−α1−α2−α3· · · −αn−1−αn

1 0 0 · · · 0 0

0 1 0 · · · 0 0
... ... ... ... ...
0 0 0 · · · 0 0

0 0 0 · · · 1 0




,




0 0 0 · · · 0 −βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
... ... ... ... ...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1



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Their characteristic polynomials can be found from
det(I − zA) = α(z) or β(z), respectively, where,
α(z) = 1+α1z+· · ·+αnz

n, β(z) = 1+β1z+· · ·+βnz
n.

A matrix with both α and β terms:

X =




−α1 −α2 −α3 · · · −αn−1 −αn − βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
... ... ... ... ...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1



,

is known as a “doubly companion matrix” and has
characteristic polynomial defined by

det(I − zX) = α(z)β(z) +O(zn+1)
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Matrices Ψ−1 and Ψ transforming X to Jordan canonical
form are known.

In the special case of a single Jordan block with n-fold
eigenvalue λ, we have

Ψ−1 =




1 λ+ α1 λ2 + α1λ+ α2 · · ·
0 1 2λ+ α1 · · ·
0 0 1 · · ·
... ... ... . . .


 ,

where row number i+ 1 is formed from row number i
by differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ:
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Ψ =




. . . ... ... ...
· · · 1 2λ+ β1 λ2 + β1λ+ β2

· · · 0 1 λ+ β1

· · · 0 0 1




The Jordan form is Ψ−1XΨ=J + λI , where Jij =δi,j+1.
That is

Ψ−1XΨ =




λ 0 · · · 0 0

1 λ · · · 0 0
... ... ... ...
0 0 · · · λ 0

0 0 · · · 1 λ



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Construction of methods
Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations.

The methods constructed in this way are said to possess
“Inherent Runge–Kutta Stability”.

Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by several parameters.
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Parameters for construction of methods
λ single eigenvalue of lower triangular matrix A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s
doubly companion matrix X

Information on the structure of V
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Consider only methods for which the step n outputs
approximate the “Nordsieck vector”

:



y
[n]
1

y
[n]
2

y
[n]
3
...

y
[n]
p+1



≈




y(xn)

hy′(xn)

h2y′′(xn)
...

hpy(p)(xn)




For such methods, V has the form

V =

[
1 vT

0 V̇

]
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Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB,

BU = XV − V X + e1ξ
T , ρ(V̇ ) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero. The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s
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Construction of methods
From the order and stage-order conditions, we can write
U and V in terms of A and B:

U = C − ACK,

V = E −BCK,
where

C=




1 c1
1
2c

2
1 · · · 1

p!c
p
1

1 c2
1
2c

2
2 · · · 1

p!c
p
2

... ... ... ...
1 cs

1
2c

2
s · · · 1

p!c
p
s


, KT =J=




0 0 · · · 0 0

1 0 · · · 0 0
... ... ... ...
0 0 · · · 1 0


.
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Substitute these formulae for U and V into
BU = XV − V X + e1ξ

T and, after some simplification,
we find

ḂC




βp

βp−1
...
β1

1




=




βp−1 + 1
2!βp−2 + · · ·+ 1

p!

βp−2 + 1
2!βp−3 + · · ·+ 1

(p−1)!
...

β1 + 1
2!

1



,

where Ḃ denotes the last p rows of B.

By taking account of the error constant prescribed for the
method, we can find a similar formula involving the first
row of B.

Order and stability – p. 69/84



General linear methods
Order of methods
Stability of methods

Example methods
Methods with the RK stability property
Implementation questions for IRKS methods

Substitute these formulae for U and V into
BU = XV − V X + e1ξ

T and, after some simplification,
we find

ḂC




βp

βp−1
...
β1

1




=




βp−1 + 1
2!βp−2 + · · ·+ 1

p!

βp−2 + 1
2!βp−3 + · · ·+ 1

(p−1)!
...

β1 + 1
2!

1



,
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To simplify the construction we introduce a matrix
B̃ = Ψ−1B, assumed to be non-singular.
Because

B̃A = (λI + J)B̃,

we know that B̃ is lower triangular.

Using the known value for B̃C
[
βp βp−1 · · · β1 1

]T

and the fact that the ρ(V̇ ) = 0, where

V = E −ΨB̃CK,

we can find a suitable value of B̃.
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Once B̃ is known, we find the defining matrices for the
method from

A = B̃−1(J + λI)B̃,

U = C − ACK,

B = ΨB̃,

V = E −BCK.
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Collaboration with Will Wright
When two people work together, it is often hard to
untangle the contributions that each makes.

Will’s contributions include, but are not confined to,

Showing how to extend the original formulation of
stiff IRKS methods to explicit non-stiff methods.

Showing how to use doubly companion matrices in
the formulation of IRKS methods.

Relating the principal error coefficients to the β
values.
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Example methods
The following third order method is explicit and suitable
for the solution of non-stiff problems

[
AU

BV

]
=




0 0 0 0 1 1
4

1
32

1
384

− 176
1885 0 0 0 1 2237

3770
2237
15080

2149
90480

−335624
311025

29
55 0 0 1 1619591

1244100
260027
904800

1517801
39811200

−67843
6435

395
33 −5 0 1 29428

6435
527
585

41819
102960

−67843
6435

395
33 −5 0 1 29428

6435
527
585

41819
102960

0 0 0 1 0 0 0 0
82
33 −274

11
170
9 −4

3 0 482
99 0 −161

264

−8 −12 40
3 −2 0 26

3 0 0



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The following fourth order method is implicit, L-stable,
and suitable for the solution of stiff problems



1

4
0 0 0 0 1 3

4

1

2

1

4
0

− 513

54272

1

4
0 0 0 1 27649

54272

5601

27136

1539

54272
− 459

6784

3706119

69088256
− 488

3819

1

4
0 0 1 15366379

207264768

756057

34544128

1620299

69088256
− 4854

454528

32161061

197549232
− 111814

232959

134

183

1

4
0 1− 32609017

197549232

929753

32924872

4008881

32924872

174981

3465776

− 135425

2948496
− 641

10431

73

183

1

2

1

4
1 − 367313

8845488
− 22727

1474248

40979

982832

323

25864

− 135425

2948496
− 641

10431

73

183

1

2

1

4
1 − 367313

8845488
− 22727

1474248

40979

982832

323

25864

0 0 0 0 1 0 0 0 0 0
2255

2318
− 47125

20862

447

122
− 11

4

4

3
0 − 28745

20862
− 1937

13908

351

18544

65

976

12620

10431
− 96388

31293

3364

549
− 10

3

4

3
0 − 70634

31293
− 2050

10431
− 187

2318

113

366

414

1159
− 29954

31293

130

61
−1 1

3
0 − 27052

31293
− 113

10431
− 491

4636

161

732



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Implementation questions for IRKS methods

Initial stepsize
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Implementation questions for IRKS methods

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order
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Variable stepsize stability
Zero stability, in the constant stepsize case, is concerned
with the power-boundedness of V .

The naive method of achieving variable stepsize
(h→ rh) is to rescale the Nordsieck vector by a matrix

D(r) = diag(1, r, r2, . . . , rp).

If r is constrained to lie in an interval I = [rmin, rmax] then
zero-stability generalizes to the existence of a uniform
bound on

‖D(rn)V D(rn−1)V · · ·D(r2)V D(r1)V ‖
when r1, r2, . . . , rn ∈ I .
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For implicit methods, we might also want
“infinity-stability” by requiring a uniform bound on

‖D(rn)V̂ D(rn−1)V̂ · · ·D(r2)V̂ D(r1)V̂ ‖,
where

V̂ = M(∞) = V −BA−1U.

This naive approach is very unsatisfactory from the
stability point of view and it has other disadvantages, as
we will see.
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Less naive is to modify the rescaled Nordsieck vector by
adding quantities computed from

hF1, hF2, . . . , hFp+1, y
[n−1]
2 , y

[n−1]
3 , . . . , y

[n−1]
p+1 , such that

the order remains p

, but variable stepsize stability is
achieved.

There are other issues to consider in making the
modification, as we will see.

In particular we need to consider the effect of variable h
on the error constants in incoming approximations.

We introduce these ideas in the context of the underlying
one-step method.
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To introduce the underlying one-step method, consider a
modification of the diagram relating the starting method
and a single step of the method.

E

S S

M
O(hp+1)

E

E∗

S∗
S∗

M

O(hp+1)

In the modified diagram, the perturbed starting method,
shown as S∗, is chosen to obtain a commutative diagram
if E is replaced by the underlying one-step method E∗.
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If S maps y(x) to 


y(x)

hy′(x)
...

hpy(p)(x)




then · · ·

S∗ maps y(x) to



y(x)

hy′(x)−θ1h
p+1y(p+1)(x)−φ1h

p+2y(p+2)(x)−ψ1h
p+2 ∂f

∂y
y(p+1)(x)+O(hp+3)

...

hpy(p)(x)−θph
p+1y(p+1)(x)−φph

p+2y(p+2)(x)−ψph
p+2 ∂f

∂y
y(p+1)(x)+O(hp+3)



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Values of the coefficients θi, φi, ψi (i = 1, 2, . . . , p) are
known.

If h is constant, we can rely on the values of these
coefficients as possible ingrediants of the error
estimation formulae.
However, for variable h, the coefficients vary as
functions of the step-size history.
Hence, management of the coefficients must become part
of the modification process which follows scaling of the
Nordsieck vector.
We now know how to do this so that behaviour is
stabilised and so that at least the θ values effectively
retain their constant values.
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It is now possible to estimate

The value of hp+1y(p+1)(xn) to within O(hp+2).

Hence the local truncation error in a step.

The value of hp+2y(p+2)(xn) to within O(hp+3).

Hence the local truncation error of a contending
method of order p+ 1.

We believe we now have the ingredients for constructing
a variable order, variable stepsize code based on the new
methods.
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