Towards practical general linear methods

John Butcher

The University of Auckland New Zealand

Differential Functional Equations Conference Gdańsk, June 2005

General linear methods

General linear methods

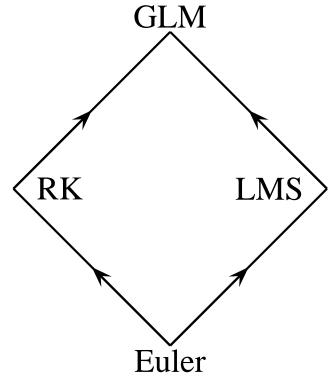
Doubly companion matrices

- General linear methods
- Doubly companion matrices
- Methods with the RK stability property

- General linear methods
- Doubly companion matrices
- Methods with the RK stability property
- Implementation questions for IRKS methods

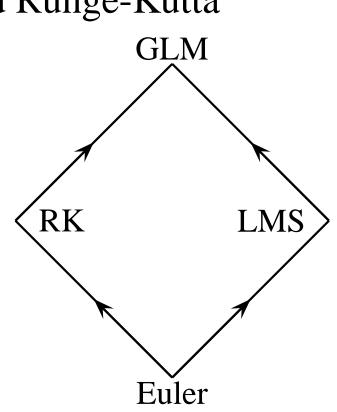
"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases.

"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases. GLM



"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases. GLM

A characteristic feature is that each step imports r quantities



RK

General linear methods

"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases. GLM

A characteristic feature is that each step imports r quantities, and exports the same quantities, updated in accordance with the development of the solution.

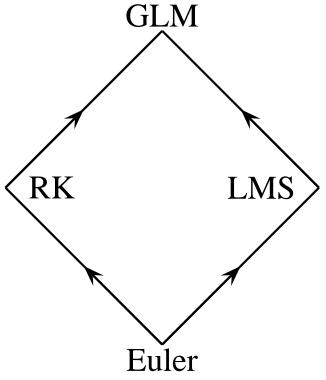
Euler

LMS

"General linear methods" is a large family of numerical methods for ordinary differential equations, which includes linear multistep, predictor-corrector and Runge-Kutta methods as special cases. GLM

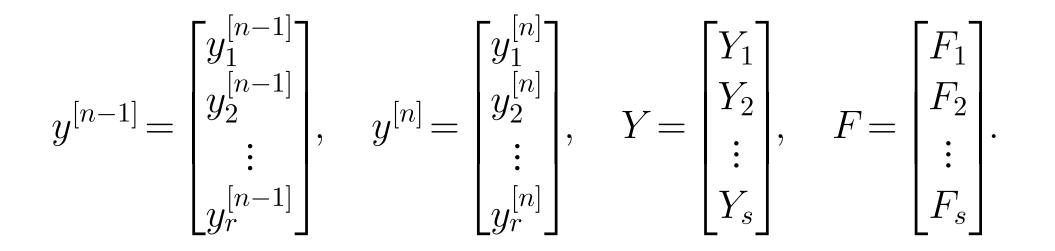
A characteristic feature is that each step imports r quantities, and exports the same quantities, updated in accordance with the development of the solution.

A second characteristic feature is that, within the step, *s* stages are computed, together with the corresponding *s* stage derivatives.



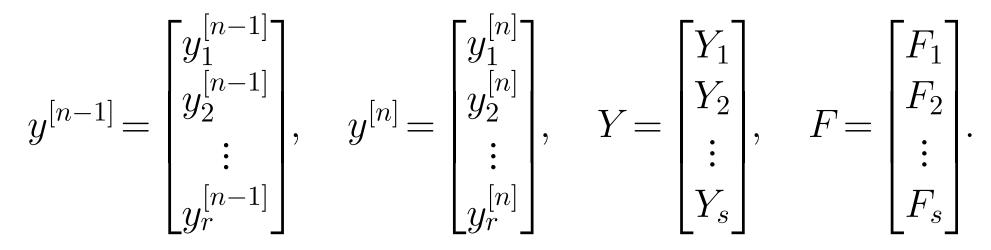
Denote the output approximations from step number n by

 $y_i^{[n]}$, i = 1, 2, ..., r, the stage values by Y_i , i = 1, 2, ..., sand the stage derivatives by F_i , i = 1, 2, ..., s. Denote the output approximations from step number n by $y_i^{[n]}$, i = 1, 2, ..., r, the stage values by Y_i , i = 1, 2, ..., s and the stage derivatives by F_i , i = 1, 2, ..., s. For convenience, write



Denote the output approximations from step number n by $y_i^{[n]}$, i = 1, 2, ..., r, the stage values by Y_i , i = 1, 2, ..., s and the stage derivatives by F_i , i = 1, 2, ..., s.

For convenience, write



It is assumed that Y and F are related by a differential equation.

The computation of the stages and the output from step number n is carried out according to the formulae

$$Y_{i} = \sum_{j=1}^{s} a_{ij}hF_{j} + \sum_{j=1}^{r} u_{ij}y_{j}^{[n-1]}, \quad i = 1, 2, \dots, s,$$
$$y_{i}^{[n]} = \sum_{j=1}^{s} b_{ij}hF_{j} + \sum_{j=1}^{r} v_{ij}y_{j}^{[n-1]}, \quad i = 1, 2, \dots, r,$$

where the matrices $A = [a_{ij}], U = [u_{ij}], B = [b_{ij}], V = [v_{ij}]$ are characteristic of a specific method.

We can write these relations more compactly in the form

$$\begin{bmatrix} Y\\ y^{[n]} \end{bmatrix} = \begin{bmatrix} A \otimes I & U \otimes I\\ B \otimes I & V \otimes I \end{bmatrix} \begin{bmatrix} hF\\ y^{[n-1]} \end{bmatrix}$$

We can write these relations more compactly in the form

$$\begin{bmatrix} Y\\ y^{[n]} \end{bmatrix} = \begin{bmatrix} A \otimes I & U \otimes I\\ B \otimes I & V \otimes I \end{bmatrix} \begin{bmatrix} hF\\ y^{[n-1]} \end{bmatrix}$$

which we can simplify by making a harmless abuse of notation in the form

$$\begin{bmatrix} Y\\ y^{[n]} \end{bmatrix} = \begin{bmatrix} A & U\\ B & V \end{bmatrix} \begin{bmatrix} hF\\ y^{[n-1]} \end{bmatrix}$$

The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1} .

The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1} . When the step has been completed, the vectors comprising the output are approximations to the same quantities, but now related to x_n .

The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1} .

When the step has been completed, the vectors comprising the output are approximations to the same quantities, but now related to x_n .

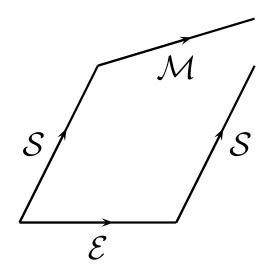
If the input is exactly what it is supposed to approximate, then the "local truncation error" is defined as the error in the output after a single step.

- The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1} .
- When the step has been completed, the vectors comprising the output are approximations to the same quantities, but now related to x_n .
- If the input is exactly what it is supposed to approximate, then the "local truncation error" is defined as the error in the output after a single step.
- If this can be estimated in terms of h^{p+1} , then the method has order p.

- The input to a step is an approximation to some vector of quantities related to the exact solution at x_{n-1} .
- When the step has been completed, the vectors comprising the output are approximations to the same quantities, but now related to x_n .
- If the input is exactly what it is supposed to approximate, then the "local truncation error" is defined as the error in the output after a single step.
- If this can be estimated in terms of h^{p+1} , then the method has order p.
- We will refer to the calculation which produces $y^{[n-1]}$ from $y(x_{n-1})$ as a "starting method".

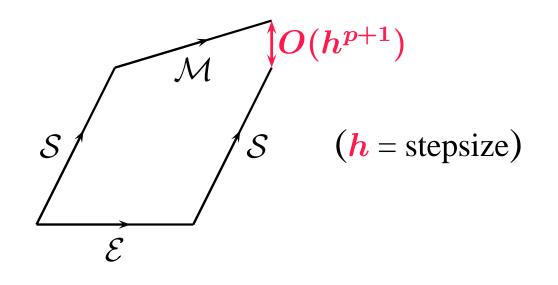
Let S denote the "starting method", that is a mapping from \mathbb{R}^N to \mathbb{R}^{rN} , and let $\mathcal{F} : \mathbb{R}^{rN} \to \mathbb{R}^N$ denote a corresponding finishing method, such that $\mathcal{F} \circ \mathcal{S} = \text{id}$. Let S denote the "starting method", that is a mapping from \mathbb{R}^N to \mathbb{R}^{rN} , and let $\mathcal{F} : \mathbb{R}^{rN} \to \mathbb{R}^N$ denote a corresponding finishing method, such that $\mathcal{F} \circ \mathcal{S} = \text{id}$.

The order of accuracy of a multivalue method is defined in terms of the diagram

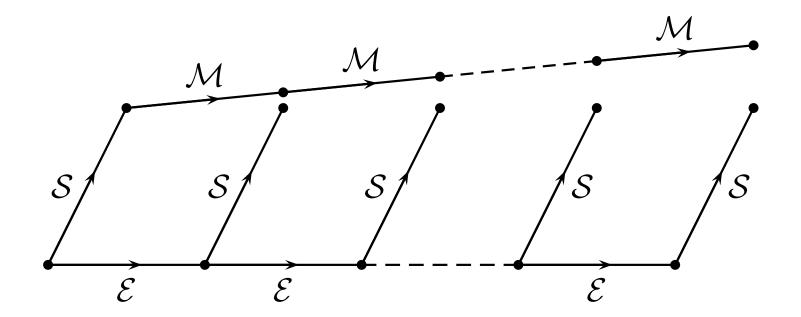


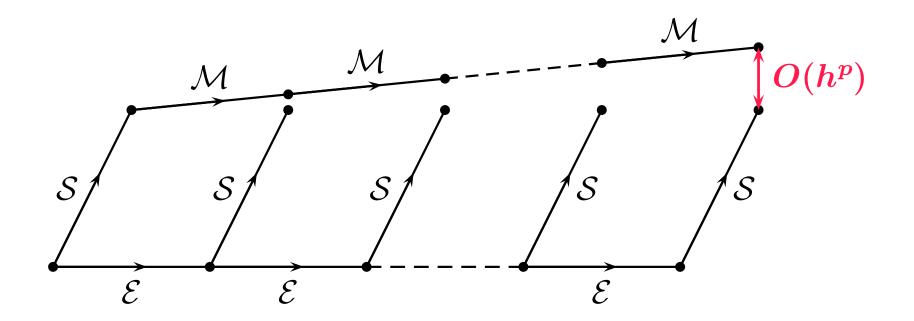
Let S denote the "starting method", that is a mapping from \mathbb{R}^N to \mathbb{R}^{rN} , and let $\mathcal{F} : \mathbb{R}^{rN} \to \mathbb{R}^N$ denote a corresponding finishing method, such that $\mathcal{F} \circ S = \text{id}$.

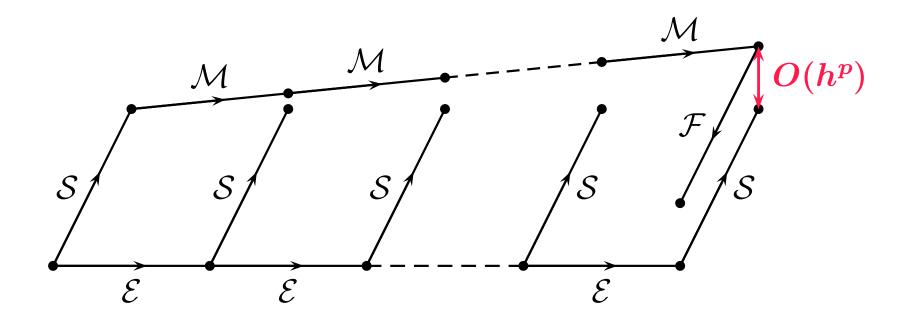
The order of accuracy of a multivalue method is defined in terms of the diagram

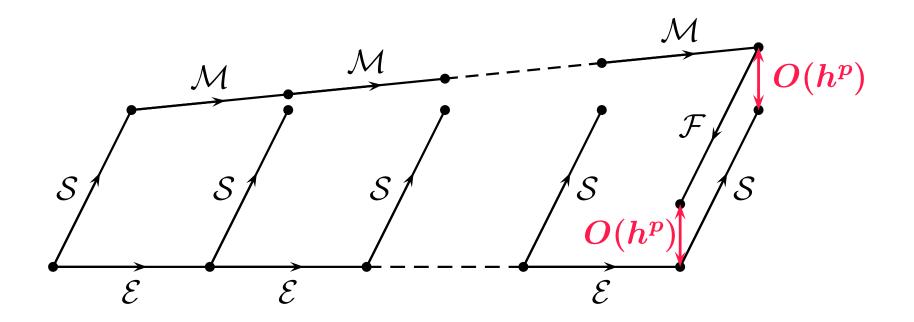


Methods with the RK stability property
 Implementation questions for IRKS methods









If we want not only order p but also "stage-order" q equal to p (or possibly p - 1), things become simpler.

If we want not only order p but also "stage-order" q equal to p (or possibly p - 1), things become simpler.

$$\exp(cz) = zA\exp(cz) + U\phi(z) + O(z^{q+1})$$

If we want not only order p but also "stage-order" q equal to p (or possibly p - 1), things become simpler.

$$\exp(cz) = zA\exp(cz) + U\phi(z) + O(z^{q+1})$$
$$\exp(z)\phi(z) = zB\exp(cz) + V\phi(z) + O(z^{p+1})$$

If we want not only order p but also "stage-order" q equal to p (or possibly p - 1), things become simpler.

$$\exp(cz) = zA\exp(cz) + U\phi(z) + O(z^{q+1})$$
$$\exp(z)\phi(z) = zB\exp(cz) + V\phi(z) + O(z^{p+1})$$

where it is assumed the input is

$$y_i^{[n-1]} = \alpha_{i1}y(x_{n-1}) + \alpha_{i2}hy'(x_{n-1}) + \dots + \alpha_{i,p+1}h^p y^{(p)}(x_{n-1})$$

If we want not only order p but also "stage-order" q equal to p (or possibly p - 1), things become simpler.

$$\exp(cz) = zA\exp(cz) + U\phi(z) + O(z^{q+1})$$
$$\exp(z)\phi(z) = zB\exp(cz) + V\phi(z) + O(z^{p+1})$$

where it is assumed the input is

$$y_i^{[n-1]} = \alpha_{i1}y(x_{n-1}) + \alpha_{i2}hy'(x_{n-1}) + \dots + \alpha_{i,p+1}h^p y^{(p)}(x_{n-1})$$

and where

$$\phi_i(z) = \alpha_{i1} + \alpha_{i2}z + \dots + \alpha_{i,p+1}z^p$$

Stability of methods

In our discussion of errors, we assumed that V is power bounded.

Stability of methods

In our discussion of errors, we assumed that V is power bounded.

This is necessary for convergence in the sense of Dahlquist and is sometimes referred to as "zero-stability".

Stability of methods

In our discussion of errors, we assumed that V is power bounded.

This is necessary for convergence in the sense of Dahlquist and is sometimes referred to as "zero-stability".

We will consider only methods which are strongly zero-stable, so that only the principal eigenvalue of V lies on the unit circle.

By formulating the method appropriately, that is by making a simple change of basis transformation:

$$\left[\begin{array}{ccc}A, & U, & B, & V\end{array}\right] \rightarrow \left[\begin{array}{ccc}A, & UT, & T^{-1}B, & T^{-1}VT\end{array}\right]$$

we can assume that V has the form

$$V = \left[\begin{array}{cc} 1 & v^T \\ 0 & \dot{V} \end{array} \right]$$

where

 $\rho(\dot{V}) < 1.$

By considering the linear test problem y' = qy and defining z = hq, we arrive at the stability matrix

$$M(z) = V + zB(I - zA)^{-1}U.$$

By considering the linear test problem y' = qy and defining z = hq, we arrive at the stability matrix

$$M(z) = V + zB(I - zA)^{-1}U.$$

For the linear test problem, the sequence of approximations are related by

$$y^{[n]} = M(z)y^{[n-1]}$$

By considering the linear test problem y' = qy and defining z = hq, we arrive at the stability matrix

$$M(z) = V + zB(I - zA)^{-1}U.$$

For the linear test problem, the sequence of approximations are related by

$$y^{[n]} = M(z)y^{[n-1]}$$

We define the "stability region" as the set of points in the complex plane such that M(z) is power bounded.

By considering the linear test problem y' = qy and defining z = hq, we arrive at the stability matrix

$$M(z) = V + zB(I - zA)^{-1}U.$$

For the linear test problem, the sequence of approximations are related by

$$y^{[n]} = M(z)y^{[n-1]}$$

We define the "stability region" as the set of points in the complex plane such that M(z) is power bounded.

We also define the "stability function" as

$$\Phi(w, z) = \det(wI - M(z)).$$

Methods with the RK stability property
 Implementation questions for IRKS methods

Doubly companion matrics

Matrices like the following are "companion matrices" for the polynomial

$$z^n + \alpha_1 z^{n-1} + \dots + \alpha_n$$

$$\begin{bmatrix} -\alpha_1 - \alpha_2 - \alpha_3 \cdots - \alpha_{n-1} - \alpha_n \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

Methods with the RK stability property
 Implementation questions for IRKS methods

Doubly companion matrics

Matrices like the following are "companion matrices" for the polynomial

or
$$z^n + \alpha_1 z^{n-1} + \dots + \alpha_n$$

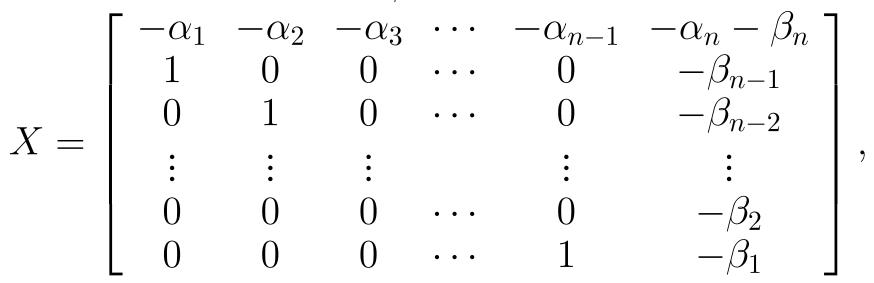
 $z^n + \beta_1 z^{n-1} + \dots + \beta_n,$

respectively:

$$\begin{bmatrix} -\alpha_{1} - \alpha_{2} - \alpha_{3} \cdots - \alpha_{n-1} - \alpha_{n} \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -\beta_{n} \\ 1 & 0 & 0 & \cdots & 0 & -\beta_{n-1} \\ 0 & 1 & 0 & \cdots & 0 & -\beta_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -\beta_{2} \\ 0 & 0 & 0 & \cdots & 1 & -\beta_{1} \end{bmatrix}$$

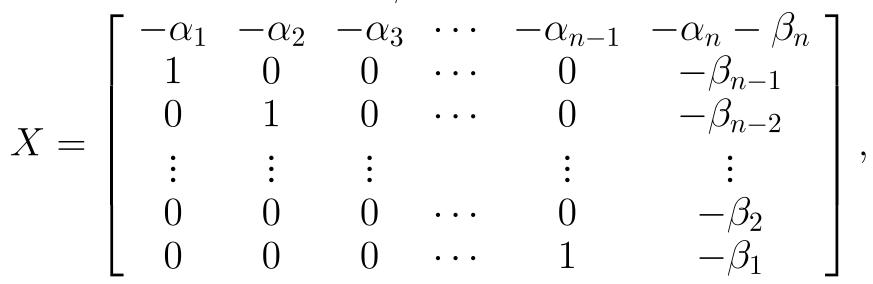
Their characteristic polynomials can be found from $det(I - zA) = \alpha(z)$ or $\beta(z)$, respectively, where, $\alpha(z) = 1 + \alpha_1 z + \dots + \alpha_n z^n$, $\beta(z) = 1 + \beta_1 z + \dots + \beta_n z^n$.

Their characteristic polynomials can be found from $det(I - zA) = \alpha(z)$ or $\beta(z)$, respectively, where, $\alpha(z) = 1 + \alpha_1 z + \dots + \alpha_n z^n$, $\beta(z) = 1 + \beta_1 z + \dots + \beta_n z^n$. A matrix with both α and β terms:



is known as a "doubly companion matrix"

Their characteristic polynomials can be found from $det(I - zA) = \alpha(z)$ or $\beta(z)$, respectively, where, $\alpha(z) = 1 + \alpha_1 z + \dots + \alpha_n z^n$, $\beta(z) = 1 + \beta_1 z + \dots + \beta_n z^n$. A matrix with both α and β terms:



is known as a "doubly companion matrix" and has characteristic polynomial defined by

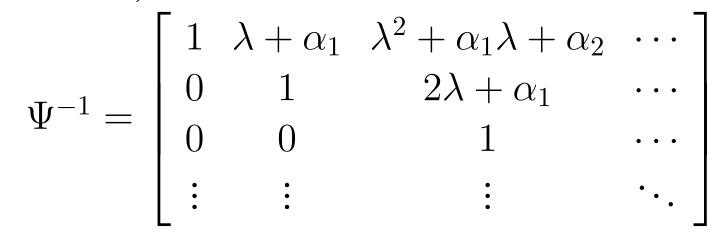
$$\det(I - zX) = \alpha(z)\beta(z) + O(z^{n+1})$$

Methods with the RK stability property
 Implementation questions for IRKS methods

Matrices Ψ^{-1} and Ψ transforming X to Jordan canonical form are known.

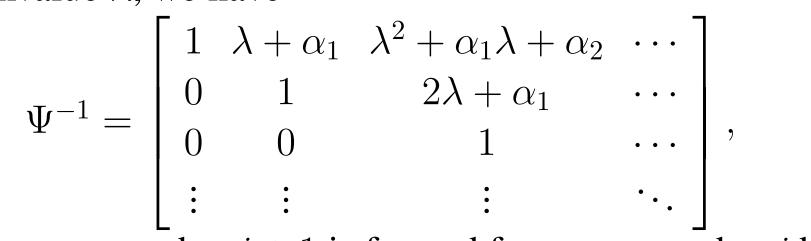
Matrices Ψ^{-1} and Ψ transforming X to Jordan canonical form are known.

In the special case of a single Jordan block with *n*-fold eigenvalue λ , we have



Matrices Ψ^{-1} and Ψ transforming X to Jordan canonical form are known.

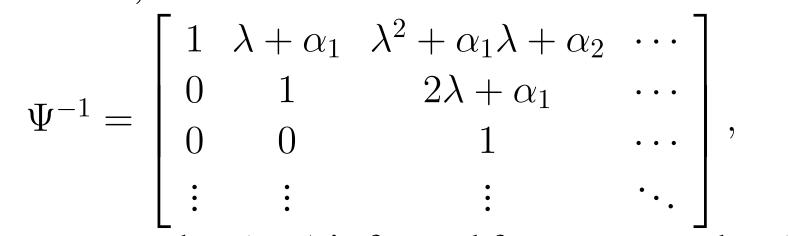
In the special case of a single Jordan block with *n*-fold eigenvalue λ , we have



where row number i + 1 is formed from row number i by differentiating with respect to λ and dividing by i.

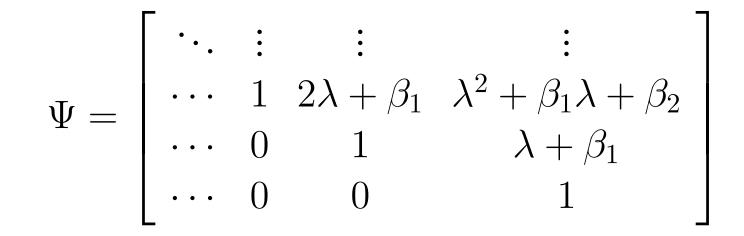
Matrices Ψ^{-1} and Ψ transforming X to Jordan canonical form are known.

In the special case of a single Jordan block with *n*-fold eigenvalue λ , we have



where row number i + 1 is formed from row number i by differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ :



$$\Psi = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots \\ \cdots & 1 & 2\lambda + \beta_1 & \lambda^2 + \beta_1 \lambda + \beta_2 \\ \cdots & 0 & 1 & \lambda + \beta_1 \\ \cdots & 0 & 0 & 1 \end{bmatrix}$$

The Jordan form is $\Psi^{-1}X\Psi = J + \lambda I$, where $J_{ij} = \delta_{i,j+1}$.

$$\Psi = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots \\ \cdots & 1 & 2\lambda + \beta_1 & \lambda^2 + \beta_1 \lambda + \beta_2 \\ \cdots & 0 & 1 & \lambda + \beta_1 \\ \cdots & 0 & 0 & 1 \end{bmatrix}$$

The Jordan form is $\Psi^{-1}X\Psi = J + \lambda I$, where $J_{ij} = \delta_{i,j+1}$. That is

$$\Psi^{-1}X\Psi = \begin{bmatrix} \lambda & 0 & \cdots & 0 & 0 \\ 1 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & \cdots & 1 & \lambda \end{bmatrix}$$

By "Runge-Kutta stability" we mean the property a method might have in which the characteristic polynomial of its stability matrix has all except one of its zeros equal to zero.

By "Runge-Kutta stability" we mean the property a method might have in which the characteristic polynomial of its stability matrix has all except one of its zeros equal to zero.

$$\det(wI - M(z)) = w^{r-1}(w - R(z))$$

By "Runge-Kutta stability" we mean the property a method might have in which the characteristic polynomial of its stability matrix has all except one of its zeros equal to zero.

$$\det(wI - M(z)) = w^{r-1}(w - R(z))$$

Although methods exist with this property with r = s = p = q, it is difficult to construct them.

By "Runge-Kutta stability" we mean the property a method might have in which the characteristic polynomial of its stability matrix has all except one of its zeros equal to zero.

$$\det(wI - M(z)) = w^{r-1}(w - R(z))$$

Although methods exist with this property with r = s = p = q, it is difficult to construct them.

If $s \ge r = p + 1$, it is possible to construct the methods in a systematic way by imposing a condition known as "Inherent Runge-Kutta Stability".

Construction of methods

Using doubly companion matrices, it is possible to construct GL methods possessing RK stability with rational operations.

Construction of methods

Using doubly companion matrices, it is possible to construct GL methods possessing RK stability with rational operations.

The methods constructed in this way are said to possess "Inherent Runge–Kutta Stability".

Construction of methods

Using doubly companion matrices, it is possible to construct GL methods possessing RK stability with rational operations.

The methods constructed in this way are said to possess "Inherent Runge–Kutta Stability".

Apart from exceptional cases, (in which certain matrices are singular), we characterize the method with r = s = p + 1 = q + 1 by several parameters.

$\blacksquare \lambda$ single eigenvalue of lower triangular matrix A

 $\blacksquare c_1, c_2, \ldots, c_s$ stage abscissae

- $\blacksquare c_1, c_2, \ldots, c_s$ stage abscissae
- Error constant

- $\blacksquare c_1, c_2, \ldots, c_s$ stage abscissae
- Error constant
- $\beta_1, \beta_2, ..., \beta_p$ elements in last column of $s \times s$ doubly companion matrix X

- $\blacksquare c_1, c_2, \ldots, c_s$ stage abscissae
- Error constant
- $\beta_1, \beta_2, ..., \beta_p$ elements in last column of $s \times s$ doubly companion matrix X
- Information on the structure of V

Consider only methods for which the step n outputs approximate the "Nordsieck vector"

Consider only methods for which the step n outputs approximate the "Nordsieck vector":

$$\begin{bmatrix} y_1^{[n]} \\ y_2^{[n]} \\ y_3^{[n]} \\ \vdots \\ y_{p+1}^{[n]} \end{bmatrix} \approx \begin{bmatrix} y(x_n) \\ hy'(x_n) \\ h^2 y''(x_n) \\ \vdots \\ h^p y^{(p)}(x_n) \end{bmatrix}$$

Consider only methods for which the step n outputs approximate the "Nordsieck vector":

$$\begin{bmatrix} y_1^{[n]} \\ y_2^{[n]} \\ y_3^{[n]} \\ \vdots \\ y_{p+1}^{[n]} \end{bmatrix} \approx \begin{bmatrix} y(x_n) \\ hy'(x_n) \\ h^2 y''(x_n) \\ \vdots \\ h^p y^{(p)}(x_n) \end{bmatrix}$$

For such methods, V has the form

$$V = \left[\begin{array}{cc} 1 & v^T \\ 0 & \dot{V} \end{array} \right]$$

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ ,

BA = XB,

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ ,

$$BA = XB, \quad BU = XV - VX + e_1\xi^T,$$

Such a method has the IRKS property if a doubly companion matrix X exists so that for some vector ξ ,

$BA = XB, \quad BU = XV - VX + e_1\xi^T, \quad \rho(\dot{V}) = 0$

$$BA = XB, \quad BU = XV - VX + e_1\xi^T, \quad \rho(\dot{V}) = 0$$

It can be shown that, for such methods, the stability matrix satisfies

$$M(z) \sim V + ze_1 \xi^T (I - zX)^{-1}$$

$$BA = XB, \quad BU = XV - VX + e_1\xi^T, \quad \rho(\dot{V}) = 0$$

It can be shown that, for such methods, the stability matrix satisfies

$$M(z) \sim V + ze_1 \xi^T (I - zX)^{-1}$$

which has all except one of its eigenvalues zero.

$$BA = XB, \quad BU = XV - VX + e_1\xi^T, \quad \rho(\dot{V}) = 0$$

It can be shown that, for such methods, the stability matrix satisfies

$$M(z) \sim V + ze_1 \xi^T (I - zX)^{-1}$$

which has all except one of its eigenvalues zero. The non-zero eigenvalue has the role of stability function

$$BA = XB, \quad BU = XV - VX + e_1\xi^T, \quad \rho(\dot{V}) = 0$$

It can be shown that, for such methods, the stability matrix satisfies

$$M(z) \sim V + ze_1 \xi^T (I - zX)^{-1}$$

which has all except one of its eigenvalues zero. The non-zero eigenvalue has the role of stability function

$$R(z) = \frac{N(z)}{(1 - \lambda z)^s}$$

Construction of methods

From the order and stage-order conditions, we can write U and V in terms of A and B:

Construction of methods

From the order and stage-order conditions, we can write U and V in terms of A and B:

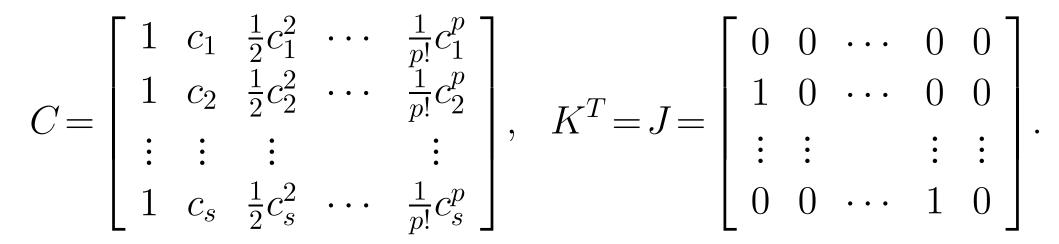
U = C - ACK,V = E - BCK,

Construction of methods

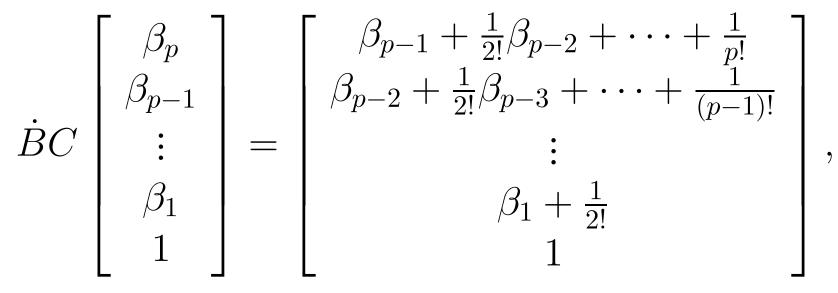
From the order and stage-order conditions, we can write U and V in terms of A and B:

$$U = C - ACK,$$
$$V = E - BCK,$$

where

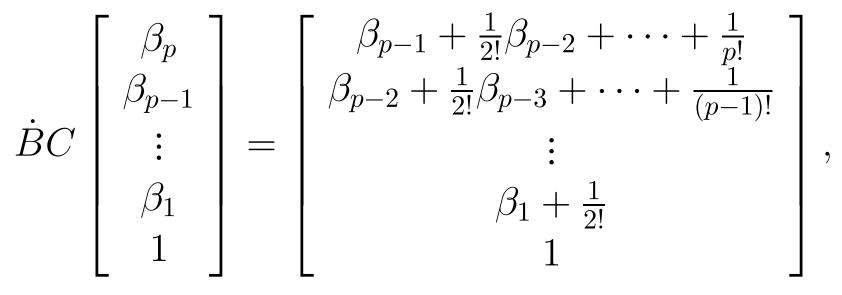


Substitute these formulae for U and V into $BU = XV - VX + e_1\xi^T$ and, after some simplification, we find



where \dot{B} denotes the last p rows of B.

Substitute these formulae for U and V into $BU = XV - VX + e_1\xi^T$ and, after some simplification, we find



where \dot{B} denotes the last p rows of B.

By taking account of the error constant prescribed for the method, we can find a similar formula involving the first row of B.

To simplify the construction we introduce a matrix $\tilde{B} = \Psi^{-1}B$, assumed to be non-singular. Because

 $\widetilde{B}A = (\lambda I + J)\widetilde{B},$

we know that \widetilde{B} is lower triangular. Using the known value for $\widetilde{B}C \begin{bmatrix} \beta_p & \beta_{p-1} & \cdots & \beta_1 & 1 \end{bmatrix}^T$ and the fact that the $\rho(\dot{V}) = 0$, where

$$V = E - \Psi \widetilde{B} C K,$$

we can find a suitable value of \widetilde{B} .

Once \hat{B} is known, we find the defining matrices for the method from

$$A = \widetilde{B}^{-1}(J + \lambda I)\widetilde{B},$$
$$U = C - ACK,$$
$$B = \Psi \widetilde{B},$$
$$V = E - BCK.$$

Collaboration with Will Wright

When two people work together, it is often hard to untangle the contributions that each makes.

Will's contributions include, but are not confined to,

- Showing how to extend the original formulation of stiff IRKS methods to explicit non-stiff methods.
- Showing how to use doubly companion matrices in the formulation of IRKS methods.
- Relating the principal error coefficients to the β values.

Example methods

The following third order method is explicit and suitable for the solution of non-stiff problems

	0	0	0	0	1	$\frac{1}{4}$	$\frac{1}{32}$	$\frac{1}{384}$
$\begin{bmatrix} AU \end{bmatrix}$	$-\frac{176}{1885}$	0	0	0	1	$\frac{2237}{3770}$	$\frac{2237}{15080}$	$\frac{2149}{90480}$
	$-\frac{335624}{311025}$	$\frac{29}{55}$	0	0	1	$\frac{1619591}{1244100}$	$\frac{260027}{904800}$	$\frac{1517801}{39811200}$
	$-\frac{67843}{6435}$	$\frac{395}{33}$	-5	0	1	$\frac{29428}{6435}$	$\frac{527}{585}$	$\frac{41819}{102960}$
BV	$-\frac{67843}{6435}$	$\frac{395}{33}$	-5	0	1	$\frac{29428}{6435}$	$\frac{527}{585}$	$\frac{41819}{102960}$
	0	0	0	1	0	0	0	0
	$\frac{82}{33}$	$-\frac{274}{11}$	$\frac{170}{9}$	$-\frac{4}{3}$	0	$\frac{482}{99}$	0	$-\frac{161}{264}$
	8	-12	$\frac{40}{3}$	-2	0	$\frac{482}{99}$ $\frac{26}{3}$	0	0

The following fourth order method is implicit, L-stable, and suitable for the solution of stiff problems

						L			
$\frac{1}{4}$	0	0	0	0	1	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0]
513	<u>1</u>	0	0	0	1	27649	5601	1539	459
	$\frac{4}{488}$	<u>1</u>	Û	$\bigcap^{\mathbb{C}}$	1	$\frac{54272}{15366379}$	$\frac{27136}{756057}$	54272 1620299	$\begin{array}{c} 6784 \\ 4854 \end{array}$
		$\overline{4}$ 134	1	0		207264768 32609017	$\overline{34544128}_{929753}$	69088256 4008881	454528 174981
49232		183	4	U	1 -	197549232	32924872	32924872	3465776
	$-\frac{641}{10431}$	$\frac{73}{183}$	$\frac{1}{2}$	$\frac{1}{4}$	1		$- \frac{22727}{1474248}$	$\frac{40979}{982832}$	$\frac{323}{25864}$
	$-\frac{641}{10421}$	$\frac{73}{100}$	$\frac{1}{2}$	1	1	367313	$-\frac{22727}{1474242}$	40979	323
0	$\begin{array}{c} 10431 \\ 0 \end{array}$	0^{183}	$\overset{2}{0}$	4 1	0	$\bigcup^{8845488}$	$\bigcup^{1474248}$	0	0^{25864}
255	47125	447	11	4	\cap	28745	1937	351	65
	$\begin{array}{c} 20862\\ 96388 \end{array}$	$\begin{array}{c} 122\\ 3364 \end{array}$	$4 \\ 10$	${3 \over 4}$		$20862 \\ 70634$	$\begin{array}{c} 13908 \\ 2050 \end{array}$	$\frac{18544}{187}$	$976\\113$
	31293	549 130	3	3		31293 27052	10431	2318	$\frac{366}{161}$
	$-\frac{29934}{31293}$	$\frac{130}{61}$	-1	$\frac{1}{3}$	0	$\frac{27032}{31293}$	$- \frac{113}{10431}$	$-\frac{491}{4636}$	$\frac{101}{732}$
	$\frac{1}{4}$ $\frac{513}{54272}$ $\frac{6119}{88256}$ $\frac{61061}{549232}$ $\frac{35425}{35425}$ $\frac{948496}{35425}$ $\frac{255}{318}$ $\frac{620}{431}$ $\frac{14}{159}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Implementation questions for IRKS methods

Initial stepsize

Implementation questions for IRKS methods

Initial stepsize

Starting method

- Initial stepsize
- Starting method
- Evaluation of stages

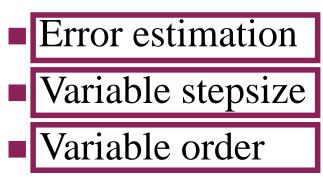
- Initial stepsize
- Starting method
- Evaluation of stages
- Interpolation for continuous output

- Initial stepsize
- Starting method
- Evaluation of stages
- Interpolation for continuous output
- Error estimation

- Initial stepsize
- Starting method
- Evaluation of stages
- Interpolation for continuous output
- Error estimation
- Variable stepsize

- Initial stepsize
- Starting method
- Evaluation of stages
- Interpolation for continuous output
- Error estimation
- Variable stepsize
- Variable order

- Initial stepsize
- Starting method
- Evaluation of stages
- Interpolation for continuous output



Variable stepsize stability

Zero stability, in the constant stepsize case, is concerned with the power-boundedness of V.

Variable stepsize stability

Zero stability, in the constant stepsize case, is concerned with the power-boundedness of V.

The naive method of achieving variable stepsize $(h \rightarrow rh)$ is to rescale the Nordsieck vector by a matrix

$$D(r) = \operatorname{diag}(1, r, r^2, \dots, r^p).$$

Variable stepsize stability

Zero stability, in the constant stepsize case, is concerned with the power-boundedness of V.

The naive method of achieving variable stepsize $(h \rightarrow rh)$ is to rescale the Nordsieck vector by a matrix

$$D(r) = \operatorname{diag}(1, r, r^2, \dots, r^p).$$

If r is constrained to lie in an interval $I = [r_{\min}, r_{\max}]$ then zero-stability generalizes to the existence of a uniform bound on

$$||D(r_n)VD(r_{n-1})V\cdots D(r_2)VD(r_1)V||$$

when $r_1, r_2, \dots, r_n \in I$.

For implicit methods, we might also want "infinity-stability" by requiring a uniform bound on

$$\|D(r_n)\widehat{V}D(r_{n-1})\widehat{V}\cdots D(r_2)\widehat{V}D(r_1)\widehat{V}\|,$$

where

$$\widehat{V} = M(\infty) = V - BA^{-1}U.$$

For implicit methods, we might also want "infinity-stability" by requiring a uniform bound on

$$||D(r_n)\widehat{V}D(r_{n-1})\widehat{V}\cdots D(r_2)\widehat{V}D(r_1)\widehat{V}||,$$

where

$$\widehat{V} = M(\infty) = V - BA^{-1}U.$$

This naive approach is very unsatisfactory from the stability point of view and it has other disadvantages, as we will see.

Less naive is to modify the rescaled Nordsieck vector by adding quantities computed from $hF_1, hF_2, \ldots, hF_{p+1}, y_2^{[n-1]}, y_3^{[n-1]}, \ldots, y_{p+1}^{[n-1]}$, such that the order remains p

There are other issues to consider in making the modification, as we will see.

There are other issues to consider in making the modification, as we will see.

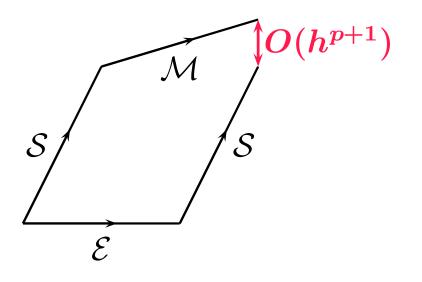
In particular we need to consider the effect of variable h on the error constants in incoming approximations.

There are other issues to consider in making the modification, as we will see.

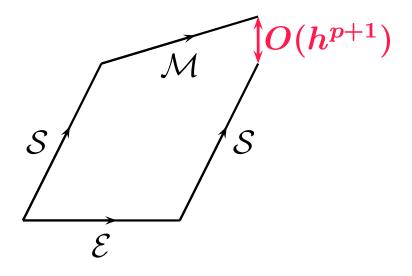
In particular we need to consider the effect of variable h on the error constants in incoming approximations.

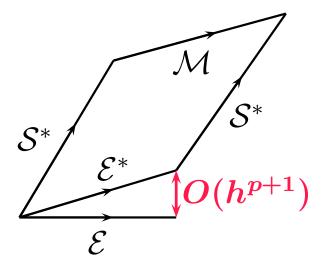
We introduce these ideas in the context of the underlying one-step method.

To introduce the underlying one-step method, consider a modification of the diagram relating the starting method and a single step of the method.

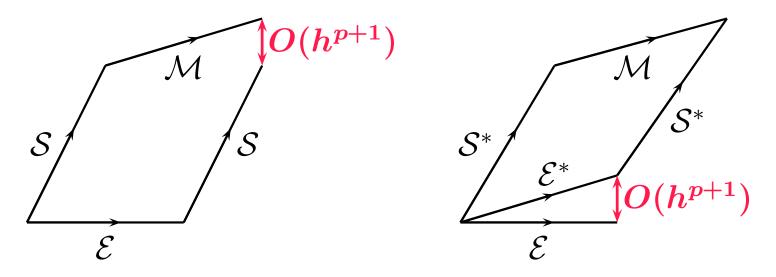


To introduce the underlying one-step method, consider a modification of the diagram relating the starting method and a single step of the method.





To introduce the underlying one-step method, consider a modification of the diagram relating the starting method and a single step of the method.



In the modified diagram, the perturbed starting method, shown as S^* , is chosen to obtain a commutative diagram if \mathcal{E} is replaced by the underlying one-step method \mathcal{E}^* .

General linear methods Doubly companion matrices Methods with the RK stability property
 Implementation questions for IRKS methods

If \mathcal{S} maps y(x) to

 $\begin{bmatrix} y(x) \\ hy'(x) \\ \vdots \\ h^p y^{(p)}(x) \end{bmatrix},$

then \cdots

General linear methods Doubly companion matrices Methods with the RK stability property
 Implementation questions for IRKS methods

If \mathcal{S} maps y(x) to

$$y(x)$$

$$hy'(x)$$

$$\vdots$$

$$h^{p}y^{(p)}(x)$$

,

then \mathcal{S}^* maps y(x) to

 $\begin{bmatrix} y(x) \\ hy'(x) - \theta_1 h^{p+1} y^{(p+1)}(x) - \phi_1 h^{p+2} y^{(p+2)}(x) - \psi_1 h^{p+2} \frac{\partial f}{\partial y} y^{(p+1)}(x) + O(h^{p+3}) \\ \vdots \\ h^p y^{(p)}(x) - \theta_p h^{p+1} y^{(p+1)}(x) - \phi_p h^{p+2} y^{(p+2)}(x) - \psi_p h^{p+2} \frac{\partial f}{\partial y} y^{(p+1)}(x) + O(h^{p+3}) \end{bmatrix}$

Values of the coefficients θ_i , ϕ_i , ψ_i (i = 1, 2, ..., p) are known.

If h is constant, we can rely on the values of these coefficients as possible ingrediants of the error estimation formulae.

If h is constant, we can rely on the values of these coefficients as possible ingrediants of the error estimation formulae.

However, for variable h, the coefficients vary as functions of the step-size history.

If h is constant, we can rely on the values of these coefficients as possible ingrediants of the error estimation formulae.

However, for variable h, the coefficients vary as functions of the step-size history.

Hence, management of the coefficients must become part of the modification process which follows scaling of the Nordsieck vector.

If h is constant, we can rely on the values of these coefficients as possible ingrediants of the error estimation formulae.

However, for variable h, the coefficients vary as functions of the step-size history.

Hence, management of the coefficients must become part of the modification process which follows scaling of the Nordsieck vector.

We now know how to do this so that behaviour is stabilised and so that at least the θ values effectively retain their constant values.

• The value of $h^{p+1}y^{(p+1)}(x_n)$ to within $O(h^{p+2})$.

• The value of $h^{p+1}y^{(p+1)}(x_n)$ to within $O(h^{p+2})$.

Hence the local truncation error in a step.

- The value of $h^{p+1}y^{(p+1)}(x_n)$ to within $O(h^{p+2})$.
- Hence the local truncation error in a step.

• The value of $h^{p+2}y^{(p+2)}(x_n)$ to within $O(h^{p+3})$.

- The value of $h^{p+1}y^{(p+1)}(x_n)$ to within $O(h^{p+2})$.
- Hence the local truncation error in a step.

• The value of $h^{p+2}y^{(p+2)}(x_n)$ to within $O(h^{p+3})$.

• Hence the local truncation error of a contending method of order p + 1.

• The value of $h^{p+1}y^{(p+1)}(x_n)$ to within $O(h^{p+2})$.

Hence the local truncation error in a step.

• The value of $h^{p+2}y^{(p+2)}(x_n)$ to within $O(h^{p+3})$.

• Hence the local truncation error of a contending method of order p + 1.

We believe we now have the ingredients for constructing a variable order, variable stepsize code based on the new methods.

Acknowledgements

Zdzisław Jackiewicz Helmut Podhaisky Will Wright

Acknowledgements

Zdzisław Jackiewicz Helmut Podhaisky Will Wright

Allison Heard Gustaf Söderlind

Acknowledgements

Zdzisław Jackiewicz Helmut Podhaisky Will Wright

Allison Heard Gustaf Söderlind

Shirley Huang Jane Lee