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Introduction to Runge–Kutta methods
It will be convenient to consider only autonomous initial
value problems

y′(x) = f(y(x)), y(x0) = y0, f : R
N → R

N .

The simple Euler method:

yn = yn−1 + hf(yn−1), h = xn − xn−1

can be made more accurate by using either the mid-point
or the trapezoidal rule quadrature formula:

yn = yn−1 + hf
(
yn−1 + 1

2hf(yn−1)
)
.

yn = yn−1 + 1
2hf(yn−1) + 1

2hf
(
yn−1 + hf(yn−1)

)
.
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These methods from Runge’s 1895 paper are “second
order” because the error in a single step behaves like
O(h3).

A few years later, Heun gave a full explanation of order 3
methods and Kutta gave a detailed analysis of order 4
methods.

In the early days of Runge–Kutta methods the aim
seemed to be to find explicit methods of higher and
higher order.

Later the aim shifted to finding methods that seemed to
be optimal in terms of local truncation error and to
finding built-in error estimators.
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With the emergence of stiff problems as an important
application area, attention moved to implicit methods.

Methods have been found based on Gaussian quadrature.

Later this extended to methods related to Radau and
Lobatto quadrature.

A-stable methods exist in these classes.

Because of the high cost of these methods, attention
moved to diagonally and singly implicit methods.
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Formulation of method
In carrying out a step we evaluate s stage values

Y1, Y2, . . . , Ys

and s stage derivatives

F1, F2, . . . , Fs,

using the formula Fi = f(Yi).

Each Yi is found as a linear combination of the Fj added
on to y0:

Yi = y0 + h

s∑

j=1

aijFj

and the approximation at x1 = x0 + h is found from

y1 = y0 + h

s∑

i=1

biFi
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We represent the method by a tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
... ... ... ...
cs as1 as2 · · · ass

b1 b2 · · · bs

or, if the method is explicit, by the simplified tableau

0
c2 a21
... ... ... . . .
cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs
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Examples:
y1 = y0 + 0hf(y0) + 1hf

(
y0 + 1

2
hf(y0)

)

0
1
2

1

2

0 1

Y1 Y2

y1 = y0 + 1

2
hf(y0) + 1

2
hf

(
y0 + 1hf(y0)

)

0

1 1
1

2

1

2

Y1 Y2
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Taylor expansion of exact solution
We need formulae for the second, third, . . . , derivatives.

y′(x)=f(y(x))

y′′(x)=f ′(y(x))y′(x)

=f ′(y(x))f(y(x)))

y′′′(x)=f ′′(y(x))(f(y(x)), y′(x)) + f ′(y(x))f ′(y(x))y′(x)

=f ′′(y(x))(f(y(x)), f(y(x)))+f ′(y(x))f ′(y(x))f(y(x))

This will become increasingly complicated as we
evaluate higher derivatives.

Hence we look for a systematic pattern.

Write f = f(y(x)), f′ = f ′(y(x)), f′′ = f ′′(y(x)), . . . .
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y′(x) = f f

y′′(x) = f′f f′
f

y′′′(x) = f′′(f, f) f′′
f f

+ f′f′f f′
f′
f

The various terms have a structure related to rooted-trees.

Hence, we introduce the set of all rooted trees and some
functions on this set.
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Let T denote the set of rooted trees:

T =

{
, , , , , , , , . . .

}

We identify the following functions on T .

In this table, t will denote a typical tree
r(t) order of t = number of vertices
σ(t) symmetry of t = order of automorphism group
γ(t) density of t

α(t) number of ways of labelling with an ordered set
β(t) number of ways of labelling with an unordered set

F (t)(y0) elementary differential

We will give examples of these functions based on t =
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t =

r(t) = 7 7
65

1 2 43

σ(t) = 8

γ(t) = 63 7
33

1 1 11

α(t) = r(t)!
σ(t)γ(t) = 10

β(t) = r(t)!
σ(t) = 630

F (t) = f′′
(
f′′(f, f), f′′(f, f)

)
f′′

f′′f′′

f f ff
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These functions are easy to compute up to order 4 trees:

t

r(t) 1 2 3 3 4 4 4 4

σ(t) 1 1 2 1 6 1 2 1

γ(t) 1 2 3 6 4 8 12 24

α(t) 1 1 1 1 1 3 1 1

β(t) 1 2 3 6 4 24 12 24

F (t) f f′f f′′(f, f) f′f′f f(3)(f, f, f) f′′(f, f′f) f′f′′(f, f) f′f′f′f
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The formal Taylor expansion of the solution at x0 + h is

y(x0 + h) = y0 +
∑

t∈T

α(t)hr(t)

r(t)!
F (t)(y0)

Using the known formula for α(t), we can write this as

y(x0 + h) = y0 +
∑

t∈T

hr(t)

σ(t)γ(t)
F (t)(y0)

Our aim will now be to find a corresponding formula for
the result computed by one step of a Runge-Kutta
method.

By comparing these formulae term by term, we will
obtain conditions for a specific order of accuracy.
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Taylor expansion for numerical approximation
We need to evaluate various expressions which depend
on the tableau for a particular method.

These are known as “elementary weights”.
We use the example tree we have already considered to
illustrate the construction of the elementary weight Φ(t).

t =
i

kj

l m on

Φ(t) =

s∑

i,j,k,l,m,n,o=1

biaijaikajlajmaknako

Simplify by summing over l,m, n, o:

Φ(t) =

s∑

i,j,k=1

biaijc
2
jaikc

2
k
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Now add Φ(t) to the table of functions:

t

r(t) 1 2 3 3
α(t) 1 1 1 1
β(t) 1 2 3 6
Φ(t)

∑
bi

∑
bici

∑
bic

2
i

∑
biaijcj

t

r(t) 4 4 4 4
α(t) 1 3 1 1
β(t) 4 24 12 24
Φ(t)

∑
bic

3
i

∑
biciaijcj

∑
biaijc

2
j

∑
biaijajkck
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The formal Taylor expansion of the solution at x0 + h is

y1 = y0 +
∑

t∈T

β(t)hr(t)

r(t)!
Φ(t)F (t)(y0)

Using the known formula for β(t), we can write this as

y1 = y0 +
∑

t∈T

hr(t)

σ(t)
Φ(t)F (t)(y0)
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Order conditions
To match the Taylor series

y(x0 + h) = y0 +
∑

t∈T

hr(t)

σ(t)γ(t)
F (t)(y0)

y1 = y0 +
∑

t∈T

hr(t)

σ(t)
Φ(t)F (t)(y0)

up to hp terms we need to ensure that

Φ(t) =
1

γ(t)
,

for all trees such that

r(t) ≤ p.

These are the “order conditions”.
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Construction of low order explicit methods
We will attempt to construct methods of order p = s with
s stages for s = 1, 2, . . . .

We will find that this is possible up to order 4 but not for
p ≥ 5.
The usual approach will be to first choose c2, c3, . . . , cs

and then solve for b1, b2, . . . , bs.
After this solve for those of the aij which can be found as
solutions to linear equations.
Order 2: b1 + b2 = 1

b2c2 = 1
2

0

c2 c2

1− 1
2c2

1
2c2

0
1
2

1
2

0 1

0

1 1
1
2

1
2
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Order 3: b1 + b2 + b3 = 1

b2c2 + b3c3 = 1
2

b2c
2
2 + b3c

2
3 = 1

3

b3a32c2 = 1
6

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

0
2
3

2
3

2
3 0 2

3
1
4

3
8

3
8

0
2
3

2
3

0 −1 1

0 3
4

1
4
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Order 4: b1 + b2 + b3 + b4 = 1 (1)
b2c2 + b3c3 + b4c4 = 1

2 (2)
b2c

2
2 + b3c

2
3 + b4c

2
4 = 1

3 (3)
b3a32c2 + b4a42c2 + b4a43c3 = 1

6 (4)
b2c

3
2 + b3c

3
3 + b4c

3
4 = 1

4 (5)
b3c3a32c2 + b4c4a42c2 + b4c4a43c3 = 1

8 (6)
b3a32c

2
2 + b4a42c

2
2 + b4a43c

2
3 = 1

12 (7)
b4a43a32c2 = 1

24 (8)

To solve these equations, treat c2, c3, c4 as parameters,
and solve for b1, b2, b3, b4 from (1), (2), (3), (5).
Now solve for a32, a42, a43 from (4). (6), (7).
Use (8) to obtain consistency condition on c2, c3, c4.
Result: c4 = 1.
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We will prove a stronger result in another way.

Lemma 1 Let U and V be 3× 3 matrices such that

UV =




w11 w12 0

w21 w22 0

0 0 0


 where

[
w11 w12

w21 w22

]
is non-singular

then either the last row of U is zero or the last column of
V is zero.
Proof Let W = UV . Either U or V is singular. If U is singular, let
x be a non-zero vector such that xT U = 0. Therefore xT W = 0.
Therefore the first two components of x are zero. Hence, the last row
of U is zero. The second case follows similarly if V is singular.
We will apply this result with a specific choice of U and
V .
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Let

U =




b2 b3 b4

b2c2 b3c3 b4c4∑
i biai2

∑
i biai3

∑
i biai4

−b2(1− c2) −b3(1− c3) −b4(1− c4)




V =




c2 c2
2

∑
j a2jcj −

1
2c

2
2

c3 c2
3

∑
j a3jcj −

1
2c

2
3

c4 c2
4

∑
j a4jcj −

1
2c

2
4




then

UV =




1
2

1
3 0

1
3

1
4 0

0 0 0



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It follows that b4 = 0, c2 = 0 or c4 = 1.

The first two options are impossible because
b4a43a32c2 = 1

24 .
Hence, c4 = 1 and the last row of U is zero.
The construction of fourth order Runge–Kutta methods
now becomes straightforward.
Kutta classified all solutions to the fourth order
conditions.
In particular we have his famous method:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6
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Order barriers
We will review what is achievable up to order 8.

In the table below, Np is the number of order conditions
to achieve this order.
Ms = s(s + 1)/2 is the number of free parameters to
satisfy the order conditions for the required s stages.

p Np s Ms

1 1 1 1

2 2 2 3

3 4 3 6

4 8 4 10

5 17 6 21

6 37 7 28

7 115 9 45

8 200 11 66

Runge–Kutta methods for ordinary differential equations – p. 25/48



Order barriers
We will review what is achievable up to order 8.
In the table below, Np is the number of order conditions
to achieve this order.

Ms = s(s + 1)/2 is the number of free parameters to
satisfy the order conditions for the required s stages.

p Np s Ms

1 1 1 1

2 2 2 3

3 4 3 6

4 8 4 10

5 17 6 21

6 37 7 28

7 115 9 45

8 200 11 66

Runge–Kutta methods for ordinary differential equations – p. 25/48



Order barriers
We will review what is achievable up to order 8.
In the table below, Np is the number of order conditions
to achieve this order.
Ms = s(s + 1)/2 is the number of free parameters to
satisfy the order conditions for the required s stages.

p Np s Ms

1 1 1 1

2 2 2 3

3 4 3 6

4 8 4 10

5 17 6 21

6 37 7 28

7 115 9 45

8 200 11 66

Runge–Kutta methods for ordinary differential equations – p. 25/48



Order barriers
We will review what is achievable up to order 8.
In the table below, Np is the number of order conditions
to achieve this order.
Ms = s(s + 1)/2 is the number of free parameters to
satisfy the order conditions for the required s stages.

p Np s Ms

1 1 1 1

2 2 2 3

3 4 3 6

4 8 4 10

5 17 6 21

6 37 7 28

7 115 9 45

8 200 11 66
Runge–Kutta methods for ordinary differential equations – p. 25/48



We will now prove that s = p = 5 is impossible.

Let b̂j =
∑5

i=1 biaij , j = 1, 2, 3, 4 and let

U =




b̂2 b̂3 b̂4

b̂2c2 b̂3c3 b̂4c4∑
i b̂iai2

∑
i b̂iai3

∑
i b̂iai4

−1
2 b̂2(1− c2) −1

2 b̂3(1− c3) −1
2 b̂4(1− c4)




V =




c2 c2
2

∑
j a2jcj −

1
2c

2
2

c3 c2
3

∑
j a3jcj −

1
2c

2
3

c4 c2
4

∑
j a4jcj −

1
2c

2
4




then

UV =




1
6

1
12 0

1
12

1
20 0

0 0 0



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Using Lemma 1, we deduce that c4 = 1.

Now use the
lemma again with

U =




b2(1− c2) b3(1− c3) b5(1− c5)

b2c2(1− c2) b3c3(1− c3) b5c5(1− c5)∑
i biai2(1− c2)

∑
i biai3(1− c3)

∑
i biai5(1− c5)

−b2(1− c2)
2 −b3(1− c3)

2 −b5(1− c5)
2




V =




c2 c2
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∑
j a2jcj −
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
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It follows that c5 = 1.

Since we already know that c4 = 1, we obtain a
contradiction from

0 =
∑

bi(1− ci)aijajkck=
1

120

By modifying the details slightly, we can prove that
s = p > 5 is never possible.

The proof that s = p + 1 is impossible when p ≥ 7 is
more complicated.

The proof that s = p + 2 is impossible when p ≥ 8 is
much more complicated.
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Algebraic interpretation
We will introduce an algebraic system which represents
individual Runge-Kutta methods and also compositions
of methods.

This centres on the meaning of order for Runge-Kutta
methods and leads to a possible generalisation to
“effective order”.

Denote by G the group consisting of mappings of
(rooted) trees to real numbers where the group operation
is defined in the usual way, according to the algebraic
theory of Runge-Kutta methods or to the (equivalent)
theory of B-series.

We will illustrate this operation in a table, where we also
introduce the special member E ∈ G.

Runge–Kutta methods for ordinary differential equations – p. 29/48



Algebraic interpretation
We will introduce an algebraic system which represents
individual Runge-Kutta methods and also compositions
of methods.

This centres on the meaning of order for Runge-Kutta
methods and leads to a possible generalisation to
“effective order”.

Denote by G the group consisting of mappings of
(rooted) trees to real numbers where the group operation
is defined in the usual way, according to the algebraic
theory of Runge-Kutta methods or to the (equivalent)
theory of B-series.

We will illustrate this operation in a table, where we also
introduce the special member E ∈ G.

Runge–Kutta methods for ordinary differential equations – p. 29/48



Algebraic interpretation
We will introduce an algebraic system which represents
individual Runge-Kutta methods and also compositions
of methods.

This centres on the meaning of order for Runge-Kutta
methods and leads to a possible generalisation to
“effective order”.

Denote by G the group consisting of mappings of
(rooted) trees to real numbers where the group operation
is defined in the usual way

, according to the algebraic
theory of Runge-Kutta methods or to the (equivalent)
theory of B-series.

We will illustrate this operation in a table, where we also
introduce the special member E ∈ G.

Runge–Kutta methods for ordinary differential equations – p. 29/48



Algebraic interpretation
We will introduce an algebraic system which represents
individual Runge-Kutta methods and also compositions
of methods.

This centres on the meaning of order for Runge-Kutta
methods and leads to a possible generalisation to
“effective order”.

Denote by G the group consisting of mappings of
(rooted) trees to real numbers where the group operation
is defined in the usual way, according to the algebraic
theory of Runge-Kutta methods or to the (equivalent)
theory of B-series.

We will illustrate this operation in a table, where we also
introduce the special member E ∈ G.

Runge–Kutta methods for ordinary differential equations – p. 29/48



Algebraic interpretation
We will introduce an algebraic system which represents
individual Runge-Kutta methods and also compositions
of methods.

This centres on the meaning of order for Runge-Kutta
methods and leads to a possible generalisation to
“effective order”.

Denote by G the group consisting of mappings of
(rooted) trees to real numbers where the group operation
is defined in the usual way, according to the algebraic
theory of Runge-Kutta methods or to the (equivalent)
theory of B-series.

We will illustrate this operation in a table

, where we also
introduce the special member E ∈ G.

Runge–Kutta methods for ordinary differential equations – p. 29/48



Algebraic interpretation
We will introduce an algebraic system which represents
individual Runge-Kutta methods and also compositions
of methods.

This centres on the meaning of order for Runge-Kutta
methods and leads to a possible generalisation to
“effective order”.

Denote by G the group consisting of mappings of
(rooted) trees to real numbers where the group operation
is defined in the usual way, according to the algebraic
theory of Runge-Kutta methods or to the (equivalent)
theory of B-series.

We will illustrate this operation in a table, where we also
introduce the special member E ∈ G.

Runge–Kutta methods for ordinary differential equations – p. 29/48



r(ti)

i ti

α(ti) β(ti) (αβ)(ti) E(ti)

1

1

α1 β1 α1 + β1 1

2

2

α2 β2 α2 + α1β1 + β2
1
2

3

3

α3 β3 α3 + α2
1β1 + 2α1β2 + β3

1
3

3

4

α4 β4 α4 + α2β1 + α1β2 + β4
1
6

4

5

α5 β5 α5 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5
1
4

4

6

α6 β6
α6 + α1α2β1 + (α2

1 + α2)β2 1
8+ α1(β3 + β4) + β6

4

7

α7 β7 α7 + α3β1 + α2
1β2 + 2α1β4 + β7

1
12

4

8

α8 β8 α8 + α4β1 + α2β2 + α1β4 + β8
1
24
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α5 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5
1
4

4 6 α6 β6

α6 + α1α2β1 + (α2
1 + α2)β2 1

8+ α1(β3 + β4) + β6

4 7 α7 β7

α7 + α3β1 + α2
1β2 + 2α1β4 + β7

1
12

4 8 α8 β8

α8 + α4β1 + α2β2 + α1β4 + β8
1
24
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Gp will denote the normal subgroup defined by t 7→ 0 for
r(t) ≤ p.

If α ∈ G then this maps canonically to αGp ∈ G/Gp.

If α is defined from the elementary weights for a
Runge-Kutta method then order p can be written as

αGp = EGp.

Effective order p is defined by the existence of β such
that

βαGp = EβGp.
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The computational interpretation of this idea is that we
carry out a starting step corresponding to β

and a
finishing step corresponding to β−1, with many steps in
between corresponding to α.

This is equivalent to many steps all corresponding to
βαβ−1.

Thus, the benefits of high order can be enjoyed by high
effective order.
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We analyse the conditions for effective order 4.

Without loss of generality assume β(t1) = 0.
i (βα)(ti) (Eβ)(ti)

1 α1 1

2 β2 + α2
1
2 + β2

3 β3 + α3
1
3 + 2β2 + β3

4 β4 + β2α1 + α4
1
6 + β2 + β4

5 β5 + α5
1
4 + 3β2 + 3β3 + β5

6 β6 + β2α2 + α6
1
8 + 3

2β2 + β3 + β4 + β6

7 β7 + β3α1 + α7
1
12 + β2 + 2β4 + β7

8 β8 + β4α1 + β2α2 + α8
1
24 + 1

2β2 + β4 + β8
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Of these 8 conditions, only 5 are conditions on α.

Once α is known, there remain 3 conditions on β.

The 5 order conditions, written in terms of the
Runge-Kutta tableau, are ∑

bi = 1
∑

bici = 1
2∑

biaijcj = 1
6∑

biaijajkck = 1
24∑

bic
2
i (1− ci) +

∑
biaijcj(2ci − cj) = 1

4
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Implicit Runge–Kutta methods
Since we have the order barriers, we might ask how to
get around them.

For explicit methods, solving the order
conditions becomes increasingly difficult as the order
increasesbut everything becomes simpler for implicit
methods.
For example the following method has order 5:

0
1
4

1
8

1
8

7
10 −

1
100

14
25

3
20

1 2
7 0 5

7
1
14

32
81

250
567

5
54
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This idea can be taken further by introducing a full lower
triangular A matrix.

If all the diagonal elements are equal, we get the
Diagonally-Implicit methods of R. Alexander and the
Semi-Explicit methods of S. P. Nørsett.
The following third order L-stable method illustrates
what is possible for DIRK methods

λ λ
1
2(1 + λ) 1

2(1− λ) λ

1 1
4(−6λ2 + 16λ− 1) 1

4(6λ
2 − 20λ + 5) λ

1
4(−6λ2 + 16λ− 1) 1

4(6λ
2 − 20λ + 5) λ

where λ ≈ 0.4358665215 satisfies 1
6−

3
2λ+3λ2−λ3 = 0.
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Singly-implicit Runge-Kutta methods
A SIRK method is characterised by the equation
σ(A) = {λ}.

That is A has a one-point spectrum.

For DIRK methods the stages can be computed
independently and sequentially from equations of the
form

Yi − hλf(Yi) = a known quantity

Each stage requires the same factorised matrix I − hλJ
to permit solution by a modified Newton iteration
process (where J ≈ ∂f/∂y).

How then is it possible to implement SIRK methods in a
similarly efficient manner?

The answer lies in the inclusion of a transformation to
Jordan canonical form into the computation.
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Suppose the matrix T transforms A to canonical form as
follows

T−1AT = A

where

A = λ(I − J) = λ



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
... ... ... ... ...
0 0 0 · · · 1 0

0 0 0 · · · −1 1



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Consider a single Newton iteration, simplified by the use
of the same approximate Jacobian J for each stage.

Assume the incoming approximation is y0 and that we
are attempting to evaluate

y1 = y0 + h(bT ⊗ I)F

where F is made up from the s subvectors Fi = f(Yi),
i = 1, 2, . . . , s.
The implicit equations to be solved are

Y = e⊗ y0 + h(A⊗ I)F

where e is the vector in R
n with every component equal

to 1 and Y has subvectors Yi, i = 1, 2, . . . , s
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The Newton process consists of solving the linear system

(Is ⊗ I − hA⊗ J )D = Y − e⊗ y0 − h(A⊗ I)F

and updating
Y → Y −D

To benefit from the SI property, write

Y = (T−1⊗I)Y, F = (T−1⊗I)F, D = (T−1⊗I)D,

so that

(Is ⊗ I − hA⊗ J )D = Y − e⊗ y0 − h(A⊗ I)F

The following table summarises the costs
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without with
transformation transformation

LU factorisation s3N 3

N 3

Transformation s2N

Backsolves s2N 2

sN 2

Transformation s2N

In summary, we reduce the very high LU factorisation
costto a level comparable to BDF methods.

Also we reduce the back substitution costto the same
work per stage as for DIRK or BDFmethods.

By comparison, the additional transformation costs are
insignificant for large problems .
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Stage order s means that
s∑

j=1

aijφ(ci) =

∫ ci

0

φ(t)dt,

for φ any polynomial of degree s− 1. This implies that

Ack−1 = 1
k
ck, k = 1, 2, . . . , s,

where the vector powers are interpreted component by
component.
This is equivalent to

Akc0 =
1

k!
ck, k = 1, 2, . . . , s (∗)
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From the Cayley-Hamilton theorem

(A− λI)sc0 = 0

and hence
s∑

i=0

(
s

i

)
(−λ)s−iAic0 = 0.

Substitute from (∗) and it is found that

s∑

i=0

1

i!

(
s

i

)
(−λ)s−ici = 0.
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Hence each component of c satisfies
s∑

i=0

1

i!

(
s

i

)(
−

x

λ

)i

= 0

That is

Ls

(x

λ

)
= 0

where LS denotes the Laguerre polynomial of degree s.

Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1, 2, . . . , s

The question now is, how should λ be chosen?
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Unfortunately, to obtain A-stability, at least for orders
p > 2, λ has to be chosen so that some of the ci are
outside the interval [0, 1].

This effect becomes more severe for increasingly high
orders and can be seen as a major disadvantage of these
methods.

We will look at two approaches for overcoming this
disadvantage.

However, we first look at the transformation matrix T for
efficient implementation.
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Define the matrix T as follows:

T =




L0(ξ1) L1(ξ1) L2(ξ1) · · · Ls−1(ξ1)

L0(ξ2) L1(ξ2) L2(ξ2) · · · Ls−1(ξ2)

L0(ξ3) L1(ξ3) L2(ξ3) · · · Ls−1(ξ3)
... ... ... ...

L0(ξs) L1(ξs) L2(ξs) · · · Ls−1(ξs)




It can be shown that for a SIRK method

T−1AT = λ(I − J)
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There are two ways in which SIRK methods can be
generalized
In the first of these we add extra diagonally implicit
stages so that the coefficient matrix looks like this:

[
Â 0

W λI

]
,

where the spectrum of the p× p submatrix Â is

σ(Â) = {λ}
For s− p = 1, 2, 3, . . . we get improvements to the
behaviour of the methods
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A second generalization is to replace “order” by
“effective order”.

This allows us to locate the abscissae where we wish.

In “DESIRE” methods:
Diagonally Extended Singly Implicit Runge-Kutta

methods using Effective order
these two generalizations are combined.

This seems to be as far as we can go in constructing
efficient and accurate singly-implicit Runge-Kutta
methods.
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