
Towards practical general linear

methods

John Butcher

The University of Auckland

New Zealand

Towards practical general linear methods – p. 1/71

Towards practical general linear methods

The name “general linear methods” applies to a large
family of numerical methods for ordinary differential
equations.

Runge-Kutta methods and linear multistep methods are
the main examples.
Our aim is to understand the general class of GLMs and
to search for useful methods which do not exist within
the standard special cases.
Our starting point will be the classical methods and some
mild generalizations.
Our finishing point will be some completely new
methods and steps towards their practical
implementation.

Towards practical general linear methods – p. 2/71

Towards practical general linear methods

The name “general linear methods” applies to a large
family of numerical methods for ordinary differential
equations.
Runge-Kutta methods and linear multistep methods are
the main examples.

Our aim is to understand the general class of GLMs and
to search for useful methods which do not exist within
the standard special cases.
Our starting point will be the classical methods and some
mild generalizations.
Our finishing point will be some completely new
methods and steps towards their practical
implementation.

Towards practical general linear methods – p. 2/71

Towards practical general linear methods

The name “general linear methods” applies to a large
family of numerical methods for ordinary differential
equations.
Runge-Kutta methods and linear multistep methods are
the main examples.
Our aim is to understand the general class of GLMs and
to search for useful methods which do not exist within
the standard special cases.

Our starting point will be the classical methods and some
mild generalizations.
Our finishing point will be some completely new
methods and steps towards their practical
implementation.

Towards practical general linear methods – p. 2/71

Towards practical general linear methods

The name “general linear methods” applies to a large
family of numerical methods for ordinary differential
equations.
Runge-Kutta methods and linear multistep methods are
the main examples.
Our aim is to understand the general class of GLMs and
to search for useful methods which do not exist within
the standard special cases.
Our starting point will be the classical methods and some
mild generalizations.

Our finishing point will be some completely new
methods and steps towards their practical
implementation.

Towards practical general linear methods – p. 2/71

Towards practical general linear methods

The name “general linear methods” applies to a large
family of numerical methods for ordinary differential
equations.
Runge-Kutta methods and linear multistep methods are
the main examples.
Our aim is to understand the general class of GLMs and
to search for useful methods which do not exist within
the standard special cases.
Our starting point will be the classical methods and some
mild generalizations.
Our finishing point will be some completely new
methods and steps towards their practical
implementation.

Towards practical general linear methods – p. 2/71

Contents

Generalizations of Linear Multistep Methods

Hybrid methods
Cyclic composite methods

Generalizations of Runge-Kutta Methods
Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

General Linear Methods
Formulation
Consistency, Stability and Convergence
Order

Methods with Inherent Runge-Kutta Stabilty
Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Towards practical general linear methods – p. 3/71

Contents

Generalizations of Linear Multistep Methods
Hybrid methods
Cyclic composite methods

Generalizations of Runge-Kutta Methods
Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

General Linear Methods
Formulation
Consistency, Stability and Convergence
Order

Methods with Inherent Runge-Kutta Stabilty
Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Towards practical general linear methods – p. 3/71

Contents

Generalizations of Linear Multistep Methods
Hybrid methods
Cyclic composite methods

Generalizations of Runge-Kutta Methods

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

General Linear Methods
Formulation
Consistency, Stability and Convergence
Order

Methods with Inherent Runge-Kutta Stabilty
Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Towards practical general linear methods – p. 3/71

Contents

Generalizations of Linear Multistep Methods
Hybrid methods
Cyclic composite methods

Generalizations of Runge-Kutta Methods
Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

General Linear Methods
Formulation
Consistency, Stability and Convergence
Order

Methods with Inherent Runge-Kutta Stabilty
Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Towards practical general linear methods – p. 3/71

Contents

Generalizations of Linear Multistep Methods
Hybrid methods
Cyclic composite methods

Generalizations of Runge-Kutta Methods
Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

General Linear Methods

Formulation
Consistency, Stability and Convergence
Order

Methods with Inherent Runge-Kutta Stabilty
Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Towards practical general linear methods – p. 3/71

Contents

Generalizations of Linear Multistep Methods
Hybrid methods
Cyclic composite methods

Generalizations of Runge-Kutta Methods
Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

General Linear Methods
Formulation
Consistency, Stability and Convergence
Order

Methods with Inherent Runge-Kutta Stabilty
Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Towards practical general linear methods – p. 3/71

Contents

Generalizations of Linear Multistep Methods
Hybrid methods
Cyclic composite methods

Generalizations of Runge-Kutta Methods
Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

General Linear Methods
Formulation
Consistency, Stability and Convergence
Order

Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Towards practical general linear methods – p. 3/71

Contents

Generalizations of Linear Multistep Methods
Hybrid methods
Cyclic composite methods

Generalizations of Runge-Kutta Methods
Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

General Linear Methods
Formulation
Consistency, Stability and Convergence
Order

Methods with Inherent Runge-Kutta Stabilty
Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Towards practical general linear methods – p. 3/71

Generalizations of Linear Multistep Methods

Linear multistep methods are inexpensive because
they involve only a single function evaluation per
step.

Variable stepsize and variable order are complicated.

Their performance is limited by the Dahlquist
barrier.

For stiff problems where A-stability is desirable,
order is limited to 2.

We will look at two possible generalizations which
retain the general nature of linear multistep methods
but overcome some of the handicaps.

Towards practical general linear methods – p. 4/71

Generalizations of Linear Multistep Methods

Linear multistep methods are inexpensive because
they involve only a single function evaluation per
step.

Variable stepsize and variable order are complicated.

Their performance is limited by the Dahlquist
barrier.

For stiff problems where A-stability is desirable,
order is limited to 2.

We will look at two possible generalizations which
retain the general nature of linear multistep methods
but overcome some of the handicaps.

Towards practical general linear methods – p. 4/71

Generalizations of Linear Multistep Methods

Linear multistep methods are inexpensive because
they involve only a single function evaluation per
step.

Variable stepsize and variable order are complicated.

Their performance is limited by the Dahlquist
barrier.

For stiff problems where A-stability is desirable,
order is limited to 2.

We will look at two possible generalizations which
retain the general nature of linear multistep methods
but overcome some of the handicaps.

Towards practical general linear methods – p. 4/71

Generalizations of Linear Multistep Methods

Linear multistep methods are inexpensive because
they involve only a single function evaluation per
step.

Variable stepsize and variable order are complicated.

Their performance is limited by the Dahlquist
barrier.

For stiff problems where A-stability is desirable,
order is limited to 2.

We will look at two possible generalizations which
retain the general nature of linear multistep methods
but overcome some of the handicaps.

Towards practical general linear methods – p. 4/71

Generalizations of Linear Multistep Methods

Linear multistep methods are inexpensive because
they involve only a single function evaluation per
step.

Variable stepsize and variable order are complicated.

Their performance is limited by the Dahlquist
barrier.

For stiff problems where A-stability is desirable,
order is limited to 2.

We will look at two possible generalizations which
retain the general nature of linear multistep methods
but overcome some of the handicaps.

Towards practical general linear methods – p. 4/71

Generalizations of Linear Multistep Methods

Hybrid methods

Rather than methods like Adams-Bashforth

-
Adams-Moulton predictor-corrector pairs:

y∗n = yn−1 + 3
2hfn−1 −

1
2hfn−2

yn = yn−1 + 1
2hf

∗
n + 1

2hfn−1

we can include an “off-step point” as an additional
predictor:

y∗
n− 1

2

= yn−2 + 9
8hfn−1 + 3

8hfn−2

y∗n = 28
5 yn−1 −

23
5 yn−2 + 32

15hf
∗
n− 1

2

− 4hfn−1 −
26
15hfn−2

yn = 32
31yn−1−

1
31yn−2+

5
31hf

∗
n+ 64

93hf
∗
n− 1

2

+ 4
31hfn−1−

1
93hfn−2

Towards practical general linear methods – p. 5/71

Generalizations of Linear Multistep Methods

Hybrid methods

Rather than methods like Adams-Bashforth -
Adams-Moulton

predictor-corrector pairs:

y∗n = yn−1 + 3
2hfn−1 −

1
2hfn−2

yn = yn−1 + 1
2hf

∗
n + 1

2hfn−1

we can include an “off-step point” as an additional
predictor:

y∗
n− 1

2

= yn−2 + 9
8hfn−1 + 3

8hfn−2

y∗n = 28
5 yn−1 −

23
5 yn−2 + 32

15hf
∗
n− 1

2

− 4hfn−1 −
26
15hfn−2

yn = 32
31yn−1−

1
31yn−2+

5
31hf

∗
n+ 64

93hf
∗
n− 1

2

+ 4
31hfn−1−

1
93hfn−2

Towards practical general linear methods – p. 5/71

Generalizations of Linear Multistep Methods

Hybrid methods

Rather than methods like Adams-Bashforth -
Adams-Moulton predictor-corrector pairs:

y∗n = yn−1 + 3
2hfn−1 −

1
2hfn−2

yn = yn−1 + 1
2hf

∗
n + 1

2hfn−1

we can include an “off-step point” as an additional
predictor:

y∗
n− 1

2

= yn−2 + 9
8hfn−1 + 3

8hfn−2

y∗n = 28
5 yn−1 −

23
5 yn−2 + 32

15hf
∗
n− 1

2

− 4hfn−1 −
26
15hfn−2

yn = 32
31yn−1−

1
31yn−2+

5
31hf

∗
n+ 64

93hf
∗
n− 1

2

+ 4
31hfn−1−

1
93hfn−2

Towards practical general linear methods – p. 5/71

Generalizations of Linear Multistep Methods

Hybrid methods

Rather than methods like Adams-Bashforth -
Adams-Moulton predictor-corrector pairs:

y∗n = yn−1 + 3
2hfn−1 −

1
2hfn−2

yn = yn−1 + 1
2hf

∗
n + 1

2hfn−1

we can include an “off-step point” as an additional
predictor:

y∗
n− 1

2

= yn−2 + 9
8hfn−1 + 3

8hfn−2

y∗n = 28
5 yn−1 −

23
5 yn−2 + 32

15hf
∗
n− 1

2

− 4hfn−1 −
26
15hfn−2

yn = 32
31yn−1−

1
31yn−2+

5
31hf

∗
n+ 64

93hf
∗
n− 1

2

+ 4
31hfn−1−

1
93hfn−2

Towards practical general linear methods – p. 5/71

Generalizations of Linear Multistep Methods

Hybrid methods

Rather than methods like Adams-Bashforth -
Adams-Moulton predictor-corrector pairs:

y∗n = yn−1 + 3
2hfn−1 −

1
2hfn−2

yn = yn−1 + 1
2hf

∗
n + 1

2hfn−1

we can include an “off-step point” as an additional
predictor:

y∗
n− 1

2

= yn−2 + 9
8hfn−1 + 3

8hfn−2

y∗n = 28
5 yn−1 −

23
5 yn−2 + 32

15hf
∗
n− 1

2

− 4hfn−1 −
26
15hfn−2

yn = 32
31yn−1−

1
31yn−2+

5
31hf

∗
n+ 64

93hf
∗
n− 1

2

+ 4
31hfn−1−

1
93hfn−2

Towards practical general linear methods – p. 5/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

This particular method overcomes the (first) Dahlquist
barrier and has order 5.

k-step methods like it exist up to k = 7 with order 2k+1.

Below is a selected bibliography

Butcher J. C. (1965) A modified multistep method for the numerical

integration of ordinary differential equations, J. Assoc. Comput.

Mach., 12: 124–135.

Gear C. W. (1965) Hybrid methods for initial value problems in

ordinary differential equations, SIAM J. Numer. Anal., 2: 69–86.
Gragg W. B. and Stetter H. J. (1964) Generalized multistep
predictor–corrector methods, J. Assoc. Comput. Mach. 11: 188–209.

Towards practical general linear methods – p. 6/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

This particular method overcomes the (first) Dahlquist
barrier and has order 5.

k-step methods like it exist up to k = 7 with order 2k+1.

Below is a selected bibliography

Butcher J. C. (1965) A modified multistep method for the numerical

integration of ordinary differential equations, J. Assoc. Comput.

Mach., 12: 124–135.

Gear C. W. (1965) Hybrid methods for initial value problems in

ordinary differential equations, SIAM J. Numer. Anal., 2: 69–86.
Gragg W. B. and Stetter H. J. (1964) Generalized multistep
predictor–corrector methods, J. Assoc. Comput. Mach. 11: 188–209.

Towards practical general linear methods – p. 6/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

This particular method overcomes the (first) Dahlquist
barrier and has order 5.

k-step methods like it exist up to k = 7 with order 2k+1.

Below is a selected bibliography

Butcher J. C. (1965) A modified multistep method for the numerical

integration of ordinary differential equations, J. Assoc. Comput.

Mach., 12: 124–135.

Gear C. W. (1965) Hybrid methods for initial value problems in

ordinary differential equations, SIAM J. Numer. Anal., 2: 69–86.
Gragg W. B. and Stetter H. J. (1964) Generalized multistep
predictor–corrector methods, J. Assoc. Comput. Mach. 11: 188–209.

Towards practical general linear methods – p. 6/71

Generalizations of Linear Multistep Methods

Cyclic composite methods

Given m linear multistep methods

yn =
k∑

i=1

α
[j]
i yn−i +

k∑

i=0

β
[j]
i hfn−i, j = 1, . . . ,m

apply them cyclically.

By careful choice of the m constituent methods, many
limitations of single methods can be overcome.

Towards practical general linear methods – p. 7/71

Generalizations of Linear Multistep Methods

Cyclic composite methods

Given m linear multistep methods

yn =
k∑

i=1

α
[j]
i yn−i +

k∑

i=0

β
[j]
i hfn−i, j = 1, . . . ,m

apply them cyclically.

By careful choice of the m constituent methods, many
limitations of single methods can be overcome.

Towards practical general linear methods – p. 7/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

As a trivial example, consider the following two methods
based on (open) Newton-Cotes formulae:

yn = yn−2 + 2hfn−1 (*)

yn = yn−3 + 3
2hfn−1 + 3

2hfn−2

(**)

By itself each of these methods is weakly stable but this
handicap is overcome if the pair of methods is used in
alternation.

That is, if n is odd then (*) is used and if n is even then
(**) is used.

Towards practical general linear methods – p. 8/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

As a trivial example, consider the following two methods
based on (open) Newton-Cotes formulae:

yn = yn−2 + 2hfn−1 (*)

yn = yn−3 + 3
2hfn−1 + 3

2hfn−2 (**)

By itself each of these methods is weakly stable but this
handicap is overcome if the pair of methods is used in
alternation.

That is, if n is odd then (*) is used and if n is even then
(**) is used.

Towards practical general linear methods – p. 8/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

As a trivial example, consider the following two methods
based on (open) Newton-Cotes formulae:

yn = yn−2 + 2hfn−1 (*)

yn = yn−3 + 3
2hfn−1 + 3

2hfn−2 (**)

By itself each of these methods is weakly stable

but this
handicap is overcome if the pair of methods is used in
alternation.

That is, if n is odd then (*) is used and if n is even then
(**) is used.

Towards practical general linear methods – p. 8/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

As a trivial example, consider the following two methods
based on (open) Newton-Cotes formulae:

yn = yn−2 + 2hfn−1 (*)

yn = yn−3 + 3
2hfn−1 + 3

2hfn−2 (**)

By itself each of these methods is weakly stable but this
handicap is overcome if the pair of methods is used in
alternation.

That is, if n is odd then (*) is used and if n is even then
(**) is used.

Towards practical general linear methods – p. 8/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

As a trivial example, consider the following two methods
based on (open) Newton-Cotes formulae:

yn = yn−2 + 2hfn−1 (*)

yn = yn−3 + 3
2hfn−1 + 3

2hfn−2 (**)

By itself each of these methods is weakly stable but this
handicap is overcome if the pair of methods is used in
alternation.

That is, if n is odd then (*) is used and if n is even then
(**) is used.

Towards practical general linear methods – p. 8/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

Cycles of explicit methods can be constructed which
overcome the first Dahlquist barrier.

For example:

yn = − 8
11yn−1 + 19

11yn−2

+ 10
11hfn + 19

11hfn−1 + 8
11hfn−2 −

1
33hfn−3

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3

+ 251
720hfn + 19

30hfn−1 −
449
240hfn−2 −

35
72hfn−3

Each of these methods has order 5 and each is unstable.

The corresponding cyclic method has perfect stability.

Towards practical general linear methods – p. 9/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

Cycles of explicit methods can be constructed which
overcome the first Dahlquist barrier.

For example:

yn = − 8
11yn−1 + 19

11yn−2

+ 10
11hfn + 19

11hfn−1 + 8
11hfn−2 −

1
33hfn−3

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3

+ 251
720hfn + 19

30hfn−1 −
449
240hfn−2 −

35
72hfn−3

Each of these methods has order 5 and each is unstable.

The corresponding cyclic method has perfect stability.

Towards practical general linear methods – p. 9/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

Cycles of explicit methods can be constructed which
overcome the first Dahlquist barrier.

For example:

yn = − 8
11yn−1 + 19

11yn−2

+ 10
11hfn + 19

11hfn−1 + 8
11hfn−2 −

1
33hfn−3

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3

+ 251
720hfn + 19

30hfn−1 −
449
240hfn−2 −

35
72hfn−3

Each of these methods has order 5 and each is unstable.

The corresponding cyclic method has perfect stability.

Towards practical general linear methods – p. 9/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

Cycles of explicit methods can be constructed which
overcome the first Dahlquist barrier.

For example:

yn = − 8
11yn−1 + 19

11yn−2

+ 10
11hfn + 19

11hfn−1 + 8
11hfn−2 −

1
33hfn−3

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3

+ 251
720hfn + 19

30hfn−1 −
449
240hfn−2 −

35
72hfn−3

Each of these methods has order 5 and each is unstable.

The corresponding cyclic method has perfect stability.

Towards practical general linear methods – p. 9/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

To verify these remarks, analyse stability using y′ = 0

yn = − 8
11yn−1 + 19

11yn−2 (*)

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3 (**)

The difference equation for yn − yn−1 is[
yn − yn−1

yn−1 − yn−2

]
= X

[
yn−1 − yn−2

yn−2 − yn−3

]

where X is

[
−19

11 0

1 0

]
for (*) or

[
209
240

361
240

1 0

]
for (**).

Neither matrix is power-bounded but their product is
nilpotent.

Towards practical general linear methods – p. 10/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

To verify these remarks, analyse stability using y′ = 0

yn = − 8
11yn−1 + 19

11yn−2 (*)

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3 (**)

The difference equation for yn − yn−1 is[
yn − yn−1

yn−1 − yn−2

]
= X

[
yn−1 − yn−2

yn−2 − yn−3

]

where X is

[
−19

11 0

1 0

]
for (*) or

[
209
240

361
240

1 0

]
for (**).

Neither matrix is power-bounded but their product is
nilpotent.

Towards practical general linear methods – p. 10/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

To verify these remarks, analyse stability using y′ = 0

yn = − 8
11yn−1 + 19

11yn−2 (*)

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3 (**)

The difference equation for yn − yn−1 is[
yn − yn−1

yn−1 − yn−2

]
= X

[
yn−1 − yn−2

yn−2 − yn−3

]

where X is

[
−19

11 0

1 0

]
for (*)

or

[
209
240

361
240

1 0

]
for (**).

Neither matrix is power-bounded but their product is
nilpotent.

Towards practical general linear methods – p. 10/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

To verify these remarks, analyse stability using y′ = 0

yn = − 8
11yn−1 + 19

11yn−2 (*)

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3 (**)

The difference equation for yn − yn−1 is[
yn − yn−1

yn−1 − yn−2

]
= X

[
yn−1 − yn−2

yn−2 − yn−3

]

where X is

[
−19

11 0

1 0

]
for (*) or

[
209
240

361
240

1 0

]
for (**).

Neither matrix is power-bounded but their product is
nilpotent.

Towards practical general linear methods – p. 10/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

To verify these remarks, analyse stability using y′ = 0

yn = − 8
11yn−1 + 19

11yn−2 (*)

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3 (**)

The difference equation for yn − yn−1 is[
yn − yn−1

yn−1 − yn−2

]
= X

[
yn−1 − yn−2

yn−2 − yn−3

]

where X is

[
−19

11 0

1 0

]
for (*) or

[
209
240

361
240

1 0

]
for (**).

Neither matrix is power-bounded

but their product is
nilpotent.

Towards practical general linear methods – p. 10/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

To verify these remarks, analyse stability using y′ = 0

yn = − 8
11yn−1 + 19

11yn−2 (*)

yn = 449
240yn−1 + 19

30yn−2 −
361
240yn−3 (**)

The difference equation for yn − yn−1 is[
yn − yn−1

yn−1 − yn−2

]
= X

[
yn−1 − yn−2

yn−2 − yn−3

]

where X is

[
−19

11 0

1 0

]
for (*) or

[
209
240

361
240

1 0

]
for (**).

Neither matrix is power-bounded but their product is
nilpotent.

Towards practical general linear methods – p. 10/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

Furthermore A-stable methods of orders greater than 2
(thus breaking the second barrier), can be found.

Below is a selected bibliography

J. Donelson, and E. Hansen (1971) ‘Cyclic composite multistep

predictor-corrector methods’. SIAM J. Numer. Anal. 8 137–157.
T. A. Bickart and Z. Picel (1973) ‘High order stiffly stable
composite multistep methods for numerical integration of stiff
differential equations’, BIT 13 272–286.

Towards practical general linear methods – p. 11/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Hybrid methods
Cyclic composite methods

Furthermore A-stable methods of orders greater than 2
(thus breaking the second barrier), can be found.

Below is a selected bibliography

J. Donelson, and E. Hansen (1971) ‘Cyclic composite multistep

predictor-corrector methods’. SIAM J. Numer. Anal. 8 137–157.
T. A. Bickart and Z. Picel (1973) ‘High order stiffly stable
composite multistep methods for numerical integration of stiff
differential equations’, BIT 13 272–286.

Towards practical general linear methods – p. 11/71

Generalizations of Runge-Kutta Methods

Runge-Kutta methods have always been regarded as
expensive because of their multistage (multiple
function calls in each timestep) structure.

For low values of the order p the number of stages s
can equal p but this is impossible if p > 4.

An implicit method can have order p = 2s.

Although such methods are A-stable, they have
many disadvantages.

For example, they have low stage-order.

And they are very expensive to implement.

For both explicit and implicit RK methods, it is very
difficult to estimate errors for variable h and p.

Towards practical general linear methods – p. 12/71

Generalizations of Runge-Kutta Methods

Runge-Kutta methods have always been regarded as
expensive because of their multistage (multiple
function calls in each timestep) structure.

For low values of the order p the number of stages s
can equal p but this is impossible if p > 4.

An implicit method can have order p = 2s.

Although such methods are A-stable, they have
many disadvantages.

For example, they have low stage-order.

And they are very expensive to implement.

For both explicit and implicit RK methods, it is very
difficult to estimate errors for variable h and p.

Towards practical general linear methods – p. 12/71

Generalizations of Runge-Kutta Methods

Runge-Kutta methods have always been regarded as
expensive because of their multistage (multiple
function calls in each timestep) structure.

For low values of the order p the number of stages s
can equal p but this is impossible if p > 4.

An implicit method can have order p = 2s.

Although such methods are A-stable, they have
many disadvantages.

For example, they have low stage-order.

And they are very expensive to implement.

For both explicit and implicit RK methods, it is very
difficult to estimate errors for variable h and p.

Towards practical general linear methods – p. 12/71

Generalizations of Runge-Kutta Methods

Runge-Kutta methods have always been regarded as
expensive because of their multistage (multiple
function calls in each timestep) structure.

For low values of the order p the number of stages s
can equal p but this is impossible if p > 4.

An implicit method can have order p = 2s.

Although such methods are A-stable, they have
many disadvantages.

For example, they have low stage-order.

And they are very expensive to implement.

For both explicit and implicit RK methods, it is very
difficult to estimate errors for variable h and p.

Towards practical general linear methods – p. 12/71

Generalizations of Runge-Kutta Methods

Runge-Kutta methods have always been regarded as
expensive because of their multistage (multiple
function calls in each timestep) structure.

For low values of the order p the number of stages s
can equal p but this is impossible if p > 4.

An implicit method can have order p = 2s.

Although such methods are A-stable, they have
many disadvantages.

For example, they have low stage-order.

And they are very expensive to implement.

For both explicit and implicit RK methods, it is very
difficult to estimate errors for variable h and p.

Towards practical general linear methods – p. 12/71

Generalizations of Runge-Kutta Methods

Runge-Kutta methods have always been regarded as
expensive because of their multistage (multiple
function calls in each timestep) structure.

For low values of the order p the number of stages s
can equal p but this is impossible if p > 4.

An implicit method can have order p = 2s.

Although such methods are A-stable, they have
many disadvantages.

For example, they have low stage-order.

And they are very expensive to implement.

For both explicit and implicit RK methods, it is very
difficult to estimate errors for variable h and p.

Towards practical general linear methods – p. 12/71

Generalizations of Runge-Kutta Methods

Runge-Kutta methods have always been regarded as
expensive because of their multistage (multiple
function calls in each timestep) structure.

For low values of the order p the number of stages s
can equal p but this is impossible if p > 4.

An implicit method can have order p = 2s.

Although such methods are A-stable, they have
many disadvantages.

For example, they have low stage-order.

And they are very expensive to implement.

For both explicit and implicit RK methods, it is very
difficult to estimate errors for variable h and p.

Towards practical general linear methods – p. 12/71

Generalizations of Runge-Kutta Methods

Reuse of past values

From one of Kutta’s fourth order families:
0

c2 c2
1
2

1
2 −

1
8c2

1
8c2

1 1
2c2

− 1 − 1
2c2

2
1
6 0 2

3
1
6

If c2 = −1:
0

−1 −1
1
2

5
8 −1

8

1 −3
2

1
2 2

1
6 0 2

3
1
6

Towards practical general linear methods – p. 13/71

Generalizations of Runge-Kutta Methods

Reuse of past values

From one of Kutta’s fourth order families:
0

c2 c2
1
2

1
2 −

1
8c2

1
8c2

1 1
2c2

− 1 − 1
2c2

2
1
6 0 2

3
1
6If c2 = −1:

0

−1 −1
1
2

5
8 −1

8

1 −3
2

1
2 2

1
6 0 2

3
1
6

Towards practical general linear methods – p. 13/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We can interpret the abscissa at −1 as reuse of the
derivative found as the beginning of the previous step.

We then have the method
Y1 = yn−1 + 5

8hf(yn−1)−
1
8hf(yn−2), F1 = f(Y1)

Y2 = yn−1 −
3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2

Like the Runge-Kutta method, this retains order 4.
This evaluates f only 3 times per timestep compared
with 4 for the original method.
We can understand something about the behaviour of the
new method by plotting its stability region.

Towards practical general linear methods – p. 14/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We can interpret the abscissa at −1 as reuse of the
derivative found as the beginning of the previous step.
We then have the method
Y1 = yn−1 + 5

8hf(yn−1)−
1
8hf(yn−2), F1 = f(Y1)

Y2 = yn−1 −
3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2

Like the Runge-Kutta method, this retains order 4.
This evaluates f only 3 times per timestep compared
with 4 for the original method.
We can understand something about the behaviour of the
new method by plotting its stability region.

Towards practical general linear methods – p. 14/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We can interpret the abscissa at −1 as reuse of the
derivative found as the beginning of the previous step.
We then have the method
Y1 = yn−1 + 5

8hf(yn−1)−
1
8hf(yn−2), F1 = f(Y1)

Y2 = yn−1 −
3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2

Like the Runge-Kutta method, this retains order 4.

This evaluates f only 3 times per timestep compared
with 4 for the original method.
We can understand something about the behaviour of the
new method by plotting its stability region.

Towards practical general linear methods – p. 14/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We can interpret the abscissa at −1 as reuse of the
derivative found as the beginning of the previous step.
We then have the method
Y1 = yn−1 + 5

8hf(yn−1)−
1
8hf(yn−2), F1 = f(Y1)

Y2 = yn−1 −
3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2

Like the Runge-Kutta method, this retains order 4.
This evaluates f only 3 times per timestep compared
with 4 for the original method.

We can understand something about the behaviour of the
new method by plotting its stability region.

Towards practical general linear methods – p. 14/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We can interpret the abscissa at −1 as reuse of the
derivative found as the beginning of the previous step.
We then have the method
Y1 = yn−1 + 5

8hf(yn−1)−
1
8hf(yn−2), F1 = f(Y1)

Y2 = yn−1 −
3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2

Like the Runge-Kutta method, this retains order 4.
This evaluates f only 3 times per timestep compared
with 4 for the original method.
We can understand something about the behaviour of the
new method by plotting its stability region.

Towards practical general linear methods – p. 14/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

“Reuse” method

“Reuse” method

Runge-Kutta method

Rescaled reuse method

Towards practical general linear methods – p. 15/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

“Reuse” method

“Reuse” method

Runge-Kutta method

Rescaled reuse method

Towards practical general linear methods – p. 15/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

−2 −1−3 0

i

2i

3i

−i

−2i

−3i

“Reuse” method“Reuse” method

Runge-Kutta method

Rescaled reuse method

Towards practical general linear methods – p. 15/71

Generalizations of Runge-Kutta Methods

Pseudo RK methods

Recall the conditions for a Runge-Kutta method to have
order p.

Let T denote the set of rooted trees:
{

. . .

}

Associated with each t ∈ T is an equation

Φ(t) = 1
γ(t)

where the “elementary weight” is a function of the
coefficients of the method.
Expressions for Φ and γ are given on the next slide.

Towards practical general linear methods – p. 16/71

Generalizations of Runge-Kutta Methods

Pseudo RK methods

Recall the conditions for a Runge-Kutta method to have
order p.
Let T denote the set of rooted trees:

{

. . .

}

Associated with each t ∈ T is an equation

Φ(t) = 1
γ(t)

where the “elementary weight” is a function of the
coefficients of the method.
Expressions for Φ and γ are given on the next slide.

Towards practical general linear methods – p. 16/71

Generalizations of Runge-Kutta Methods

Pseudo RK methods

Recall the conditions for a Runge-Kutta method to have
order p.
Let T denote the set of rooted trees:

{

. . .

}

Associated with each t ∈ T is an equation

Φ(t) = 1
γ(t)

where the “elementary weight” is a function of the
coefficients of the method.

Expressions for Φ and γ are given on the next slide.

Towards practical general linear methods – p. 16/71

Generalizations of Runge-Kutta Methods

Pseudo RK methods

Recall the conditions for a Runge-Kutta method to have
order p.
Let T denote the set of rooted trees:

{

. . .

}

Associated with each t ∈ T is an equation

Φ(t) = 1
γ(t)

where the “elementary weight” is a function of the
coefficients of the method.
Expressions for Φ and γ are given on the next slide.

Towards practical general linear methods – p. 16/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We will now introduce an
additional column Φ̂(t)

t Φ(t) γ(t)

Φ̂(t)

∑
bi 1

∑
b̂i

∑
bici 2

∑
b̂i(ci − 1)

∑
bic

2
i 3

∑
b̂i(ci − 1)2

∑
biaijcj 6

∑
b̂i(aijcj − ci + 1

2)

∑
bic

3
i 4

∑
b̂i(ci − 1)3

∑
biciaijcj 8

∑
b̂i(ci − 1)(aijcj − ci + 1

2)

∑
biaijc

2
j 12

∑
b̂i(aij(c

2
j − 2cj) + ci −

1
3)

∑
biaijajkck 24

∑
b̂i(aij(ajkck − cj) + 1

2ci −
1
6)

Towards practical general linear methods – p. 17/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We will now introduce an
additional column Φ̂(t)

t Φ(t) γ(t)

Φ̂(t)

∑
bi 1

∑
b̂i

∑
bici 2

∑
b̂i(ci − 1)

∑
bic

2
i 3

∑
b̂i(ci − 1)2

∑
biaijcj 6

∑
b̂i(aijcj − ci + 1

2)

∑
bic

3
i 4

∑
b̂i(ci − 1)3

∑
biciaijcj 8

∑
b̂i(ci − 1)(aijcj − ci + 1

2)

∑
biaijc

2
j 12

∑
b̂i(aij(c

2
j − 2cj) + ci −

1
3)

∑
biaijajkck 24

∑
b̂i(aij(ajkck − cj) + 1

2ci −
1
6)

Towards practical general linear methods – p. 17/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We will now introduce an
additional column Φ̂(t)

t Φ(t) γ(t) Φ̂(t)∑
bi 1

∑
b̂i∑

bici 2
∑
b̂i(ci − 1)∑

bic
2
i 3

∑
b̂i(ci − 1)2

∑
biaijcj 6

∑
b̂i(aijcj − ci + 1

2)∑
bic

3
i 4

∑
b̂i(ci − 1)3

∑
biciaijcj 8

∑
b̂i(ci − 1)(aijcj − ci + 1

2)∑
biaijc

2
j 12

∑
b̂i(aij(c

2
j − 2cj) + ci −

1
3)

∑
biaijajkck 24

∑
b̂i(aij(ajkck − cj) + 1

2ci −
1
6)

Towards practical general linear methods – p. 17/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The expression Φ̂ would be used in modified order
conditions in which stage derivatives are used from the
previous step.

In a pseudo-Runge-Kutta method stage derivatives are
used from both the previous and the current step.
The order conditions thus become

Φ̂(t) + Φ(t) = 1
γ(t)

A third order method can be constructed with two stages:

F
[n]
1 = f(yn−1)

F
[n]
2 = f(yn−1 + hF

[n]
1)

yn = yn−1 −
1
12hF

[n−1]
1 − 5

12hF
[n−1]
2 + 13

12hF
[n]
1 + 5

12hF
[n]
2

Towards practical general linear methods – p. 18/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The expression Φ̂ would be used in modified order
conditions in which stage derivatives are used from the
previous step.
In a pseudo-Runge-Kutta method stage derivatives are
used from both the previous and the current step.

The order conditions thus become
Φ̂(t) + Φ(t) = 1

γ(t)

A third order method can be constructed with two stages:

F
[n]
1 = f(yn−1)

F
[n]
2 = f(yn−1 + hF

[n]
1)

yn = yn−1 −
1
12hF

[n−1]
1 − 5

12hF
[n−1]
2 + 13

12hF
[n]
1 + 5

12hF
[n]
2

Towards practical general linear methods – p. 18/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The expression Φ̂ would be used in modified order
conditions in which stage derivatives are used from the
previous step.
In a pseudo-Runge-Kutta method stage derivatives are
used from both the previous and the current step.
The order conditions thus become

Φ̂(t) + Φ(t) = 1
γ(t)

A third order method can be constructed with two stages:

F
[n]
1 = f(yn−1)

F
[n]
2 = f(yn−1 + hF

[n]
1)

yn = yn−1 −
1
12hF

[n−1]
1 − 5

12hF
[n−1]
2 + 13

12hF
[n]
1 + 5

12hF
[n]
2

Towards practical general linear methods – p. 18/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The expression Φ̂ would be used in modified order
conditions in which stage derivatives are used from the
previous step.
In a pseudo-Runge-Kutta method stage derivatives are
used from both the previous and the current step.
The order conditions thus become

Φ̂(t) + Φ(t) = 1
γ(t)

A third order method can be constructed with two stages:

F
[n]
1 = f(yn−1)

F
[n]
2 = f(yn−1 + hF

[n]
1)

yn = yn−1 −
1
12hF

[n−1]
1 − 5

12hF
[n−1]
2 + 13

12hF
[n]
1 + 5

12hF
[n]
2

Towards practical general linear methods – p. 18/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The idea of using information from a previous step can
be taken much further.

One possible generalization is known as “Two Step
Runge-Kutta” methods in which all quantities computed
in one step are available for the evaluation of the stages
and the output value in the following step.

Basic references on pseudo RK methods are given below

G. D. Byrne and R. J. Lambert (1966) ‘Pseudo-Runge-Kutta

methods involving two points’, J. Assoc. Comput. Mach 13
114–123.
R. Caira, C. Costabile and F. Costabile (1990) ‘A class of pseudo
Runge-Kutta methods’, BIT 30 642–649.

Towards practical general linear methods – p. 19/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The idea of using information from a previous step can
be taken much further.

One possible generalization is known as “Two Step
Runge-Kutta” methods in which all quantities computed
in one step are available for the evaluation of the stages
and the output value in the following step.

Basic references on pseudo RK methods are given below

G. D. Byrne and R. J. Lambert (1966) ‘Pseudo-Runge-Kutta

methods involving two points’, J. Assoc. Comput. Mach 13
114–123.
R. Caira, C. Costabile and F. Costabile (1990) ‘A class of pseudo
Runge-Kutta methods’, BIT 30 642–649.

Towards practical general linear methods – p. 19/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The idea of using information from a previous step can
be taken much further.

One possible generalization is known as “Two Step
Runge-Kutta” methods in which all quantities computed
in one step are available for the evaluation of the stages
and the output value in the following step.

Basic references on pseudo RK methods are given below

G. D. Byrne and R. J. Lambert (1966) ‘Pseudo-Runge-Kutta

methods involving two points’, J. Assoc. Comput. Mach 13
114–123.
R. Caira, C. Costabile and F. Costabile (1990) ‘A class of pseudo
Runge-Kutta methods’, BIT 30 642–649.

Towards practical general linear methods – p. 19/71

Generalizations of Runge-Kutta Methods

ARK methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods (ARK
methods).

To introduce this generalization we reformulate the reuse
method

Towards practical general linear methods – p. 20/71

Generalizations of Runge-Kutta Methods

ARK methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods (ARK
methods).
To introduce this generalization we reformulate the reuse
method

Towards practical general linear methods – p. 20/71

Generalizations of Runge-Kutta Methods

ARK methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods (ARK
methods).
To introduce this generalization we reformulate the reuse
method

Y1 = yn−1 + 5
8hf(yn−1)−

1
8hf(yn−2), F1 = hf(Y1)

Y2 = yn−1 −
3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = f(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2

Towards practical general linear methods – p. 20/71

Generalizations of Runge-Kutta Methods

ARK methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods (ARK
methods).
To introduce this generalization we reformulate the reuse
method

Y1 = yn−1 + 5
8hf(yn−1)−

1
8hf(yn−2), F1 = hf(Y1)

Y2 = yn−1 −
3
2hf(yn−1) + 1

2hf(yn−2) + 2hF1, F2 = hf(Y2)

yn = yn−1 + 1
6hf(yn−1) + 2

3hF1 + 1
6hF2

yn → y
[n]
1 , hf(yn) → y

[n]
2

Towards practical general linear methods – p. 20/71

Generalizations of Runge-Kutta Methods

ARK methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods (ARK
methods).
To introduce this generalization we reformulate the reuse
method

Y1 = y
[n−1]
1 + 1

2y
[n−1]
2 + 1

8(y
[n−1]
2 − y

[n−2]
2), F1 = f(Y1)

Y2 = y
[n−1]
1 −y

[n−1]
2 − 1

2(y
[n−1]
2 −y

[n−2]
2)+2hF1, F2 = f(Y2)

y
[n]
1 = y

[n−1]
1 + 1

6y
[n−1]
2 + 2

3hF1 + 1
6hF2

y
[n]
2 = hf(y

[n]
1)

Towards practical general linear methods – p. 20/71

Generalizations of Runge-Kutta Methods

ARK methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods (ARK
methods).
To introduce this generalization we reformulate the reuse
method

Y1 = y
[n−1]
1 + 1

2y
[n−1]
2 + 1

8(y
[n−1]
2 − y

[n−2]
2), F1 = f(Y1)

Y2 = y
[n−1]
1 −y

[n−1]
2 − 1

2(y
[n−1]
2 −y

[n−2]
2)+2hF1, F2 = f(Y2)

y
[n]
1 = y

[n−1]
1 + 1

6y
[n−1]
2 + 2

3hF1 + 1
6hF2

y
[n]
2 = hf(y

[n]
1)

y
[n]
2 − y

[n−1]
2 → y

[n]
3

Towards practical general linear methods – p. 20/71

Generalizations of Runge-Kutta Methods

ARK methods

The idea of reuse of stage derivatives can be taken
further to produce “Almost Runge-Kutta” methods (ARK
methods).
To introduce this generalization we reformulate the reuse
method

Y1 = y
[n−1]
1 + 1

2y
[n−1]
2 + 1

8y
[n]
3 , F1 = f(Y1)

Y2 = y
[n−1]
1 − y

[n−1]
2 − 1

2y
[n]
3 + 2hF1, F2 = f(Y2)

y
[n]
1 = y

[n−1]
1 + 1

6y
[n−1]
2 + 2

3hF1 + 1
6hF2

y
[n]
2 = hf(y

[n]
1)

y
[n]
3 = y

[n]
2 − y

[n−1]
2

Towards practical general linear methods – p. 20/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

Note that in this formulation there are three quantities
passed from step to step and three derivative
computations within each step.
The three input and output quantities approximate scaled
derivatives as follows

y
[n−1]
1 ≈ y(xn−1) y

[n]
1 ≈ y(xn)

y
[n−1]
2 ≈ hy′(xn−1) y

[n]
2 ≈ hy′(xn)

y
[n−1]
3 ≈ h2y′′(xn−1) y

[n]
3 ≈ h2y′′(xn)

Even though the method has order 4, the third output
quantity is accurate only to order 2.

Towards practical general linear methods – p. 21/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We now extend this idea by restoring a fourth stage and

making y[n]
3 depend on quantities computed in the step.

For example

Y1

Y2

Y3

Y4

y
[n]
1

y
[n]
2

y
[n]
3

=

0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−4
3 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0

hF1

hF2

hF3

hF4

y
[n−1]
1

y
[n−1]
2

y
[n−1]
3

Towards practical general linear methods – p. 22/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We now extend this idea by restoring a fourth stage and

making y[n]
3 depend on quantities computed in the step.

For example

Y1

Y2

Y3

Y4

y
[n]
1

y
[n]
2

y
[n]
3

=

0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−4
3 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0

hF1

hF2

hF3

hF4

y
[n−1]
1

y
[n−1]
2

y
[n−1]
3

Towards practical general linear methods – p. 22/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The abscissae for this method are [1 1
2 1 1].

It has exactly the same stability region as for a
classical fourth order Runge-Kutta method.
The stage-order is 2 rather than 1 as for a classical
method.
A possible starting method is

y
[0]
1 = y0, y

[0]
2 = hf(y

[0]
1), y

[0]
3 = hf(y0+y

[0]
2)−y

[0]
2

Stepsize change h→ rh can be achieved without
loss of order by

y
[n]
1 → y

[n]
1 , y

[n]
2 → ry

[n]
2 , y

[n]
3 → r2y

[n]
3

A method like this is an “Almost Runge-Kutta
method” (ARK method).

Towards practical general linear methods – p. 23/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The abscissae for this method are [1 1
2 1 1].

It has exactly the same stability region as for a
classical fourth order Runge-Kutta method.

The stage-order is 2 rather than 1 as for a classical
method.
A possible starting method is

y
[0]
1 = y0, y

[0]
2 = hf(y

[0]
1), y

[0]
3 = hf(y0+y

[0]
2)−y

[0]
2

Stepsize change h→ rh can be achieved without
loss of order by

y
[n]
1 → y

[n]
1 , y

[n]
2 → ry

[n]
2 , y

[n]
3 → r2y

[n]
3

A method like this is an “Almost Runge-Kutta
method” (ARK method).

Towards practical general linear methods – p. 23/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The abscissae for this method are [1 1
2 1 1].

It has exactly the same stability region as for a
classical fourth order Runge-Kutta method.
The stage-order is 2 rather than 1 as for a classical
method.

A possible starting method is

y
[0]
1 = y0, y

[0]
2 = hf(y

[0]
1), y

[0]
3 = hf(y0+y

[0]
2)−y

[0]
2

Stepsize change h→ rh can be achieved without
loss of order by

y
[n]
1 → y

[n]
1 , y

[n]
2 → ry

[n]
2 , y

[n]
3 → r2y

[n]
3

A method like this is an “Almost Runge-Kutta
method” (ARK method).

Towards practical general linear methods – p. 23/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The abscissae for this method are [1 1
2 1 1].

It has exactly the same stability region as for a
classical fourth order Runge-Kutta method.
The stage-order is 2 rather than 1 as for a classical
method.
A possible starting method is

y
[0]
1 = y0, y

[0]
2 = hf(y

[0]
1), y

[0]
3 = hf(y0+y

[0]
2)−y

[0]
2

Stepsize change h→ rh can be achieved without
loss of order by

y
[n]
1 → y

[n]
1 , y

[n]
2 → ry

[n]
2 , y

[n]
3 → r2y

[n]
3

A method like this is an “Almost Runge-Kutta
method” (ARK method).

Towards practical general linear methods – p. 23/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The abscissae for this method are [1 1
2 1 1].

It has exactly the same stability region as for a
classical fourth order Runge-Kutta method.
The stage-order is 2 rather than 1 as for a classical
method.
A possible starting method is

y
[0]
1 = y0, y

[0]
2 = hf(y

[0]
1), y

[0]
3 = hf(y0+y

[0]
2)−y

[0]
2

Stepsize change h→ rh can be achieved without
loss of order by

y
[n]
1 → y

[n]
1 , y

[n]
2 → ry

[n]
2 , y

[n]
3 → r2y

[n]
3

A method like this is an “Almost Runge-Kutta
method” (ARK method).

Towards practical general linear methods – p. 23/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The abscissae for this method are [1 1
2 1 1].

It has exactly the same stability region as for a
classical fourth order Runge-Kutta method.
The stage-order is 2 rather than 1 as for a classical
method.
A possible starting method is

y
[0]
1 = y0, y

[0]
2 = hf(y

[0]
1), y

[0]
3 = hf(y0+y

[0]
2)−y

[0]
2

Stepsize change h→ rh can be achieved without
loss of order by

y
[n]
1 → y

[n]
1 , y

[n]
2 → ry

[n]
2 , y

[n]
3 → r2y

[n]
3

A method like this is an “Almost Runge-Kutta
method” (ARK method).

Towards practical general linear methods – p. 23/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

Basic references on ARK methods are given below

J. C. Butcher (1997b) ‘An introduction to “Almost Runge–Kutta"

methods’, Appl. Numer. Math. 24 331–342.

J. C. Butcher (1998) ‘ARK methods up to order five’, Numer.

Algorithms, 17 193–221.

J. C. Butcher and N. Moir (2003) ‘Experiments with a new fifth

order method’, Numer. Algorithms, 33 137–151.
N. Moir (2005) ‘ARK methods: some recent developments’, J.
Comput. Appl. Math., 175 101–111.

Towards practical general linear methods – p. 24/71

Generalizations of Runge-Kutta Methods

Effective Order

Developing the ideas on Runge-Kutta and pseudo
Runge-Kutta methods, we introduce a group G whose
elements are mappings on the set of trees to real numbers

and where the group operation is defined according to
the algebraic theory of Runge-Kutta methods or to the
(equivalent) theory of B-series.
A Runge-Kutta method is represented by its sequence of
elementary weightsand the flow of a vector field (that is,
the exact solution), which we will denote by E, is
represented by t 7→ γ(t)−1.
We will write Hp as the normal subgroup whose
members are characterized by t 7→ 0 if t has less than or
equal to p vertices.

Towards practical general linear methods – p. 25/71

Generalizations of Runge-Kutta Methods

Effective Order

Developing the ideas on Runge-Kutta and pseudo
Runge-Kutta methods, we introduce a group G whose
elements are mappings on the set of trees to real numbers
and where the group operation is defined according to
the algebraic theory of Runge-Kutta methods or to the
(equivalent) theory of B-series.

A Runge-Kutta method is represented by its sequence of
elementary weightsand the flow of a vector field (that is,
the exact solution), which we will denote by E, is
represented by t 7→ γ(t)−1.
We will write Hp as the normal subgroup whose
members are characterized by t 7→ 0 if t has less than or
equal to p vertices.

Towards practical general linear methods – p. 25/71

Generalizations of Runge-Kutta Methods

Effective Order

Developing the ideas on Runge-Kutta and pseudo
Runge-Kutta methods, we introduce a group G whose
elements are mappings on the set of trees to real numbers
and where the group operation is defined according to
the algebraic theory of Runge-Kutta methods or to the
(equivalent) theory of B-series.
A Runge-Kutta method is represented by its sequence of
elementary weights

and the flow of a vector field (that is,
the exact solution), which we will denote by E, is
represented by t 7→ γ(t)−1.
We will write Hp as the normal subgroup whose
members are characterized by t 7→ 0 if t has less than or
equal to p vertices.

Towards practical general linear methods – p. 25/71

Generalizations of Runge-Kutta Methods

Effective Order

Developing the ideas on Runge-Kutta and pseudo
Runge-Kutta methods, we introduce a group G whose
elements are mappings on the set of trees to real numbers
and where the group operation is defined according to
the algebraic theory of Runge-Kutta methods or to the
(equivalent) theory of B-series.
A Runge-Kutta method is represented by its sequence of
elementary weights and the flow of a vector field (that is,
the exact solution), which we will denote by E, is
represented by t 7→ γ(t)−1.

We will write Hp as the normal subgroup whose
members are characterized by t 7→ 0 if t has less than or
equal to p vertices.

Towards practical general linear methods – p. 25/71

Generalizations of Runge-Kutta Methods

Effective Order

Developing the ideas on Runge-Kutta and pseudo
Runge-Kutta methods, we introduce a group G whose
elements are mappings on the set of trees to real numbers
and where the group operation is defined according to
the algebraic theory of Runge-Kutta methods or to the
(equivalent) theory of B-series.
A Runge-Kutta method is represented by its sequence of
elementary weights and the flow of a vector field (that is,
the exact solution), which we will denote by E, is
represented by t 7→ γ(t)−1.
We will write Hp as the normal subgroup whose
members are characterized by t 7→ 0 if t has less than or
equal to p vertices.

Towards practical general linear methods – p. 25/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

For a Runge-Kutta method to have order p, its
corresponding group element, α say, is in the same coset
αHp as E.

That is

αHp = EHp

A method has effective order p if there exists β ∈ G such
that

βαHp = EβHp

We will illustrate the group operation in a table where we
also give values of E.

Towards practical general linear methods – p. 26/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

For a Runge-Kutta method to have order p, its
corresponding group element, α say, is in the same coset
αHp as E. That is

αHp = EHp

A method has effective order p if there exists β ∈ G such
that

βαHp = EβHp

We will illustrate the group operation in a table where we
also give values of E.

Towards practical general linear methods – p. 26/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

For a Runge-Kutta method to have order p, its
corresponding group element, α say, is in the same coset
αHp as E. That is

αHp = EHp

A method has effective order p if there exists β ∈ G such
that

βαHp = EβHp

We will illustrate the group operation in a table where we
also give values of E.

Towards practical general linear methods – p. 26/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

For a Runge-Kutta method to have order p, its
corresponding group element, α say, is in the same coset
αHp as E. That is

αHp = EHp

A method has effective order p if there exists β ∈ G such
that

βαHp = EβHp

We will illustrate the group operation in a table

where we
also give values of E.

Towards practical general linear methods – p. 26/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

For a Runge-Kutta method to have order p, its
corresponding group element, α say, is in the same coset
αHp as E. That is

αHp = EHp

A method has effective order p if there exists β ∈ G such
that

βαHp = EβHp

We will illustrate the group operation in a table where
we also give values of E.

Towards practical general linear methods – p. 26/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

r(ti)

i ti

α(ti) β(ti) (αβ)(ti) E(ti)

1

1

α1 β1 α1 + β1 1

2

2

α2 β2 α2 + α1β1 + β2
1
2

3

3

α3 β3 α3 + α2
1β1 + 2α1β2 + β3

1
3

3

4

α4 β4 α4 + α2β1 + α1β2 + β4
1
6

4

5

α5 β5 α5 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5
1
4

4

6

α6 β6
α6 + α1α2β1 + (α2

1 + α2)β2 1
8+ α1(β3 + β4) + β6

4

7

α7 β7 α7 + α3β1 + α2
1β2 + 2α1β4 + β7

1
12

4

8

α8 β8 α8 + α4β1 + α2β2 + α1β4 + β8
1
24

Towards practical general linear methods – p. 27/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

r(ti) i ti

α(ti) β(ti) (αβ)(ti) E(ti)

1 1

α1 β1 α1 + β1 1

2 2

α2 β2 α2 + α1β1 + β2
1
2

3 3

α3 β3 α3 + α2
1β1 + 2α1β2 + β3

1
3

3 4

α4 β4 α4 + α2β1 + α1β2 + β4
1
6

4 5

α5 β5 α5 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5
1
4

4 6

α6 β6
α6 + α1α2β1 + (α2

1 + α2)β2 1
8+ α1(β3 + β4) + β6

4 7

α7 β7 α7 + α3β1 + α2
1β2 + 2α1β4 + β7

1
12

4 8

α8 β8 α8 + α4β1 + α2β2 + α1β4 + β8
1
24

Towards practical general linear methods – p. 27/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

r(ti) i ti α(ti) β(ti)

(αβ)(ti) E(ti)

1 1 α1 β1

α1 + β1 1

2 2 α2 β2

α2 + α1β1 + β2
1
2

3 3 α3 β3

α3 + α2
1β1 + 2α1β2 + β3

1
3

3 4 α4 β4

α4 + α2β1 + α1β2 + β4
1
6

4 5 α5 β5

α5 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5
1
4

4 6 α6 β6

α6 + α1α2β1 + (α2
1 + α2)β2 1

8+ α1(β3 + β4) + β6

4 7 α7 β7

α7 + α3β1 + α2
1β2 + 2α1β4 + β7

1
12

4 8 α8 β8

α8 + α4β1 + α2β2 + α1β4 + β8
1
24

Towards practical general linear methods – p. 27/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

r(ti) i ti α(ti) β(ti) (αβ)(ti)

E(ti)

1 1 α1 β1 α1 + β1

1

2 2 α2 β2 α2 + α1β1 + β2

1
2

3 3 α3 β3 α3 + α2
1β1 + 2α1β2 + β3

1
3

3 4 α4 β4 α4 + α2β1 + α1β2 + β4

1
6

4 5 α5 β5 α5 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5

1
4

4 6 α6 β6
α6 + α1α2β1 + (α2

1 + α2)β2

1
8

+ α1(β3 + β4) + β6

4 7 α7 β7 α7 + α3β1 + α2
1β2 + 2α1β4 + β7

1
12

4 8 α8 β8 α8 + α4β1 + α2β2 + α1β4 + β8

1
24

Towards practical general linear methods – p. 27/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

r(ti) i ti α(ti) β(ti) (αβ)(ti) E(ti)

1 1 α1 β1 α1 + β1 1

2 2 α2 β2 α2 + α1β1 + β2
1
2

3 3 α3 β3 α3 + α2
1β1 + 2α1β2 + β3

1
3

3 4 α4 β4 α4 + α2β1 + α1β2 + β4
1
6

4 5 α5 β5 α5 + α3
1β1 + 3α2

1β2 + 3α1β3 + β5
1
4

4 6 α6 β6
α6 + α1α2β1 + (α2

1 + α2)β2 1
8+ α1(β3 + β4) + β6

4 7 α7 β7 α7 + α3β1 + α2
1β2 + 2α1β4 + β7

1
12

4 8 α8 β8 α8 + α4β1 + α2β2 + α1β4 + β8
1
24

Towards practical general linear methods – p. 27/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The computational interpretation of this idea is that we
carry out a starting step corresponding to β

and a
finishing step corresponding to β−1, with many steps in
between corresponding to α.

This is equivalent to many steps all corresponding to
βαβ−1.

Thus, the benefits of high order can be enjoyed by high
effective order.

Towards practical general linear methods – p. 28/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The computational interpretation of this idea is that we
carry out a starting step corresponding to β and a
finishing step corresponding to β−1

, with many steps in
between corresponding to α.

This is equivalent to many steps all corresponding to
βαβ−1.

Thus, the benefits of high order can be enjoyed by high
effective order.

Towards practical general linear methods – p. 28/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The computational interpretation of this idea is that we
carry out a starting step corresponding to β and a
finishing step corresponding to β−1, with many steps in
between corresponding to α.

This is equivalent to many steps all corresponding to
βαβ−1.

Thus, the benefits of high order can be enjoyed by high
effective order.

Towards practical general linear methods – p. 28/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The computational interpretation of this idea is that we
carry out a starting step corresponding to β and a
finishing step corresponding to β−1, with many steps in
between corresponding to α.

This is equivalent to many steps all corresponding to
βαβ−1.

Thus, the benefits of high order can be enjoyed by high
effective order.

Towards practical general linear methods – p. 28/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

The computational interpretation of this idea is that we
carry out a starting step corresponding to β and a
finishing step corresponding to β−1, with many steps in
between corresponding to α.

This is equivalent to many steps all corresponding to
βαβ−1.

Thus, the benefits of high order can be enjoyed by high
effective order.

Towards practical general linear methods – p. 28/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

We analyse the conditions for effective order 4.

Without loss of generality assume β(t1) = 0.
i (βα)(ti) (Eβ)(ti)

1 α1 1

2 β2 + α2
1
2 + β2

3 β3 + α3
1
3 + 2β2 + β3

4 β4 + β2α1 + α4
1
6 + β2 + β4

5 β5 + α5
1
4 + 3β2 + 3β3 + β5

6 β6 + β2α2 + α6
1
8 + 3

2β2 + β3 + β4 + β6

7 β7 + β3α1 + α7
1
12 + β2 + 2β4 + β7

8 β8 + β4α1 + β2α2 + α8
1
24 + 1

2β2 + β4 + β8

Towards practical general linear methods – p. 29/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

Of these 8 conditions, only 5 are conditions on α.

Once α is known, there remain 3 conditions on β.

The 5 order conditions, written in terms of the
Runge-Kutta tableau, are ∑

bi = 1
∑

bici = 1
2∑

biaijcj = 1
6∑

biaijajkck = 1
24∑

bic
2
i (1− ci) +

∑
biaijcj(2ci − cj) = 1

4

Towards practical general linear methods – p. 30/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

Of these 8 conditions, only 5 are conditions on α.

Once α is known, there remain 3 conditions on β.

The 5 order conditions, written in terms of the
Runge-Kutta tableau, are ∑

bi = 1
∑

bici = 1
2∑

biaijcj = 1
6∑

biaijajkck = 1
24∑

bic
2
i (1− ci) +

∑
biaijcj(2ci − cj) = 1

4

Towards practical general linear methods – p. 30/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Reuse of past values
Pseudo Runge-Kutta methods
ARK methods
Effective Order

Of these 8 conditions, only 5 are conditions on α.

Once α is known, there remain 3 conditions on β.

The 5 order conditions, written in terms of the
Runge-Kutta tableau, are ∑

bi = 1
∑

bici = 1
2∑

biaijcj = 1
6∑

biaijajkck = 1
24∑

bic
2
i (1− ci) +

∑
biaijcj(2ci − cj) = 1

4
Towards practical general linear methods – p. 30/71

General linear methods

All the generalizations we have considered possess
several components in common.

1. A number of quantities are imported at the start of
any particular step.

2. A number of stage values together with the
corresponding stage derivatives are computed.

3. Each of the stage values is a linear combination of
the stage derivatives and the input quantities.

4. Output quantities are computed corresponding to the
input quantities in step 1.

5. These output quantities are also linear combinations
of the stage derivatives and the input quantities.

Towards practical general linear methods – p. 31/71

General linear methods

All the generalizations we have considered possess
several components in common.

1. A number of quantities are imported at the start of
any particular step.

2. A number of stage values together with the
corresponding stage derivatives are computed.

3. Each of the stage values is a linear combination of
the stage derivatives and the input quantities.

4. Output quantities are computed corresponding to the
input quantities in step 1.

5. These output quantities are also linear combinations
of the stage derivatives and the input quantities.

Towards practical general linear methods – p. 31/71

General linear methods

All the generalizations we have considered possess
several components in common.

1. A number of quantities are imported at the start of
any particular step.

2. A number of stage values together with the
corresponding stage derivatives are computed.

3. Each of the stage values is a linear combination of
the stage derivatives and the input quantities.

4. Output quantities are computed corresponding to the
input quantities in step 1.

5. These output quantities are also linear combinations
of the stage derivatives and the input quantities.

Towards practical general linear methods – p. 31/71

General linear methods

All the generalizations we have considered possess
several components in common.

1. A number of quantities are imported at the start of
any particular step.

2. A number of stage values together with the
corresponding stage derivatives are computed.

3. Each of the stage values is a linear combination of
the stage derivatives and the input quantities.

4. Output quantities are computed corresponding to the
input quantities in step 1.

5. These output quantities are also linear combinations
of the stage derivatives and the input quantities.

Towards practical general linear methods – p. 31/71

General linear methods

All the generalizations we have considered possess
several components in common.

1. A number of quantities are imported at the start of
any particular step.

2. A number of stage values together with the
corresponding stage derivatives are computed.

3. Each of the stage values is a linear combination of
the stage derivatives and the input quantities.

4. Output quantities are computed corresponding to the
input quantities in step 1.

5. These output quantities are also linear combinations
of the stage derivatives and the input quantities.

Towards practical general linear methods – p. 31/71

General linear methods

All the generalizations we have considered possess
several components in common.

1. A number of quantities are imported at the start of
any particular step.

2. A number of stage values together with the
corresponding stage derivatives are computed.

3. Each of the stage values is a linear combination of
the stage derivatives and the input quantities.

4. Output quantities are computed corresponding to the
input quantities in step 1.

5. These output quantities are also linear combinations
of the stage derivatives and the input quantities.

Towards practical general linear methods – p. 31/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

We have a range of possibilities from 1 input quantity, as
in Runge-Kutta methods, to a large number as in
multistep methods.

We also have a range of possibilities for the number of
stages from 1, as in linear multistep method, to a large
number as in Runge-Kutta methods and their
generalizations.

We will summarize this in the diagram on the next slide.

Towards practical general linear methods – p. 32/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

We have a range of possibilities from 1 input quantity, as
in Runge-Kutta methods, to a large number as in
multistep methods.

We also have a range of possibilities for the number of
stages from 1, as in linear multistep method, to a large
number as in Runge-Kutta methods and their
generalizations.

We will summarize this in the diagram on the next slide.

Towards practical general linear methods – p. 32/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

We have a range of possibilities from 1 input quantity, as
in Runge-Kutta methods, to a large number as in
multistep methods.

We also have a range of possibilities for the number of
stages from 1, as in linear multistep method, to a large
number as in Runge-Kutta methods and their
generalizations.

We will summarize this in the diagram on the next slide.

Towards practical general linear methods – p. 32/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Euler Method

M
ore use of past information

Linear Multistep Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

Runge-Kutta Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

hybrid

cyclic

M
ore use of past information

pseudo RK

ARK

General Linear Method

Towards practical general linear methods – p. 33/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Euler Method

M
ore use of past information

Linear Multistep Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

Runge-Kutta Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

hybrid

cyclic

M
ore use of past information

pseudo RK

ARK

General Linear Method

Towards practical general linear methods – p. 33/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Euler Method

M
ore use of past information

Linear Multistep Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

Runge-Kutta Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

hybrid

cyclic

M
ore use of past information

pseudo RK

ARK

General Linear Method

Towards practical general linear methods – p. 33/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Euler Method

M
ore use of past information

Linear Multistep Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

Runge-Kutta Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

hybrid

cyclic

M
ore use of past information

pseudo RK

ARK

General Linear Method

Towards practical general linear methods – p. 33/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Euler Method

M
ore use of past information

Linear Multistep Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

Runge-Kutta Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

hybrid

cyclic
M

ore use of past information

pseudo RK

ARK

General Linear Method

Towards practical general linear methods – p. 33/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Euler Method

M
ore use of past information

Linear Multistep Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

Runge-Kutta Method

M
or

e co
mpu

tat
ion

s pe
r ste

p

hybrid

cyclic
M

ore use of past information

pseudo RK

ARK

General Linear Method

Towards practical general linear methods – p. 33/71

General linear methods

Formulation

The number of input quantities will be denoted by r and
the number of stages by s.

The quantities input at the start of step n will be denoted

by y[n−1]
i , i = 1, 2, . . . , r.

The stage values computed in step n will be denoted by
Yi, i = 1, 2, . . . , s.

The stage derivatives computed in step n will be denoted
by Fi, i = 1, 2, . . . , s.

The quantities exported at the end of step n will be

denoted by y[n]
i , i = 1, 2, . . . , r.

Towards practical general linear methods – p. 34/71

General linear methods

Formulation

The number of input quantities will be denoted by r and
the number of stages by s.

The quantities input at the start of step n will be denoted

by y[n−1]
i , i = 1, 2, . . . , r.

The stage values computed in step n will be denoted by
Yi, i = 1, 2, . . . , s.

The stage derivatives computed in step n will be denoted
by Fi, i = 1, 2, . . . , s.

The quantities exported at the end of step n will be

denoted by y[n]
i , i = 1, 2, . . . , r.

Towards practical general linear methods – p. 34/71

General linear methods

Formulation

The number of input quantities will be denoted by r and
the number of stages by s.

The quantities input at the start of step n will be denoted

by y[n−1]
i , i = 1, 2, . . . , r.

The stage values computed in step n will be denoted by
Yi, i = 1, 2, . . . , s.

The stage derivatives computed in step n will be denoted
by Fi, i = 1, 2, . . . , s.

The quantities exported at the end of step n will be

denoted by y[n]
i , i = 1, 2, . . . , r.

Towards practical general linear methods – p. 34/71

General linear methods

Formulation

The number of input quantities will be denoted by r and
the number of stages by s.

The quantities input at the start of step n will be denoted

by y[n−1]
i , i = 1, 2, . . . , r.

The stage values computed in step n will be denoted by
Yi, i = 1, 2, . . . , s.

The stage derivatives computed in step n will be denoted
by Fi, i = 1, 2, . . . , s.

The quantities exported at the end of step n will be

denoted by y[n]
i , i = 1, 2, . . . , r.

Towards practical general linear methods – p. 34/71

General linear methods

Formulation

The number of input quantities will be denoted by r and
the number of stages by s.

The quantities input at the start of step n will be denoted

by y[n−1]
i , i = 1, 2, . . . , r.

The stage values computed in step n will be denoted by
Yi, i = 1, 2, . . . , s.

The stage derivatives computed in step n will be denoted
by Fi, i = 1, 2, . . . , s.

The quantities exported at the end of step n will be

denoted by y[n]
i , i = 1, 2, . . . , r.

Towards practical general linear methods – p. 34/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

For convenience we will write:

y[n−1] =

y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

, Y =

Y1

Y2
...
Ys

, F =

F1

F2
...
Fs

, y

[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

and we note that Fi = f(Yi), i = 1, 2, . . . , s, for a
non-stiff or stiff problem , with a more complicated
relationship between these vectors for a DAE.

We now go through the process of carrying out a step in
terms of this notation.

Towards practical general linear methods – p. 35/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

For convenience we will write:

y[n−1] =

y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

, Y =

Y1

Y2
...
Ys

, F =

F1

F2
...
Fs

, y

[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

and we note that Fi = f(Yi), i = 1, 2, . . . , s, for a
non-stiff or stiff problem

, with a more complicated
relationship between these vectors for a DAE.

We now go through the process of carrying out a step in
terms of this notation.

Towards practical general linear methods – p. 35/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

For convenience we will write:

y[n−1] =

y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

, Y =

Y1

Y2
...
Ys

, F =

F1

F2
...
Fs

, y

[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

and we note that Fi = f(Yi), i = 1, 2, . . . , s, for a
non-stiff or stiff problem , with a more complicated
relationship between these vectors for a DAE.

We now go through the process of carrying out a step in
terms of this notation.

Towards practical general linear methods – p. 35/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

For convenience we will write:

y[n−1] =

y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

, Y =

Y1

Y2
...
Ys

, F =

F1

F2
...
Fs

, y

[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

and we note that Fi = f(Yi), i = 1, 2, . . . , s, for a
non-stiff or stiff problem , with a more complicated
relationship between these vectors for a DAE.

We now go through the process of carrying out a step in
terms of this notation.

Towards practical general linear methods – p. 35/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

1. The r subvectors comprising y[n−1] are imported at
the start of step n.

2. The subvectors in Y and F are computed.

3. Each of the Yi is a linear combination of the hFj and

the y[n−1]
j .

4. The r subvectors comprising y[n] are computed
corresponding to the y[n−1] subvectors.

5. The y[n]
i are linear combinations of the hFj and the

y
[n−1]
j .

The matrices of coefficients in step 3 are A and U and
those in step 5 are B and V .

Towards practical general linear methods – p. 36/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

1. The r subvectors comprising y[n−1] are imported at
the start of step n.

2. The subvectors in Y and F are computed.

3. Each of the Yi is a linear combination of the hFj and

the y[n−1]
j .

4. The r subvectors comprising y[n] are computed
corresponding to the y[n−1] subvectors.

5. The y[n]
i are linear combinations of the hFj and the

y
[n−1]
j .

The matrices of coefficients in step 3 are A and U and
those in step 5 are B and V .

Towards practical general linear methods – p. 36/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

1. The r subvectors comprising y[n−1] are imported at
the start of step n.

2. The subvectors in Y and F are computed.

3. Each of the Yi is a linear combination of the hFj and

the y[n−1]
j .

4. The r subvectors comprising y[n] are computed
corresponding to the y[n−1] subvectors.

5. The y[n]
i are linear combinations of the hFj and the

y
[n−1]
j .

The matrices of coefficients in step 3 are A and U and
those in step 5 are B and V .

Towards practical general linear methods – p. 36/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

1. The r subvectors comprising y[n−1] are imported at
the start of step n.

2. The subvectors in Y and F are computed.

3. Each of the Yi is a linear combination of the hFj and

the y[n−1]
j .

4. The r subvectors comprising y[n] are computed
corresponding to the y[n−1] subvectors.

5. The y[n]
i are linear combinations of the hFj and the

y
[n−1]
j .

The matrices of coefficients in step 3 are A and U and
those in step 5 are B and V .

Towards practical general linear methods – p. 36/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

1. The r subvectors comprising y[n−1] are imported at
the start of step n.

2. The subvectors in Y and F are computed.

3. Each of the Yi is a linear combination of the hFj and

the y[n−1]
j .

4. The r subvectors comprising y[n] are computed
corresponding to the y[n−1] subvectors.

5. The y[n]
i are linear combinations of the hFj and the

y
[n−1]
j .

The matrices of coefficients in step 3 are A and U and
those in step 5 are B and V .

Towards practical general linear methods – p. 36/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

1. The r subvectors comprising y[n−1] are imported at
the start of step n.

2. The subvectors in Y and F are computed.

3. Each of the Yi is a linear combination of the hFj and

the y[n−1]
j .

4. The r subvectors comprising y[n] are computed
corresponding to the y[n−1] subvectors.

5. The y[n]
i are linear combinations of the hFj and the

y
[n−1]
j .

The matrices of coefficients in step 3 are A and U

and
those in step 5 are B and V .

Towards practical general linear methods – p. 36/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

1. The r subvectors comprising y[n−1] are imported at
the start of step n.

2. The subvectors in Y and F are computed.

3. Each of the Yi is a linear combination of the hFj and

the y[n−1]
j .

4. The r subvectors comprising y[n] are computed
corresponding to the y[n−1] subvectors.

5. The y[n]
i are linear combinations of the hFj and the

y
[n−1]
j .

The matrices of coefficients in step 3 are A and U and
those in step 5 are B and V .

Towards practical general linear methods – p. 36/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

The formulae for the various steps are

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
[n−1]
j ,

Fi = f(Yi),

i = 1, 2, . . . s

y
[n]
i =

s∑

j=1

bijhFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . r

or, using a compact notation,

Y = (A⊗ I)hF + (U ⊗ I)y[n−1]

y[n] = (B ⊗ I)hF + (V ⊗ I)y[n−1]

Towards practical general linear methods – p. 37/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

The formulae for the various steps are

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
[n−1]
j , Fi = f(Yi), i = 1, 2, . . . s

y
[n]
i =

s∑

j=1

bijhFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . r

or, using a compact notation,

Y = (A⊗ I)hF + (U ⊗ I)y[n−1]

y[n] = (B ⊗ I)hF + (V ⊗ I)y[n−1]

Towards practical general linear methods – p. 37/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

The formulae for the various steps are

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
[n−1]
j , Fi = f(Yi), i = 1, 2, . . . s

y
[n]
i =

s∑

j=1

bijhFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . r

or, using a compact notation,

Y = (A⊗ I)hF + (U ⊗ I)y[n−1]

y[n] = (B ⊗ I)hF + (V ⊗ I)y[n−1]

Towards practical general linear methods – p. 37/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

The formulae for the various steps are

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
[n−1]
j , Fi = f(Yi), i = 1, 2, . . . s

y
[n]
i =

s∑

j=1

bijhFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . r

or, using a compact notation,

Y = (A⊗ I)hF + (U ⊗ I)y[n−1]

y[n] = (B ⊗ I)hF + (V ⊗ I)y[n−1]

Towards practical general linear methods – p. 37/71

General linear methods

Consistency, Stability, Convergence

Just as for linear multistep methods, the concept of
convergence expresses the ability of a numerical method
to generate arbitrarily accurate approximations to the
solution at a specific time value for sufficiently small
stepsize.

The basic theorem is

Consistency
Stability

}
⇐⇒ Convergence

and we will discuss the meaning of this result in the next
few slides.

Towards practical general linear methods – p. 38/71

General linear methods

Consistency, Stability, Convergence

Just as for linear multistep methods, the concept of
convergence expresses the ability of a numerical method
to generate arbitrarily accurate approximations to the
solution at a specific time value for sufficiently small
stepsize.

The basic theorem is

Consistency
Stability

}
⇐⇒ Convergence

and we will discuss the meaning of this result in the next
few slides.

Towards practical general linear methods – p. 38/71

General linear methods

Consistency, Stability, Convergence

Just as for linear multistep methods, the concept of
convergence expresses the ability of a numerical method
to generate arbitrarily accurate approximations to the
solution at a specific time value for sufficiently small
stepsize.

The basic theorem is

Consistency
Stability

}
⇐⇒ Convergence

and we will discuss the meaning of this result in the next
few slides.

Towards practical general linear methods – p. 38/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Introduce two vectors u, v ∈ R
r, known as the

pre-consistency and consistency vectors respectively.

We will require that the GL method with inputs

y
[n−1]
i = uiy(xn−1)+vihy

′(xn−1)+O(h2), i = 1, 2, . . . , r

will yield stage values

Yi = y(xn−1) +O(h), i = 1, 2, . . . , s

and outputs

y
[n]
i = uiy(xn) + vihy

′(xn) +O(h2), i = 1, 2, . . . , s

Towards practical general linear methods – p. 39/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Introduce two vectors u, v ∈ R
r, known as the

pre-consistency and consistency vectors respectively.

We will require that the GL method with inputs

y
[n−1]
i = uiy(xn−1)+vihy

′(xn−1)+O(h2), i = 1, 2, . . . , r

will yield stage values

Yi = y(xn−1) +O(h), i = 1, 2, . . . , s

and outputs

y
[n]
i = uiy(xn) + vihy

′(xn) +O(h2), i = 1, 2, . . . , s

Towards practical general linear methods – p. 39/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Introduce two vectors u, v ∈ R
r, known as the

pre-consistency and consistency vectors respectively.

We will require that the GL method with inputs

y
[n−1]
i = uiy(xn−1)+vihy

′(xn−1)+O(h2), i = 1, 2, . . . , r

will yield stage values

Yi = y(xn−1) +O(h), i = 1, 2, . . . , s

and outputs

y
[n]
i = uiy(xn) + vihy

′(xn) +O(h2), i = 1, 2, . . . , s

Towards practical general linear methods – p. 39/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Introduce two vectors u, v ∈ R
r, known as the

pre-consistency and consistency vectors respectively.

We will require that the GL method with inputs

y
[n−1]
i = uiy(xn−1)+vihy

′(xn−1)+O(h2), i = 1, 2, . . . , r

will yield stage values

Yi = y(xn−1) +O(h), i = 1, 2, . . . , s

and outputs

y
[n]
i = uiy(xn) + vihy

′(xn) +O(h2), i = 1, 2, . . . , s

Towards practical general linear methods – p. 39/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

By Taylor’s theory these requirements can be written

Uu = 1

V u = u (*)

B1 + V v = u+ v (**)

Note that (*) and (**) are related to the ability of the
numerical method to solve the problem

y′(x) = 1

exactly, for an arbitrary initial value.

Towards practical general linear methods – p. 40/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

By Taylor’s theory these requirements can be written

Uu = 1

V u = u (*)

B1 + V v = u+ v (**)

Note that (*) and (**) are related to the ability of the
numerical method to solve the problem

y′(x) = 1

exactly, for an arbitrary initial value.

Towards practical general linear methods – p. 40/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Stability refers to the ability of a method to generate a
convergent sequence of approximations to the problem

y′(x) = 0, y(0) = 0,

under appropriate conditions on the values of the initial
values y[0].

This is equivalent to the requirement that V should be
power-bounded.

This in turn is equivalent to the requirement that the
minimal polynomial of V has all its zeros in the closed
unit disc with only simple zeros on the boundary.

Towards practical general linear methods – p. 41/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Stability refers to the ability of a method to generate a
convergent sequence of approximations to the problem

y′(x) = 0, y(0) = 0,

under appropriate conditions on the values of the initial
values y[0].

This is equivalent to the requirement that V should be
power-bounded.

This in turn is equivalent to the requirement that the
minimal polynomial of V has all its zeros in the closed
unit disc with only simple zeros on the boundary.

Towards practical general linear methods – p. 41/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Stability refers to the ability of a method to generate a
convergent sequence of approximations to the problem

y′(x) = 0, y(0) = 0,

under appropriate conditions on the values of the initial
values y[0].

This is equivalent to the requirement that V should be
power-bounded.

This in turn is equivalent to the requirement that the
minimal polynomial of V has all its zeros in the closed
unit disc with only simple zeros on the boundary.

Towards practical general linear methods – p. 41/71

General linear methods

Order

The input to a step is an approximation to some vector of
quantities related to the exact solution at xn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related to xn.

If the input is exactly what it it is supposed to
approximate, then the “local truncation error” is defined
as the error in the output after a single step.

If this can be estimated in terms of hp+1, then the method
has order p.

We will refer to the calculation which produces y[n−1]

from y(xn−1) as a “starting method”.

Towards practical general linear methods – p. 42/71

General linear methods

Order

The input to a step is an approximation to some vector of
quantities related to the exact solution at xn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related to xn.

If the input is exactly what it it is supposed to
approximate, then the “local truncation error” is defined
as the error in the output after a single step.

If this can be estimated in terms of hp+1, then the method
has order p.

We will refer to the calculation which produces y[n−1]

from y(xn−1) as a “starting method”.

Towards practical general linear methods – p. 42/71

General linear methods

Order

The input to a step is an approximation to some vector of
quantities related to the exact solution at xn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related to xn.

If the input is exactly what it it is supposed to
approximate, then the “local truncation error” is defined
as the error in the output after a single step.

If this can be estimated in terms of hp+1, then the method
has order p.

We will refer to the calculation which produces y[n−1]

from y(xn−1) as a “starting method”.

Towards practical general linear methods – p. 42/71

General linear methods

Order

The input to a step is an approximation to some vector of
quantities related to the exact solution at xn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related to xn.

If the input is exactly what it it is supposed to
approximate, then the “local truncation error” is defined
as the error in the output after a single step.

If this can be estimated in terms of hp+1, then the method
has order p.

We will refer to the calculation which produces y[n−1]

from y(xn−1) as a “starting method”.

Towards practical general linear methods – p. 42/71

General linear methods

Order

The input to a step is an approximation to some vector of
quantities related to the exact solution at xn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related to xn.

If the input is exactly what it it is supposed to
approximate, then the “local truncation error” is defined
as the error in the output after a single step.

If this can be estimated in terms of hp+1, then the method
has order p.

We will refer to the calculation which produces y[n−1]

from y(xn−1) as a “starting method”.
Towards practical general linear methods – p. 42/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Let S denote the “starting method”, that is a mapping
from R

N to R
rN and a corresponding finishing method

F : R
rN → R

N such that F ◦ S = id.

The order of accuracy of a multivalue method is defined
in terms of the diagram

E

S S

M
O(hp+1)

(h = stepsize)

Towards practical general linear methods – p. 43/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Let S denote the “starting method”, that is a mapping
from R

N to R
rN and a corresponding finishing method

F : R
rN → R

N such that F ◦ S = id.

The order of accuracy of a multivalue method is defined
in terms of the diagram

E

S S

M

O(hp+1)

(h = stepsize)

Towards practical general linear methods – p. 43/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

Let S denote the “starting method”, that is a mapping
from R

N to R
rN and a corresponding finishing method

F : R
rN → R

N such that F ◦ S = id.

The order of accuracy of a multivalue method is defined
in terms of the diagram

E

S S

M
O(hp+1)

(h = stepsize)

Towards practical general linear methods – p. 43/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

By duplicating this diagram over many steps, global
error estimates may be found.

E E E

S S S S S

M M
M

O(hp)

F

O(hp)

Towards practical general linear methods – p. 44/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

By duplicating this diagram over many steps, global
error estimates may be found.

E E E

S S S S S

M M
M

O(hp)

F

O(hp)

Towards practical general linear methods – p. 44/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

By duplicating this diagram over many steps, global
error estimates may be found.

E E E

S S S S S

M M
M

O(hp)

F

O(hp)

Towards practical general linear methods – p. 44/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

By duplicating this diagram over many steps, global
error estimates may be found.

E E E

S S S S S

M M
M

O(hp)

F

O(hp)

Towards practical general linear methods – p. 44/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

By duplicating this diagram over many steps, global
error estimates may be found.

E E E

S S S S S

M M
M

O(hp)

F

O(hp)

Towards practical general linear methods – p. 44/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

To represent S and turn the definition of order into a
practical algorithm for analysing a specific method,
operations on the set of mappings T → R can be used.

Without considering the details, the conditions are

ξ = AξD + Uη

Eη = BξD + V η

In the case of Runge–Kutta methods, this definition has
the same meaning as “effective order”.
It is possible for a Runge–Kutta method with 5 stages to
have effective order 5.

Towards practical general linear methods – p. 45/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

To represent S and turn the definition of order into a
practical algorithm for analysing a specific method,
operations on the set of mappings T → R can be used.
Without considering the details, the conditions are

ξ = AξD + Uη

Eη = BξD + V η

In the case of Runge–Kutta methods, this definition has
the same meaning as “effective order”.
It is possible for a Runge–Kutta method with 5 stages to
have effective order 5.

Towards practical general linear methods – p. 45/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

To represent S and turn the definition of order into a
practical algorithm for analysing a specific method,
operations on the set of mappings T → R can be used.
Without considering the details, the conditions are

ξ = AξD + Uη

Eη = BξD + V η

In the case of Runge–Kutta methods, this definition has
the same meaning as “effective order”.

It is possible for a Runge–Kutta method with 5 stages to
have effective order 5.

Towards practical general linear methods – p. 45/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

To represent S and turn the definition of order into a
practical algorithm for analysing a specific method,
operations on the set of mappings T → R can be used.
Without considering the details, the conditions are

ξ = AξD + Uη

Eη = BξD + V η

In the case of Runge–Kutta methods, this definition has
the same meaning as “effective order”.
It is possible for a Runge–Kutta method with 5 stages to
have effective order 5.

Towards practical general linear methods – p. 45/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

If we want not only order p but also “stage-order” p (or
possibly p− 1), things become simpler.

exp(cz) = zA exp(cz) + Uφ(z) +O(zp+1)

exp(z)φ(z) = zB exp(cz) + V φ(z) +O(zp+1)

where it is assumed the input is

y
[n−1]
i = αi1y(xn−1)+αi2hy

′(xn−1)+· · ·+αi,p+1h
py(p)(xn−1)

and where

φi(z) = αi1 + αi2z + · · ·+ αi,p+1z
p

Towards practical general linear methods – p. 46/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

If we want not only order p but also “stage-order” p (or
possibly p− 1), things become simpler.

exp(cz) = zA exp(cz) + Uφ(z) +O(zp+1)

exp(z)φ(z) = zB exp(cz) + V φ(z) +O(zp+1)

where it is assumed the input is

y
[n−1]
i = αi1y(xn−1)+αi2hy

′(xn−1)+· · ·+αi,p+1h
py(p)(xn−1)

and where

φi(z) = αi1 + αi2z + · · ·+ αi,p+1z
p

Towards practical general linear methods – p. 46/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

If we want not only order p but also “stage-order” p (or
possibly p− 1), things become simpler.

exp(cz) = zA exp(cz) + Uφ(z) +O(zp+1)

exp(z)φ(z) = zB exp(cz) + V φ(z) +O(zp+1)

where it is assumed the input is

y
[n−1]
i = αi1y(xn−1)+αi2hy

′(xn−1)+· · ·+αi,p+1h
py(p)(xn−1)

and where

φi(z) = αi1 + αi2z + · · ·+ αi,p+1z
p

Towards practical general linear methods – p. 46/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

If we want not only order p but also “stage-order” p (or
possibly p− 1), things become simpler.

exp(cz) = zA exp(cz) + Uφ(z) +O(zp+1)

exp(z)φ(z) = zB exp(cz) + V φ(z) +O(zp+1)

where it is assumed the input is

y
[n−1]
i = αi1y(xn−1)+αi2hy

′(xn−1)+· · ·+αi,p+1h
py(p)(xn−1)

and where

φi(z) = αi1 + αi2z + · · ·+ αi,p+1z
p

Towards practical general linear methods – p. 46/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Formulation
Consistency, Stability, Convergence
Order

If we want not only order p but also “stage-order” p (or
possibly p− 1), things become simpler.

exp(cz) = zA exp(cz) + Uφ(z) +O(zp+1)

exp(z)φ(z) = zB exp(cz) + V φ(z) +O(zp+1)

where it is assumed the input is

y
[n−1]
i = αi1y(xn−1)+αi2hy

′(xn−1)+· · ·+αi,p+1h
py(p)(xn−1)

and where

φi(z) = αi1 + αi2z + · · ·+ αi,p+1z
p

Towards practical general linear methods – p. 46/71

Methods with inherent Runge-Kutta stability

By “Runge-Kutta stability” we mean the property a
method might have in which the characteristic
polynomial of its stability matrix has all except one of its
zeros equal to zero.

det(wI −M(z)) = wr−1(w −R(z))

Although methods exist with this property with
r = s = p = q, it is difficult to construct them.

If s ≥ r = p+ 1, it is possible to construct the methods
in a systematic way by imposing a condition known as
“Inherent Runge-Kutta Stability”.

Towards practical general linear methods – p. 47/71

Methods with inherent Runge-Kutta stability

By “Runge-Kutta stability” we mean the property a
method might have in which the characteristic
polynomial of its stability matrix has all except one of its
zeros equal to zero.

det(wI −M(z)) = wr−1(w −R(z))

Although methods exist with this property with
r = s = p = q, it is difficult to construct them.

If s ≥ r = p+ 1, it is possible to construct the methods
in a systematic way by imposing a condition known as
“Inherent Runge-Kutta Stability”.

Towards practical general linear methods – p. 47/71

Methods with inherent Runge-Kutta stability

By “Runge-Kutta stability” we mean the property a
method might have in which the characteristic
polynomial of its stability matrix has all except one of its
zeros equal to zero.

det(wI −M(z)) = wr−1(w −R(z))

Although methods exist with this property with
r = s = p = q, it is difficult to construct them.

If s ≥ r = p+ 1, it is possible to construct the methods
in a systematic way by imposing a condition known as
“Inherent Runge-Kutta Stability”.

Towards practical general linear methods – p. 47/71

Methods with inherent Runge-Kutta stability

By “Runge-Kutta stability” we mean the property a
method might have in which the characteristic
polynomial of its stability matrix has all except one of its
zeros equal to zero.

det(wI −M(z)) = wr−1(w −R(z))

Although methods exist with this property with
r = s = p = q, it is difficult to construct them.

If s ≥ r = p+ 1, it is possible to construct the methods
in a systematic way by imposing a condition known as
“Inherent Runge-Kutta Stability”.

Towards practical general linear methods – p. 47/71

Methods with inherent Runge-Kutta stability

Doubly companion matrices

Matrices like the following are “companion matrices” for
the polynomial

zn + α1z
n−1 + · · ·+ αn

or
zn + β1z

n−1 + · · ·+ βn,

respectively:

−α1−α2−α3· · · −αn−1−αn

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...
0 0 0 · · · 0 0

0 0 0 · · · 1 0

,

0 0 0 · · · 0 −βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1

Towards practical general linear methods – p. 48/71

Methods with inherent Runge-Kutta stability

Doubly companion matrices

Matrices like the following are “companion matrices” for
the polynomial

zn + α1z
n−1 + · · ·+ αnor

zn + β1z
n−1 + · · ·+ βn,

respectively:

−α1−α2−α3· · · −αn−1−αn

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...
0 0 0 · · · 0 0

0 0 0 · · · 1 0

,

0 0 0 · · · 0 −βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1

Towards practical general linear methods – p. 48/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Their characteristic polynomials can be found from
det(I − zA) = α(z) or β(z), respectively, where,
α(z) = 1+α1z+· · ·+αnz

n, β(z) = 1+β1z+· · ·+βnz
n.

A matrix with both α and β terms:

X =

−α1 −α2 −α3 · · · −αn−1 −αn − βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1

,

is known as a “doubly companion matrix” and has
characteristic polynomial defined by

det(I − zX) = α(z)β(z) +O(zn+1)

Towards practical general linear methods – p. 49/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Their characteristic polynomials can be found from
det(I − zA) = α(z) or β(z), respectively, where,
α(z) = 1+α1z+· · ·+αnz

n, β(z) = 1+β1z+· · ·+βnz
n.

A matrix with both α and β terms:

X =

−α1 −α2 −α3 · · · −αn−1 −αn − βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1

,

is known as a “doubly companion matrix”

and has
characteristic polynomial defined by

det(I − zX) = α(z)β(z) +O(zn+1)

Towards practical general linear methods – p. 49/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Their characteristic polynomials can be found from
det(I − zA) = α(z) or β(z), respectively, where,
α(z) = 1+α1z+· · ·+αnz

n, β(z) = 1+β1z+· · ·+βnz
n.

A matrix with both α and β terms:

X =

−α1 −α2 −α3 · · · −αn−1 −αn − βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2
...
0 0 0 · · · 0 −β2

0 0 0 · · · 1 −β1

,

is known as a “doubly companion matrix” and has
characteristic polynomial defined by

det(I − zX) = α(z)β(z) +O(zn+1)
Towards practical general linear methods – p. 49/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Matrices Ψ−1 and Ψ transforming X to Jordan canonical
form are known.

In the special case of a single Jordan block with n-fold
eigenvalue λ, we have

Ψ−1 =

1 λ+ α1 λ2 + α1λ+ α2 · · ·

0 1 2λ+ α1 · · ·

0 0 1 · · ·
...

 ,

where row number i+ 1 is formed from row number i
by differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ:

Towards practical general linear methods – p. 50/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Matrices Ψ−1 and Ψ transforming X to Jordan canonical
form are known.

In the special case of a single Jordan block with n-fold
eigenvalue λ, we have

Ψ−1 =

1 λ+ α1 λ2 + α1λ+ α2 · · ·

0 1 2λ+ α1 · · ·

0 0 1 · · ·
...

,

where row number i+ 1 is formed from row number i by
differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ:

Towards practical general linear methods – p. 50/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Matrices Ψ−1 and Ψ transforming X to Jordan canonical
form are known.

In the special case of a single Jordan block with n-fold
eigenvalue λ, we have

Ψ−1 =

1 λ+ α1 λ2 + α1λ+ α2 · · ·

0 1 2λ+ α1 · · ·

0 0 1 · · ·
...

 ,

where row number i+ 1 is formed from row number i by
differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ:

Towards practical general linear methods – p. 50/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Matrices Ψ−1 and Ψ transforming X to Jordan canonical
form are known.

In the special case of a single Jordan block with n-fold
eigenvalue λ, we have

Ψ−1 =

1 λ+ α1 λ2 + α1λ+ α2 · · ·

0 1 2λ+ α1 · · ·

0 0 1 · · ·
...

 ,

where row number i+ 1 is formed from row number i by
differentiating with respect to λ and dividing by i.

We have a similar expression for Ψ:
Towards practical general linear methods – p. 50/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Ψ =

.
· · · 1 2λ+ β1 λ2 + β1λ+ β2

· · · 0 1 λ+ β1

· · · 0 0 1

The Jordan form is Ψ−1XΨ=J + λI , where Jij =δi,j+1.
That is

Ψ−1XΨ =

λ 0 · · · 0 0

1 λ · · · 0 0
...
0 0 · · · λ 0

0 0 · · · 1 λ

Towards practical general linear methods – p. 51/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Ψ =

.
· · · 1 2λ+ β1 λ2 + β1λ+ β2

· · · 0 1 λ+ β1

· · · 0 0 1

The Jordan form is Ψ−1XΨ=J + λI , where Jij =δi,j+1.

That is

Ψ−1XΨ =

λ 0 · · · 0 0

1 λ · · · 0 0
...
0 0 · · · λ 0

0 0 · · · 1 λ

Towards practical general linear methods – p. 51/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Ψ =

.
· · · 1 2λ+ β1 λ2 + β1λ+ β2

· · · 0 1 λ+ β1

· · · 0 0 1

The Jordan form is Ψ−1XΨ=J + λI , where Jij =δi,j+1.
That is

Ψ−1XΨ =

λ 0 · · · 0 0

1 λ · · · 0 0
...
0 0 · · · λ 0

0 0 · · · 1 λ

Towards practical general linear methods – p. 51/71

Methods with inherent Runge-Kutta stability

Inherent Runge-Kutta stability

Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations.

The methods constructed in this way
are said to possess “Inherent Runge–Kutta Stability”.
Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by the parameters

λ single eigenvalue of A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s

doubly companion matrix X where σ(X) = {λ}.

Information on the structure of V

Towards practical general linear methods – p. 52/71

Methods with inherent Runge-Kutta stability

Inherent Runge-Kutta stability

Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations. The methods constructed in this way
are said to possess “Inherent Runge–Kutta Stability”.

Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by the parameters

λ single eigenvalue of A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s

doubly companion matrix X where σ(X) = {λ}.

Information on the structure of V

Towards practical general linear methods – p. 52/71

Methods with inherent Runge-Kutta stability

Inherent Runge-Kutta stability

Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations. The methods constructed in this way
are said to possess “Inherent Runge–Kutta Stability”.
Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by the parameters

λ single eigenvalue of A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s

doubly companion matrix X where σ(X) = {λ}.

Information on the structure of V

Towards practical general linear methods – p. 52/71

Methods with inherent Runge-Kutta stability

Inherent Runge-Kutta stability

Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations. The methods constructed in this way
are said to possess “Inherent Runge–Kutta Stability”.
Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by the parameters

λ single eigenvalue of A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s

doubly companion matrix X where σ(X) = {λ}.

Information on the structure of V

Towards practical general linear methods – p. 52/71

Methods with inherent Runge-Kutta stability

Inherent Runge-Kutta stability

Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations. The methods constructed in this way
are said to possess “Inherent Runge–Kutta Stability”.
Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by the parameters

λ single eigenvalue of A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s

doubly companion matrix X where σ(X) = {λ}.

Information on the structure of V

Towards practical general linear methods – p. 52/71

Methods with inherent Runge-Kutta stability

Inherent Runge-Kutta stability

Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations. The methods constructed in this way
are said to possess “Inherent Runge–Kutta Stability”.
Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by the parameters

λ single eigenvalue of A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s

doubly companion matrix X where σ(X) = {λ}.

Information on the structure of V

Towards practical general linear methods – p. 52/71

Methods with inherent Runge-Kutta stability

Inherent Runge-Kutta stability

Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations. The methods constructed in this way
are said to possess “Inherent Runge–Kutta Stability”.
Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by the parameters

λ single eigenvalue of A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s

doubly companion matrix X where σ(X) = {λ}.

Information on the structure of V

Towards practical general linear methods – p. 52/71

Methods with inherent Runge-Kutta stability

Inherent Runge-Kutta stability

Using doubly companion matrices, it is possible to
construct GL methods possessing RK stability with
rational operations. The methods constructed in this way
are said to possess “Inherent Runge–Kutta Stability”.
Apart from exceptional cases, (in which certain matrices
are singular), we characterize the method with
r = s = p+ 1 = q + 1 by the parameters

λ single eigenvalue of A

c1, c2, . . . , cs stage abscissae

Error constant

β1, β2, . . . , βp elements in last column of s× s

doubly companion matrix X where σ(X) = {λ}.

Information on the structure of V
Towards practical general linear methods – p. 52/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Consider only methods for which the step n outputs an
approximation to the “Nordsieck vector”

:

y
[n]
1

y
[n]
2

y
[n]
3
...

y
[n]
p+1

≈

y(xn)

hy′(xn)

h2y′′(xn)
...

hpy(p)(xn)

For such methods, V has the form

V =

[
1 vT

0 V̇

]

Towards practical general linear methods – p. 53/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Consider only methods for which the step n outputs an
approximation to the “Nordsieck vector”:

y
[n]
1

y
[n]
2

y
[n]
3
...

y
[n]
p+1

≈

y(xn)

hy′(xn)

h2y′′(xn)
...

hpy(p)(xn)

For such methods, V has the form

V =

[
1 vT

0 V̇

]

Towards practical general linear methods – p. 53/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Consider only methods for which the step n outputs an
approximation to the “Nordsieck vector”:

y
[n]
1

y
[n]
2

y
[n]
3
...

y
[n]
p+1

≈

y(xn)

hy′(xn)

h2y′′(xn)
...

hpy(p)(xn)

For such methods, V has the form

V =

[
1 vT

0 V̇

]

Towards practical general linear methods – p. 53/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB,

BU = XV − V X + e1ξ
T , ρ(V̇) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero. The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s

Towards practical general linear methods – p. 54/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB, BU = XV − V X + e1ξ
T ,

ρ(V̇) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero. The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s

Towards practical general linear methods – p. 54/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB, BU = XV − V X + e1ξ
T , ρ(V̇) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero. The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s

Towards practical general linear methods – p. 54/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB, BU = XV − V X + e1ξ
T , ρ(V̇) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero. The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s

Towards practical general linear methods – p. 54/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB, BU = XV − V X + e1ξ
T , ρ(V̇) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero.

The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s

Towards practical general linear methods – p. 54/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB, BU = XV − V X + e1ξ
T , ρ(V̇) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero. The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s

Towards practical general linear methods – p. 54/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Such a method has the IRKS property if a doubly
companion matrix X exists so that for some vector ξ,

BA = XB, BU = XV − V X + e1ξ
T , ρ(V̇) = 0

It can be shown that, for such methods, the stability
matrix satisfies

M(z) ∼ V + ze1ξ
T (I − zX)−1

which has all except one of its eigenvalues zero. The
non-zero eigenvalue has the role of stability function

R(z) =
N(z)

(1− λz)s

Towards practical general linear methods – p. 54/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To understand the significance of the vector ξ, equate the
(1, 1) element of V + ze1ξ

T (I − zX)−1 to R(z).

This gives

N(z)

(1− λz)p+1
= 1 + zξT (I − zX)−1e1

=
det(I − z(X − e1ξ

T))

det(I − zX)

where we have assumed that s = p+ 1.

Towards practical general linear methods – p. 55/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To understand the significance of the vector ξ, equate the
(1, 1) element of V + ze1ξ

T (I − zX)−1 to R(z).

This gives

N(z)

(1− λz)p+1
= 1 + zξT (I − zX)−1e1

=
det(I − z(X − e1ξ

T))

det(I − zX)

where we have assumed that s = p+ 1.

Towards practical general linear methods – p. 55/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To understand the significance of the vector ξ, equate the
(1, 1) element of V + ze1ξ

T (I − zX)−1 to R(z).

This gives

N(z)

(1− λz)p+1
= 1 + zξT (I − zX)−1e1

=
det(I − z(X − e1ξ

T))

det(I − zX)

where we have assumed that s = p+ 1.

Towards practical general linear methods – p. 55/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To understand the significance of the vector ξ, equate the
(1, 1) element of V + ze1ξ

T (I − zX)−1 to R(z).

This gives

N(z)

(1− λz)p+1
= 1 + zξT (I − zX)−1e1

=
det(I − z(X − e1ξ

T))

det(I − zX)

where we have assumed that s = p+ 1.

Towards practical general linear methods – p. 55/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

It follows that

N(z) = (α(z) + ξ(z))β(z) +O(zp+2)

where

ξ(z) = ξ1z + ξ2z
2 + · · ·+ ξp+1z

p+1

and ξ is easily found from

ξ(z) = N(z)β(z)−1 − α(z)

Towards practical general linear methods – p. 56/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

It follows that

N(z) = (α(z) + ξ(z))β(z) +O(zp+2)

where

ξ(z) = ξ1z + ξ2z
2 + · · ·+ ξp+1z

p+1

and ξ is easily found from

ξ(z) = N(z)β(z)−1 − α(z)

Towards practical general linear methods – p. 56/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

From the equations
exp(cz) = zA exp(cz) + Uφ(z) +O(zp+1),

exp(z)φ(z) = zB exp(cz) + V φ(z) +O(zp+1),

we deduce, in the Nordsieck case, that

U = C − ACK,
V = E −BCK,

where

K =

0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 1
0 0 0 · · · 0

, E = exp(K), Cij =

c
j−1
i

(j − 1)!

Towards practical general linear methods – p. 57/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To see how the value of ξp+1, related to the error
constant, comes into the derivation of actual methods,
look at the consequences of the formulae

BA = XB, (1)

BU = XV − V X + e1ξ
T , (2)

U = C − ACK, (3)

V = E −BCK. (4)

Substitute (3) and (4) into (2) and make use of (1) and we
find

BC(I −KX) = XE − EX + e1ξ
T .

Remarkably, this reduces to an equation of the form
BCv = w, where v and w are vectors.

Towards practical general linear methods – p. 58/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To see how the value of ξp+1, related to the error
constant, comes into the derivation of actual methods,
look at the consequences of the formulae

BA = XB, (1)

BU = XV − V X + e1ξ
T , (2)

U = C − ACK, (3)

V = E −BCK. (4)
Substitute (3) and (4) into (2) and make use of (1) and we
find

BC(I −KX) = XE − EX + e1ξ
T .

Remarkably, this reduces to an equation of the form
BCv = w, where v and w are vectors.

Towards practical general linear methods – p. 58/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To see how the value of ξp+1, related to the error
constant, comes into the derivation of actual methods,
look at the consequences of the formulae

BA = XB, (1)

BU = XV − V X + e1ξ
T , (2)

U = C − ACK, (3)

V = E −BCK. (4)
Substitute (3) and (4) into (2) and make use of (1) and we
find

BC(I −KX) = XE − EX + e1ξ
T .

Remarkably, this reduces to an equation of the form
BCv = w, where v and w are vectors.

Towards practical general linear methods – p. 58/71

Methods with inherent Runge-Kutta stability

Example methods

The following third order method is explicit and suitable
for the solution of non-stiff problems

[
AU

BV

]
=

0 0 0 0 1 1
4

1
32

1
384

− 176
1885 0 0 0 1 2237

3770
2237
15080

2149
90480

−335624
311025

29
55 0 0 1 1619591

1244100
260027
904800

1517801
39811200

−67843
6435

395
33 −5 0 1 29428

6435
527
585

41819
102960

−67843
6435

395
33 −5 0 1 29428

6435
527
585

41819
102960

0 0 0 1 0 0 0 0
82
33 −274

11
170
9 −4

3 0 482
99 0 −161

264

−8 −12 40
3 −2 0 26

3 0 0

Towards practical general linear methods – p. 59/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

The following fourth order method is implicit, L-stable,
and suitable for the solution of stiff problems

1

4
0 0 0 0 1 3

4

1

2

1

4
0

− 513

54272

1

4
0 0 0 1 27649

54272

5601

27136

1539

54272
− 459

6784

3706119

69088256
− 488

3819

1

4
0 0 1 15366379

207264768

756057

34544128

1620299

69088256
− 4854

454528

32161061

197549232
− 111814

232959

134

183

1

4
0 1− 32609017

197549232

929753

32924872

4008881

32924872

174981

3465776

− 135425

2948496
− 641

10431

73

183

1

2

1

4
1 − 367313

8845488
− 22727

1474248

40979

982832

323

25864

− 135425

2948496
− 641

10431

73

183

1

2

1

4
1 − 367313

8845488
− 22727

1474248

40979

982832

323

25864

0 0 0 0 1 0 0 0 0 0
2255

2318
− 47125

20862

447

122
− 11

4

4

3
0 − 28745

20862
− 1937

13908

351

18544

65

976

12620

10431
− 96388

31293

3364

549
− 10

3

4

3
0 − 70634

31293
− 2050

10431
− 187

2318

113

366

414

1159
− 29954

31293

130

61
−1 1

3
0 − 27052

31293
− 113

10431
− 491

4636

161

732

Towards practical general linear methods – p. 60/71

Methods with inherent Runge-Kutta stability

Implementation questions

Initial stepsize

Towards practical general linear methods – p. 61/71

Methods with inherent Runge-Kutta stability

Implementation questions

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 62/71

Methods with inherent Runge-Kutta stability

Implementation questions

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 62/71

Methods with inherent Runge-Kutta stability

Implementation questions

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 62/71

Methods with inherent Runge-Kutta stability

Implementation questions

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 62/71

Methods with inherent Runge-Kutta stability

Implementation questions

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 62/71

Methods with inherent Runge-Kutta stability

Implementation questions

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 62/71

Methods with inherent Runge-Kutta stability

Implementation questions

Initial stepsize

Starting method

Evaluation of stages

Interpolation for continuous output

Error estimation

Variable stepsize

Variable order

Towards practical general linear methods – p. 62/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Zero stability, in the constant stepsize case, is concerned
with the power-boundedness of V .

The naive method of achieving variable stepsize
(h→ rh) is to rescale the Nordsieck vector by a matrix

D(r) = diag(1, r, r2, . . . , rp).

If r is constrained to lie in an interval I = [rmin, rmax] then
zero-stability generalizes to the existence of a uniform
bound on

‖D(rn)V D(rn−1)V · · ·D(r2)V D(r1)V ‖

when r1, r2, . . . , rn ∈ I .

Towards practical general linear methods – p. 63/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Zero stability, in the constant stepsize case, is concerned
with the power-boundedness of V .

The naive method of achieving variable stepsize
(h→ rh) is to rescale the Nordsieck vector by a matrix

D(r) = diag(1, r, r2, . . . , rp).

If r is constrained to lie in an interval I = [rmin, rmax] then
zero-stability generalizes to the existence of a uniform
bound on

‖D(rn)V D(rn−1)V · · ·D(r2)V D(r1)V ‖

when r1, r2, . . . , rn ∈ I .

Towards practical general linear methods – p. 63/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Zero stability, in the constant stepsize case, is concerned
with the power-boundedness of V .

The naive method of achieving variable stepsize
(h→ rh) is to rescale the Nordsieck vector by a matrix

D(r) = diag(1, r, r2, . . . , rp).

If r is constrained to lie in an interval I = [rmin, rmax] then
zero-stability generalizes to the existence of a uniform
bound on

‖D(rn)V D(rn−1)V · · ·D(r2)V D(r1)V ‖

when r1, r2, . . . , rn ∈ I .

Towards practical general linear methods – p. 63/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

For implicit methods, we might also want
“infinity-stability” by requiring a uniform bound on

‖D(rn)V̂ D(rn−1)V̂ · · ·D(r2)V̂ D(r1)V̂ ‖,

where
V̂ = M(∞) = V −BA−1U.

This naive approach is very unsatisfactory from the
stability point of view and it has other disadvantages, as
we will see.

Towards practical general linear methods – p. 64/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

For implicit methods, we might also want
“infinity-stability” by requiring a uniform bound on

‖D(rn)V̂ D(rn−1)V̂ · · ·D(r2)V̂ D(r1)V̂ ‖,

where
V̂ = M(∞) = V −BA−1U.

This naive approach is very unsatisfactory from the
stability point of view and it has other disadvantages, as
we will see.

Towards practical general linear methods – p. 64/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Less naive is to modify the rescaled Nordsieck vector by
adding quantities computed from

hF1, hF2, . . . , hFp+1, y
[n−1]
2 , y

[n−1]
3 , . . . , y

[n−1]
p+1 , such that

the order remains p

, but variable stepsize stability is
achieved.

There are other issues to consider in making the
modification, as we will see.

In particular we need to consider the effect of variable h
on the error constants in incoming approximations.

We introduce these ideas in the context of the underlying
one-step method.

Towards practical general linear methods – p. 65/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Less naive is to modify the rescaled Nordsieck vector by
adding quantities computed from

hF1, hF2, . . . , hFp+1, y
[n−1]
2 , y

[n−1]
3 , . . . , y

[n−1]
p+1 , such that

the order remains p, but variable stepsize stability is
achieved.

There are other issues to consider in making the
modification, as we will see.

In particular we need to consider the effect of variable h
on the error constants in incoming approximations.

We introduce these ideas in the context of the underlying
one-step method.

Towards practical general linear methods – p. 65/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Less naive is to modify the rescaled Nordsieck vector by
adding quantities computed from

hF1, hF2, . . . , hFp+1, y
[n−1]
2 , y

[n−1]
3 , . . . , y

[n−1]
p+1 , such that

the order remains p, but variable stepsize stability is
achieved.

There are other issues to consider in making the
modification, as we will see.

In particular we need to consider the effect of variable h
on the error constants in incoming approximations.

We introduce these ideas in the context of the underlying
one-step method.

Towards practical general linear methods – p. 65/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Less naive is to modify the rescaled Nordsieck vector by
adding quantities computed from

hF1, hF2, . . . , hFp+1, y
[n−1]
2 , y

[n−1]
3 , . . . , y

[n−1]
p+1 , such that

the order remains p, but variable stepsize stability is
achieved.

There are other issues to consider in making the
modification, as we will see.

In particular we need to consider the effect of variable h
on the error constants in incoming approximations.

We introduce these ideas in the context of the underlying
one-step method.

Towards practical general linear methods – p. 65/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Less naive is to modify the rescaled Nordsieck vector by
adding quantities computed from

hF1, hF2, . . . , hFp+1, y
[n−1]
2 , y

[n−1]
3 , . . . , y

[n−1]
p+1 , such that

the order remains p, but variable stepsize stability is
achieved.

There are other issues to consider in making the
modification, as we will see.

In particular we need to consider the effect of variable h
on the error constants in incoming approximations.

We introduce these ideas in the context of the underlying
one-step method.

Towards practical general linear methods – p. 65/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To introduce the underlying one-step method, consider a
modification of the diagram relating the starting method
and a single step of the method.

E

S S

M
O(hp+1)

E

E∗

S∗
S∗

M

O(hp+1)

In the modified diagram, the perturbed starting method,
shown as S∗, is chosen to obtain a commutative diagram
if E is replaced by the underlying one-step method E∗.

Towards practical general linear methods – p. 66/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To introduce the underlying one-step method, consider a
modification of the diagram relating the starting method
and a single step of the method.

E

S S

M
O(hp+1)

E

E∗

S∗
S∗

M

O(hp+1)

In the modified diagram, the perturbed starting method,
shown as S∗, is chosen to obtain a commutative diagram
if E is replaced by the underlying one-step method E∗.

Towards practical general linear methods – p. 66/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

To introduce the underlying one-step method, consider a
modification of the diagram relating the starting method
and a single step of the method.

E

S S

M
O(hp+1)

E

E∗

S∗
S∗

M

O(hp+1)

In the modified diagram, the perturbed starting method,
shown as S∗, is chosen to obtain a commutative diagram
if E is replaced by the underlying one-step method E∗.

Towards practical general linear methods – p. 66/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

If S maps y(x) to

y(x)

hy′(x)
...

hpy(p)(x)

then · · ·

S∗ maps y(x) to

y(x)

hy′(x)−θ1h
p+1y(p+1)(x)−φ1h

p+2y(p+2)(x)−ψ1h
p+2 ∂f

∂y
y(p+1)(x)+O(hp+3)

...

hpy(p)(x)−θph
p+1y(p+1)(x)−φph

p+2y(p+2)(x)−ψph
p+2 ∂f

∂y
y(p+1)(x)+O(hp+3)

Towards practical general linear methods – p. 67/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

If S maps y(x) to

y(x)

hy′(x)
...

hpy(p)(x)

then

· · ·

S∗ maps y(x) to

y(x)

hy′(x)−θ1h
p+1y(p+1)(x)−φ1h

p+2y(p+2)(x)−ψ1h
p+2 ∂f

∂y
y(p+1)(x)+O(hp+3)

...

hpy(p)(x)−θph
p+1y(p+1)(x)−φph

p+2y(p+2)(x)−ψph
p+2 ∂f

∂y
y(p+1)(x)+O(hp+3)

Towards practical general linear methods – p. 67/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Values of the coefficients θi, φi, ψi (i = 1, 2, . . . , p) are
known.

If h is constant, we can rely on the values of these
coefficients as possible ingrediants of the error
estimation formulae.
However, for variable h, the coefficients vary as
functions of the step-size history.
Hence, management of the coefficients must become part
of the modification process which follows scaling of the
Nordsieck vector.
We now know how to do this so that behaviour is
stabilised and so that at least the θ values effectively
retain their constant values.

Towards practical general linear methods – p. 68/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Values of the coefficients θi, φi, ψi (i = 1, 2, . . . , p) are
known.
If h is constant, we can rely on the values of these
coefficients as possible ingrediants of the error
estimation formulae.

However, for variable h, the coefficients vary as
functions of the step-size history.
Hence, management of the coefficients must become part
of the modification process which follows scaling of the
Nordsieck vector.
We now know how to do this so that behaviour is
stabilised and so that at least the θ values effectively
retain their constant values.

Towards practical general linear methods – p. 68/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Values of the coefficients θi, φi, ψi (i = 1, 2, . . . , p) are
known.
If h is constant, we can rely on the values of these
coefficients as possible ingrediants of the error
estimation formulae.
However, for variable h, the coefficients vary as
functions of the step-size history.

Hence, management of the coefficients must become part
of the modification process which follows scaling of the
Nordsieck vector.
We now know how to do this so that behaviour is
stabilised and so that at least the θ values effectively
retain their constant values.

Towards practical general linear methods – p. 68/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Values of the coefficients θi, φi, ψi (i = 1, 2, . . . , p) are
known.
If h is constant, we can rely on the values of these
coefficients as possible ingrediants of the error
estimation formulae.
However, for variable h, the coefficients vary as
functions of the step-size history.
Hence, management of the coefficients must become part
of the modification process which follows scaling of the
Nordsieck vector.

We now know how to do this so that behaviour is
stabilised and so that at least the θ values effectively
retain their constant values.

Towards practical general linear methods – p. 68/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

Values of the coefficients θi, φi, ψi (i = 1, 2, . . . , p) are
known.
If h is constant, we can rely on the values of these
coefficients as possible ingrediants of the error
estimation formulae.
However, for variable h, the coefficients vary as
functions of the step-size history.
Hence, management of the coefficients must become part
of the modification process which follows scaling of the
Nordsieck vector.
We now know how to do this so that behaviour is
stabilised and so that at least the θ values effectively
retain their constant values.

Towards practical general linear methods – p. 68/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

It is now possible to estimate

The value of hp+1y(p+1)(xn) to within O(hp+2).

Hence the local truncation error in a step.

The value of hp+2y(p+2)(xn) to within O(hp+3).

Hence the local truncation error of a contending
method of order p+ 1.

We believe we now have the ingredients for constructing
a variable order, variable stepsize code based on the new
methods.

Towards practical general linear methods – p. 69/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

It is now possible to estimate

The value of hp+1y(p+1)(xn) to within O(hp+2).

Hence the local truncation error in a step.

The value of hp+2y(p+2)(xn) to within O(hp+3).

Hence the local truncation error of a contending
method of order p+ 1.

We believe we now have the ingredients for constructing
a variable order, variable stepsize code based on the new
methods.

Towards practical general linear methods – p. 69/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

It is now possible to estimate

The value of hp+1y(p+1)(xn) to within O(hp+2).

Hence the local truncation error in a step.

The value of hp+2y(p+2)(xn) to within O(hp+3).

Hence the local truncation error of a contending
method of order p+ 1.

We believe we now have the ingredients for constructing
a variable order, variable stepsize code based on the new
methods.

Towards practical general linear methods – p. 69/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

It is now possible to estimate

The value of hp+1y(p+1)(xn) to within O(hp+2).

Hence the local truncation error in a step.

The value of hp+2y(p+2)(xn) to within O(hp+3).

Hence the local truncation error of a contending
method of order p+ 1.

We believe we now have the ingredients for constructing
a variable order, variable stepsize code based on the new
methods.

Towards practical general linear methods – p. 69/71

Generalizations of Linear Multistep Methods
Generalizations of Runge-Kutta Methods
General Linear Methods
Methods with Inherent Runge-Kutta Stabilty

Doubly Companion Matrices
Inherent Runge-Kutta stability
Example methods
Implementation questions

It is now possible to estimate

The value of hp+1y(p+1)(xn) to within O(hp+2).

Hence the local truncation error in a step.

The value of hp+2y(p+2)(xn) to within O(hp+3).

Hence the local truncation error of a contending
method of order p+ 1.

We believe we now have the ingredients for constructing
a variable order, variable stepsize code based on the new
methods.

Towards practical general linear methods – p. 69/71

References

Selected references on general linear methods

J. C. Butcher (1966) ‘On the convergence of numerical solutions of

ordinary differential equations’, Math. Comp. 20 1–10.

J. C. Butcher (1973) ‘The order of numerical methods for ordinary

differential equations’, Math. Comp. 27 793–806.

J. C. Butcher and Z. Jackiewicz (2002) ‘Error estimation for

Nordsieck methods’, Numer. Algorithms, 31 75–85.

J. C. Butcher and W. M. Wright (2003) ‘The construction of

practical general linear methods’, BIT 43 695–721.
W. M. Wright (2002) ‘Explicit general linear methods with inherent
Runge–Kutta stability’, Numer. Algorithms 31 381–399.

Towards practical general linear methods – p. 70/71

Acknowledgements

Zdzisław Jackiewicz
Helmut Podhaisky
Will Wright

Allison Heard
Gustaf Söderlind

Shirley Huang
Jane Lee

Towards practical general linear methods – p. 71/71

Acknowledgements

Zdzisław Jackiewicz
Helmut Podhaisky
Will Wright

Allison Heard
Gustaf Söderlind

Shirley Huang
Jane Lee

Towards practical general linear methods – p. 71/71

Acknowledgements

Zdzisław Jackiewicz
Helmut Podhaisky
Will Wright

Allison Heard
Gustaf Söderlind

Shirley Huang
Jane Lee

Towards practical general linear methods – p. 71/71

	HH
	HH
	HH
	HH
	HH

	HH
	HH
	HH
	HH
	HH
	HH
	HH
	HH

	HH
	HH
	HH
	HH
	HH

	HH
	HH
	HH
	HH
	HH

	H
	H
	H

	HH
	HH

	H
	H
	H
	H
	H

	H
	H
	H
	H

	H
	H
	H
	H
	H
	H

	H
	H

	HH
	HH
	HH
	HH
	HH
	HH
	HH

	HH
	HH

	H
	H
	H
	H
	H

	H
	H
	H

	HH
	HH
	HH
	HH

	H
	H
	H

	H
	H
	H
	H

	H
	H
	H

	HH
	HH
	HH
	HH
	HH
	HH
	HH

	H
	H
	H

	H
	H
	H
	H
	H
	H

	H
	HH
	HH
	HH
	HH
	HH

	H
	H
	H
	H
	H

	H
	H
	H
	H
	H

	H
	H
	H
	H
	H

	H
	H
	H
	H

	HH
	HH
	HH
	HH
	HH
	HH

	H
	H
	H

	H
	H
	H
	H
	H
	H

	HH
	HH
	HH
	HH
	HH

	H
	H
	H
	H

	H
	H
	H
	H
	H
	H
	H

	H
	H
	H
	H

	HH
	HH
	HH

	H
	H
	H
	H

	H
	H

	H
	H
	H

	HH
	HH
	HH
	HH
	HH

	H
	H
	H

	H
	H
	H
	H
	H

	H
	H
	H
	H

	H
	H
	H
	H
	H

	HH
	HH
	HH
	HH

	HH
	HH

	H
	H
	H

	H
	H
	H
	H

	H
	H
	H

	HH
	HH
	HH
	HH
	HH
	HH
	HH
	HH

	H
	H
	H

	H
	H
	H
	H
	H
	H
	H

	H
	H
	H
	H

	H
	H

	H
	H
	H
	H

	HH
	H
	HH
	HH
	HH
	HH
	HH
	HH
	HH
	HH

	H
	H
	H

	H
	H

	H
	H
	H
	H
	H

	H
	H
	H

	H
	H

	H
	H
	H
	H
	H

	H
	H
	H
	H
	H

	HH
	HH
	HH
	HH

