
Scientific Computation and
Differential Equations

John Butcher

The University of Auckland
New Zealand

Annual Fundamental Sciences Seminar
June 2006

Institut Kajian Sains Fundamental Ibnu Sina
Scientific Computation and Differential Equations – p. 1/36

Overview

This year marks the fiftieth anniversary of the first
computer in the Southern Hemisphere – the SILLIAC
computer at the University of Sydney.

Scientific Computation and Differential Equations – p. 2/36

Overview

This year marks the fiftieth anniversary of the first
computer in the Southern Hemisphere – the SILLIAC
computer at the University of Sydney.

I had the privilege of being present when this computer
did its first calculation and my own first program ran on
this computer soon afterwards.

Scientific Computation and Differential Equations – p. 2/36

Overview

This year marks the fiftieth anniversary of the first
computer in the Southern Hemisphere – the SILLIAC
computer at the University of Sydney.

I had the privilege of being present when this computer
did its first calculation and my own first program ran on
this computer soon afterwards.

This computer was built for one reason only – to solve
scientific problems.

Scientific Computation and Differential Equations – p. 2/36

Overview

This year marks the fiftieth anniversary of the first
computer in the Southern Hemisphere – the SILLIAC
computer at the University of Sydney.

I had the privilege of being present when this computer
did its first calculation and my own first program ran on
this computer soon afterwards.

This computer was built for one reason only – to solve
scientific problems.

Scientific problems have always been the driving force in
the development of faster and faster computers.

Scientific Computation and Differential Equations – p. 2/36

Overview

This year marks the fiftieth anniversary of the first
computer in the Southern Hemisphere – the SILLIAC
computer at the University of Sydney.

I had the privilege of being present when this computer
did its first calculation and my own first program ran on
this computer soon afterwards.

This computer was built for one reason only – to solve
scientific problems.

Scientific problems have always been the driving force in
the development of faster and faster computers.

Within Scientific Computation, the approximate solution
of differential equations has always been an area of
special challenge.

Scientific Computation and Differential Equations – p. 2/36

Differential equations can usually not be solved
analytically and numerical methods are necessary.

Scientific Computation and Differential Equations – p. 3/36

Differential equations can usually not be solved
analytically and numerical methods are necessary.

Two main types of numerical methods exist: linear
multistep methods and Runge–Kutta methods.

Scientific Computation and Differential Equations – p. 3/36

Differential equations can usually not be solved
analytically and numerical methods are necessary.

Two main types of numerical methods exist: linear
multistep methods and Runge–Kutta methods.

These traditional methods are special cases within the
larger class of “General Linear Methods”.

Scientific Computation and Differential Equations – p. 3/36

Differential equations can usually not be solved
analytically and numerical methods are necessary.

Two main types of numerical methods exist: linear
multistep methods and Runge–Kutta methods.

These traditional methods are special cases within the
larger class of “General Linear Methods”.

Today we will look briefly at the history of numerical
methods for differential equations.

Scientific Computation and Differential Equations – p. 3/36

Differential equations can usually not be solved
analytically and numerical methods are necessary.

Two main types of numerical methods exist: linear
multistep methods and Runge–Kutta methods.

These traditional methods are special cases within the
larger class of “General Linear Methods”.

Today we will look briefly at the history of numerical
methods for differential equations.

We will then look at some particular questions
concerning the theory of general linear methods.

Scientific Computation and Differential Equations – p. 3/36

Differential equations can usually not be solved
analytically and numerical methods are necessary.

Two main types of numerical methods exist: linear
multistep methods and Runge–Kutta methods.

These traditional methods are special cases within the
larger class of “General Linear Methods”.

Today we will look briefly at the history of numerical
methods for differential equations.

We will then look at some particular questions
concerning the theory of general linear methods.

We will also look at some aspects of their practical
implementation.

Scientific Computation and Differential Equations – p. 3/36

Contents

A short history of numerical differential equations

Scientific Computation and Differential Equations – p. 4/36

Contents

A short history of numerical differential equations

Linear multistep methods

Scientific Computation and Differential Equations – p. 4/36

Contents

A short history of numerical differential equations

Linear multistep methods

Runge–Kutta methods

Scientific Computation and Differential Equations – p. 4/36

Contents

A short history of numerical differential equations

Linear multistep methods

Runge–Kutta methods

General linear methods

Scientific Computation and Differential Equations – p. 4/36

Contents

A short history of numerical differential equations

Linear multistep methods

Runge–Kutta methods

General linear methods

Examples of general linear methods

Scientific Computation and Differential Equations – p. 4/36

Contents

A short history of numerical differential equations

Linear multistep methods

Runge–Kutta methods

General linear methods

Examples of general linear methods

Order of GLMs

Scientific Computation and Differential Equations – p. 4/36

Contents

A short history of numerical differential equations

Linear multistep methods

Runge–Kutta methods

General linear methods

Examples of general linear methods

Order of GLMs

Methods with the IRK stability property

Scientific Computation and Differential Equations – p. 4/36

Contents

A short history of numerical differential equations

Linear multistep methods

Runge–Kutta methods

General linear methods

Examples of general linear methods

Order of GLMs

Methods with the IRK stability property

Implementation questions for IRKS methods

Scientific Computation and Differential Equations – p. 4/36

A short history of numerical ODEs

We will make use of three standard types of initial value
problems

y′(x) = f(x, y(x)), y(x0) = y0 ∈ R, (1)

y′(x) = f(x, y(x)), y(x0) = y0 ∈ R
N , (2)

y′(x) = f(y(x)), y(x0) = y0 ∈ R
N . (3)

Scientific Computation and Differential Equations – p. 5/36

A short history of numerical ODEs

We will make use of three standard types of initial value
problems

y′(x) = f(x, y(x)), y(x0) = y0 ∈ R, (1)

y′(x) = f(x, y(x)), y(x0) = y0 ∈ R
N , (2)

y′(x) = f(y(x)), y(x0) = y0 ∈ R
N . (3)

Problem (1) is used in traditional descriptions of
numerical methods but in applications we need to use
either (2) or (3).

Scientific Computation and Differential Equations – p. 5/36

A short history of numerical ODEs

We will make use of three standard types of initial value
problems

y′(x) = f(x, y(x)), y(x0) = y0 ∈ R, (1)

y′(x) = f(x, y(x)), y(x0) = y0 ∈ R
N , (2)

y′(x) = f(y(x)), y(x0) = y0 ∈ R
N . (3)

Problem (1) is used in traditional descriptions of
numerical methods but in applications we need to use
either (2) or (3).

These are actually equivalent and we will often use (3)
instead of (2) because of its simplicity.

Scientific Computation and Differential Equations – p. 5/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations.

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

x0 x1 x2 x3 x4

y0

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

x0 x1 x2 x3 x4

y0
y1f(y0)

y1 =y0+hf(y0)

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

x0 x1 x2 x3 x4

y0
y1f(y0)

y1 =y0+hf(y0)

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

x0 x1 x2 x3 x4

y0
y1f(y0)

y1 =y0+hf(y0)

y2
f(y1

)

y2 =y1+hf(y1)

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

x0 x1 x2 x3 x4

y0
y1f(y0)

y1 =y0+hf(y0)

y2
f(y1

)

y2 =y1+hf(y1)

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

x0 x1 x2 x3 x4

y0
y1f(y0)

y1 =y0+hf(y0)

y2
f(y1

)

y2 =y1+hf(y1) y3

f(
y2

)

y3 =y2+hf(y2)

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

x0 x1 x2 x3 x4

y0
y1f(y0)

y1 =y0+hf(y0)

y2
f(y1

)

y2 =y1+hf(y1) y3

f(
y2

)

y3 =y2+hf(y2)

Scientific Computation and Differential Equations – p. 6/36

The Euler method

Euler proposed a simple numerical scheme in
approximately 1770; this can be used for a system of first
order equations. The idea is to treat the solution as
though it had constant derivative in each time step.

x0 x1 x2 x3 x4

y0
y1f(y0)

y1 =y0+hf(y0)

y2
f(y1

)

y2 =y1+hf(y1) y3

f(
y2

)

y3 =y2+hf(y2)

y4

f(
y3

)

y4 =y3+hf(y3)

Scientific Computation and Differential Equations – p. 6/36

More modern methods attempt to improve on the Euler
method by

Scientific Computation and Differential Equations – p. 7/36

More modern methods attempt to improve on the Euler
method by

1. Using more past history

Scientific Computation and Differential Equations – p. 7/36

More modern methods attempt to improve on the Euler
method by

1. Using more past history

– Linear multistep methods

Scientific Computation and Differential Equations – p. 7/36

More modern methods attempt to improve on the Euler
method by

1. Using more past history

– Linear multistep methods

2. Doing more complicated calculations in each step

Scientific Computation and Differential Equations – p. 7/36

More modern methods attempt to improve on the Euler
method by

1. Using more past history

– Linear multistep methods

2. Doing more complicated calculations in each step

– Runge–Kutta methods

Scientific Computation and Differential Equations – p. 7/36

More modern methods attempt to improve on the Euler
method by

1. Using more past history

– Linear multistep methods

2. Doing more complicated calculations in each step

– Runge–Kutta methods

3. Doing both of these

Scientific Computation and Differential Equations – p. 7/36

More modern methods attempt to improve on the Euler
method by

1. Using more past history

– Linear multistep methods

2. Doing more complicated calculations in each step

– Runge–Kutta methods

3. Doing both of these

– General linear methods

Scientific Computation and Differential Equations – p. 7/36

Some important dates

1883 Adams & Bashforth Linear multistep methods
1895 Runge

Runge-Kutta method
1901 Kutta
1925 Nyström Special methods for second order
1926 Moulton Adams-Moulton method
1952 Curtiss & Hirschfelder Stiff problems

Scientific Computation and Differential Equations – p. 8/36

Linear multistep methods

We will write the differential equation in autonomous
form

y′(x) = f(y(x)), y(x0) = y0,

Scientific Computation and Differential Equations – p. 9/36

Linear multistep methods

We will write the differential equation in autonomous
form

y′(x) = f(y(x)), y(x0) = y0,

and the aim, for the moment, will be to calculate
approximations toy(xi), where

xi = x0 + hi, i = 1, 2, 3, . . . ,

andh is the “stepsize”.

Scientific Computation and Differential Equations – p. 9/36

Linear multistep methods

We will write the differential equation in autonomous
form

y′(x) = f(y(x)), y(x0) = y0,

and the aim, for the moment, will be to calculate
approximations toy(xi), where

xi = x0 + hi, i = 1, 2, 3, . . . ,

andh is the “stepsize”.

Linear multistep methods base the approximation to
y(xn) on a linear combination of approximations to
y(xn−i) and approximations toy′(xn−i), i = 1, 2, . . . , k.

Scientific Computation and Differential Equations – p. 9/36

Write yi as the approximation toy(xi) andfi as the
approximation toy′(xi) = f(y(xi)).

Scientific Computation and Differential Equations – p. 10/36

Write yi as the approximation toy(xi) andfi as the
approximation toy′(xi) = f(y(xi)).

A linear multistep method can be written as

yn =
k

∑

i=1

αiyn−i + h

k
∑

i=0

βifn−i

Scientific Computation and Differential Equations – p. 10/36

Write yi as the approximation toy(xi) andfi as the
approximation toy′(xi) = f(y(xi)).

A linear multistep method can be written as

yn =
k

∑

i=1

αiyn−i + h

k
∑

i=0

βifn−i

This is a 1-stage2k-value method.

Scientific Computation and Differential Equations – p. 10/36

Write yi as the approximation toy(xi) andfi as the
approximation toy′(xi) = f(y(xi)).

A linear multistep method can be written as

yn =
k

∑

i=1

αiyn−i + h

k
∑

i=0

βifn−i

This is a 1-stage2k-value method.

1 stage? One evaluation off per step.

Scientific Computation and Differential Equations – p. 10/36

Write yi as the approximation toy(xi) andfi as the
approximation toy′(xi) = f(y(xi)).

A linear multistep method can be written as

yn =
k

∑

i=1

αiyn−i + h

k
∑

i=0

βifn−i

This is a 1-stage2k-value method.

1 stage? One evaluation off per step.

2k value? This many quantities are passed between steps.

Scientific Computation and Differential Equations – p. 10/36

Write yi as the approximation toy(xi) andfi as the
approximation toy′(xi) = f(y(xi)).

A linear multistep method can be written as

yn =
k

∑

i=1

αiyn−i + h

k
∑

i=0

βifn−i

This is a 1-stage2k-value method.

1 stage? One evaluation off per step.

2k value? This many quantities are passed between steps.

β0 = 0: explicit.
Scientific Computation and Differential Equations – p. 10/36

Write yi as the approximation toy(xi) andfi as the
approximation toy′(xi) = f(y(xi)).

A linear multistep method can be written as

yn =
k

∑

i=1

αiyn−i + h

k
∑

i=0

βifn−i

This is a 1-stage2k-value method.

1 stage? One evaluation off per step.

2k value? This many quantities are passed between steps.

β0 = 0: explicit. β0 6= 0: implicit.
Scientific Computation and Differential Equations – p. 10/36

Runge–Kutta methods

A Runge–Kutta method computesyn in terms of a single
inputyn−1 ands stagesY1, Y2, . . . , Ys,

Scientific Computation and Differential Equations – p. 11/36

Runge–Kutta methods

A Runge–Kutta method computesyn in terms of a single
inputyn−1 ands stagesY1, Y2, . . . , Ys, where

Yi = yn−1 + h

s
∑

j=1

aijf(Yj), i = 1, 2, . . . , s,

Scientific Computation and Differential Equations – p. 11/36

Runge–Kutta methods

A Runge–Kutta method computesyn in terms of a single
inputyn−1 ands stagesY1, Y2, . . . , Ys, where

Yi = yn−1 + h

s
∑

j=1

aijf(Yj), i = 1, 2, . . . , s,

yn = yn−1 + h

s
∑

i=1

bif(Yi).

Scientific Computation and Differential Equations – p. 11/36

Runge–Kutta methods

A Runge–Kutta method computesyn in terms of a single
inputyn−1 ands stagesY1, Y2, . . . , Ys, where

Yi = yn−1 + h

s
∑

j=1

aijf(Yj), i = 1, 2, . . . , s,

yn = yn−1 + h

s
∑

i=1

bif(Yi).

This is ans-stage1-value method.

Scientific Computation and Differential Equations – p. 11/36

Runge–Kutta methods

A Runge–Kutta method computesyn in terms of a single
inputyn−1 ands stagesY1, Y2, . . . , Ys, where

Yi = yn−1 + h

s
∑

j=1

aijf(Yj), i = 1, 2, . . . , s,

yn = yn−1 + h

s
∑

i=1

bif(Yi).

This is ans-stage1-value method.

It is natural to ask if there are useful methods which are
multistage (as for Runge–Kutta methods) and multivalue
(as for linear multistep methods).

Scientific Computation and Differential Equations – p. 11/36

In other words, we ask if there is any value in completing
this diagram:

Runge-Kutta Linear Multistep

Euler

Scientific Computation and Differential Equations – p. 12/36

In other words, we ask if there is any value in completing
this diagram:

Runge-Kutta Linear Multistep

Euler

Scientific Computation and Differential Equations – p. 12/36

In other words, we ask if there is any value in completing
this diagram:

General Linear Methods

Runge-Kutta Linear Multistep

Euler

Scientific Computation and Differential Equations – p. 12/36

General linear methods

We will consider methods characterised by an
(s + r) × (s + r) partitioned matrix of the form

[

A U

B V

]

s r

s

r
.

Scientific Computation and Differential Equations – p. 13/36

General linear methods

We will consider methods characterised by an
(s + r) × (s + r) partitioned matrix of the form

[

A U

B V

]

s r

s

r
.

Ther values input to stepn − 1 will be denoted by

y
[n−1]
i , i = 1, 2, . . . , r with corresponding output values

y
[n]
i and the stage values byYi, i = 1, 2, . . . , s.

Scientific Computation and Differential Equations – p. 13/36

General linear methods

We will consider methods characterised by an
(s + r) × (s + r) partitioned matrix of the form

[

A U

B V

]

s r

s

r
.

Ther values input to stepn − 1 will be denoted by

y
[n−1]
i , i = 1, 2, . . . , r with corresponding output values

y
[n]
i and the stage values byYi, i = 1, 2, . . . , s.

The stage derivatives will be denoted byFi = f(Yi).

Scientific Computation and Differential Equations – p. 13/36

The formula for computing the stages (and
simultaneously the stage derivatives) are:

Yi = h

s
∑

j=1

aijFj +
r

∑

j=1

uijy
[n−1]
j , Fi = f(Yi),

for i = 1, 2, . . . , s.

Scientific Computation and Differential Equations – p. 14/36

The formula for computing the stages (and
simultaneously the stage derivatives) are:

Yi = h

s
∑

j=1

aijFj +
r

∑

j=1

uijy
[n−1]
j , Fi = f(Yi),

for i = 1, 2, . . . , s.

To compute the output values, use the formula

y
[n]
i = h

s
∑

j=1

bijFj +
r

∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r.

Scientific Computation and Differential Equations – p. 14/36

For convenience, write

y[n−1] =

y
[n−1]
1

y
[n−1]
2
...

y
[n−1]
r

, y[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

, Y =

Y1

Y2
...

Ys

, F =

F1

F2
...

Fs

,

Scientific Computation and Differential Equations – p. 15/36

For convenience, write

y[n−1] =

y
[n−1]
1

y
[n−1]
2
...

y
[n−1]
r

, y[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

, Y =

Y1

Y2
...

Ys

, F =

F1

F2
...

Fs

,

so that we can write the calculations in a step more
simply as

[

Y

y[n]

]

=

[

A U

B V

] [

hF

y[n−1]

]

.

Scientific Computation and Differential Equations – p. 15/36

Examples of general linear methods

We will look at five examples

Scientific Computation and Differential Equations – p. 16/36

Examples of general linear methods

We will look at five examples

A Runge–Kutta method

Scientific Computation and Differential Equations – p. 16/36

Examples of general linear methods

We will look at five examples

A Runge–Kutta method

A “re-use” method

Scientific Computation and Differential Equations – p. 16/36

Examples of general linear methods

We will look at five examples

A Runge–Kutta method

A “re-use” method

An Almost Runge–Kutta method

Scientific Computation and Differential Equations – p. 16/36

Examples of general linear methods

We will look at five examples

A Runge–Kutta method

A “re-use” method

An Almost Runge–Kutta method

An Adams-Bashforth/Adams-Moulton method

Scientific Computation and Differential Equations – p. 16/36

Examples of general linear methods

We will look at five examples

A Runge–Kutta method

A “re-use” method

An Almost Runge–Kutta method

An Adams-Bashforth/Adams-Moulton method

A modified linear multistep method

Scientific Computation and Differential Equations – p. 16/36

A Runge–Kutta method

One of the famous families of fourth order methods of
Kutta, written as a general linear method, is

[

A U

B V

]

=

0 0 0 0 1

θ 0 0 0 1
1
2 −

1
8θ

1
8θ 0 0 1

1
2θ − 1 − 1

2θ 2 0 1
1
6 0 2

3
1
6 1

Scientific Computation and Differential Equations – p. 17/36

A Runge–Kutta method

One of the famous families of fourth order methods of
Kutta, written as a general linear method, is

[

A U

B V

]

=

0 0 0 0 1

θ 0 0 0 1
1
2 −

1
8θ

1
8θ 0 0 1

1
2θ − 1 − 1

2θ 2 0 1
1
6 0 2

3
1
6 1

In a step fromxn−1 to xn = xn−1 + h, the stages give
approximations at

xn−1, xn−1 + θh, xn−1 + 1
2h and xn−1 + h.

Scientific Computation and Differential Equations – p. 17/36

A Runge–Kutta method

One of the famous families of fourth order methods of
Kutta, written as a general linear method, is

[

A U

B V

]

=

0 0 0 0 1

θ 0 0 0 1
1
2 −

1
8θ

1
8θ 0 0 1

1
2θ − 1 − 1

2θ 2 0 1
1
6 0 2

3
1
6 1

In a step fromxn−1 to xn = xn−1 + h, the stages give
approximations at

xn−1, xn−1 + θh, xn−1 + 1
2h and xn−1 + h.

We will look at the special caseθ = −1
2 .
Scientific Computation and Differential Equations – p. 17/36

In the specialθ = −1
2 case

[

A U

B V

]

=

0 0 0 0 1

−1
2 0 0 0 1
3
4 −1

4 0 0 1

−2 1 2 0 1
1
6 0 2

3
1
6 1

Scientific Computation and Differential Equations – p. 18/36

In the specialθ = −1
2 case

[

A U

B V

]

=

0 0 0 0 1

−1
2 0 0 0 1
3
4 −1

4 0 0 1

−2 1 2 0 1
1
6 0 2

3
1
6 1

Because the derivative at
xn−1 + θh = xn−1 −

1
2h = xn−2 + 1

2h,
was evaluated in the previous step, we can try re-using
this value.

Scientific Computation and Differential Equations – p. 18/36

In the specialθ = −1
2 case

[

A U

B V

]

=

0 0 0 0 1

−1
2 0 0 0 1
3
4 −1

4 0 0 1

−2 1 2 0 1
1
6 0 2

3
1
6 1

Because the derivative at
xn−1 + θh = xn−1 −

1
2h = xn−2 + 1

2h,
was evaluated in the previous step, we can try re-using
this value.

This will save one function evaluation.
Scientific Computation and Differential Equations – p. 18/36

A ‘re-use’ method

This gives the re-use method

[

A U

B V

]

=

0 0 0 1 0
3
4 0 0 1 −1

4

−2 2 0 1 1
1
6

2
3

1
6 1 0

0 1 0 0 0

Scientific Computation and Differential Equations – p. 19/36

A ‘re-use’ method

This gives the re-use method

[

A U

B V

]

=

0 0 0 1 0
3
4 0 0 1 −1

4

−2 2 0 1 1
1
6

2
3

1
6 1 0

0 1 0 0 0

Why should this method not be preferred to a standard
Runge–Kutta method?

Scientific Computation and Differential Equations – p. 19/36

A ‘re-use’ method

This gives the re-use method

[

A U

B V

]

=

0 0 0 1 0
3
4 0 0 1 −1

4

−2 2 0 1 1
1
6

2
3

1
6 1 0

0 1 0 0 0

Why should this method not be preferred to a standard
Runge–Kutta method?

There are at least two reasons
Stepsize change is complicated and difficult

Scientific Computation and Differential Equations – p. 19/36

A ‘re-use’ method

This gives the re-use method

[

A U

B V

]

=

0 0 0 1 0
3
4 0 0 1 −1

4

−2 2 0 1 1
1
6

2
3

1
6 1 0

0 1 0 0 0

Why should this method not be preferred to a standard
Runge–Kutta method?

There are at least two reasons
Stepsize change is complicated and difficult

The stability region is smaller
Scientific Computation and Differential Equations – p. 19/36

To overcome these difficulties, we can do several things:

Scientific Computation and Differential Equations – p. 20/36

To overcome these difficulties, we can do several things:

Restore the missing stage,

Scientific Computation and Differential Equations – p. 20/36

To overcome these difficulties, we can do several things:

Restore the missing stage,

Move the first derivative calculation to the end of the
previous step,

Scientific Computation and Differential Equations – p. 20/36

To overcome these difficulties, we can do several things:

Restore the missing stage,

Move the first derivative calculation to the end of the
previous step,

Use a linear combination of the derivatives
computed in the previous step (instead of just one of
these),

Scientific Computation and Differential Equations – p. 20/36

To overcome these difficulties, we can do several things:

Restore the missing stage,

Move the first derivative calculation to the end of the
previous step,

Use a linear combination of the derivatives
computed in the previous step (instead of just one of
these),

Re-organize the data passed between steps.

Scientific Computation and Differential Equations – p. 20/36

To overcome these difficulties, we can do several things:

Restore the missing stage,

Move the first derivative calculation to the end of the
previous step,

Use a linear combination of the derivatives
computed in the previous step (instead of just one of
these),

Re-organize the data passed between steps.

We then get methods like the following:

Scientific Computation and Differential Equations – p. 20/36

An ARK method

0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−1
4 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0

,

Scientific Computation and Differential Equations – p. 21/36

An ARK method

0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−1
4 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0

,

where

y
[n]
1 ≈ y(xn), y

[n]
2 ≈ hy′(xn), y

[n]
3 ≈ h2y′′(xn),

Scientific Computation and Differential Equations – p. 21/36

An ARK method

0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−1
4 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0

,

where

y
[n]
1 ≈ y(xn), y

[n]
2 ≈ hy′(xn), y

[n]
3 ≈ h2y′′(xn),

with

Y1 ≈ Y3 ≈ Y4 ≈ y(xn), Y2 ≈ y(xn−1 + 1
2h).

Scientific Computation and Differential Equations – p. 21/36

The good things about this “Almost Runge–Kutta
method” are:

Scientific Computation and Differential Equations – p. 22/36

The good things about this “Almost Runge–Kutta
method” are:

It has the same stability region as for a genuine
Runge–Kutta method

Scientific Computation and Differential Equations – p. 22/36

The good things about this “Almost Runge–Kutta
method” are:

It has the same stability region as for a genuine
Runge–Kutta method

Unlike standard Runge–Kutta methods, the stage
order is 2.

Scientific Computation and Differential Equations – p. 22/36

The good things about this “Almost Runge–Kutta
method” are:

It has the same stability region as for a genuine
Runge–Kutta method

Unlike standard Runge–Kutta methods, the stage
order is 2.
This means that the stage values are computed to the
same accuracy as an order2 Runge-Kutta method.

Scientific Computation and Differential Equations – p. 22/36

The good things about this “Almost Runge–Kutta
method” are:

It has the same stability region as for a genuine
Runge–Kutta method

Unlike standard Runge–Kutta methods, the stage
order is 2.
This means that the stage values are computed to the
same accuracy as an order2 Runge-Kutta method.

Although it is a multi-value method, both starting
the method and changing stepsize are essentially
cost-free operations.

Scientific Computation and Differential Equations – p. 22/36

An Adams-Bashforth/Adams-Moulton method

It is usual practice to combine Adams–Bashforth and
Adams–Moulton methods as a predictor corrector pair.

Scientific Computation and Differential Equations – p. 23/36

An Adams-Bashforth/Adams-Moulton method

It is usual practice to combine Adams–Bashforth and
Adams–Moulton methods as a predictor corrector pair.

For example, the ‘PECE’ method of order 3 computes a
predictory∗n and a correctoryn by the formulae

y∗n = yn−1 + h
(

23
12f(yn−1) −

4
3f(yn−2) + 5

12f(yn−3)
)

,

Scientific Computation and Differential Equations – p. 23/36

An Adams-Bashforth/Adams-Moulton method

It is usual practice to combine Adams–Bashforth and
Adams–Moulton methods as a predictor corrector pair.

For example, the ‘PECE’ method of order 3 computes a
predictory∗n and a correctoryn by the formulae

y∗n = yn−1 + h
(

23
12f(yn−1) −

4
3f(yn−2) + 5

12f(yn−3)
)

,

yn = yn−1 + h
(

5
12f(y∗n) + 2

3f(yn−1) −
1
12f(yn−2)

)

.

Scientific Computation and Differential Equations – p. 23/36

An Adams-Bashforth/Adams-Moulton method

It is usual practice to combine Adams–Bashforth and
Adams–Moulton methods as a predictor corrector pair.

For example, the ‘PECE’ method of order 3 computes a
predictory∗n and a correctoryn by the formulae

y∗n = yn−1 + h
(

23
12f(yn−1) −

4
3f(yn−2) + 5

12f(yn−3)
)

,

yn = yn−1 + h
(

5
12f(y∗n) + 2

3f(yn−1) −
1
12f(yn−2)

)

.

It might be asked: Is it possible to obtain improved order
by using values ofyn−2, yn−3 in the formulae?

Scientific Computation and Differential Equations – p. 23/36

An Adams-Bashforth/Adams-Moulton method

It is usual practice to combine Adams–Bashforth and
Adams–Moulton methods as a predictor corrector pair.

For example, the ‘PECE’ method of order 3 computes a
predictory∗n and a correctoryn by the formulae

y∗n = yn−1 + h
(

23
12f(yn−1) −

4
3f(yn−2) + 5

12f(yn−3)
)

,

yn = yn−1 + h
(

5
12f(y∗n) + 2

3f(yn−1) −
1
12f(yn−2)

)

.

It might be asked: Is it possible to obtain improved order
by using values ofyn−2, yn−3 in the formulae?

The answer is that not much can be gained because we
are limited by the famous ‘Dahlquist barrier’.

Scientific Computation and Differential Equations – p. 23/36

A modified linear multistep method

But what if we allow off-step points?

Scientific Computation and Differential Equations – p. 24/36

A modified linear multistep method

But what if we allow off-step points?
We can get order 5 if we allow for two predictors, the
first giving an approximation toy(xn −

1
2h).

Scientific Computation and Differential Equations – p. 24/36

A modified linear multistep method

But what if we allow off-step points?
We can get order 5 if we allow for two predictors, the
first giving an approximation toy(xn −

1
2h).

This new method, with predictors at the off-step point
and also at the end of the step, is

y∗
n− 1

2

= yn−2 + h
(

9
8f(yn−1) + 3

8f(yn−2)
)

,

Scientific Computation and Differential Equations – p. 24/36

A modified linear multistep method

But what if we allow off-step points?
We can get order 5 if we allow for two predictors, the
first giving an approximation toy(xn −

1
2h).

This new method, with predictors at the off-step point
and also at the end of the step, is

y∗
n− 1

2

= yn−2 + h
(

9
8f(yn−1) + 3

8f(yn−2)
)

,

y∗n = 28
5 yn−1 −

23
5 yn−2

+ h
(

32
15f(y∗

n− 1

2

) − 4f(yn−1) −
26
15f(yn−2)

)

,

Scientific Computation and Differential Equations – p. 24/36

A modified linear multistep method

But what if we allow off-step points?
We can get order 5 if we allow for two predictors, the
first giving an approximation toy(xn −

1
2h).

This new method, with predictors at the off-step point
and also at the end of the step, is

y∗
n− 1

2

= yn−2 + h
(

9
8f(yn−1) + 3

8f(yn−2)
)

,

y∗n = 28
5 yn−1 −

23
5 yn−2

+ h
(

32
15f(y∗

n− 1

2

) − 4f(yn−1) −
26
15f(yn−2)

)

,

yn = 32
31yn−1 −

1
31yn−2

+ h
(

64
93f(y∗

n− 1

2

)+ 5
31f(y∗n)+

4
31f(yn−1)−

1
93f(yn−2)

)

.
Scientific Computation and Differential Equations – p. 24/36

Order of general linear methods

Classical methods are all built on a plan where we know
in advance what we are trying to approximate.

Scientific Computation and Differential Equations – p. 25/36

Order of general linear methods

Classical methods are all built on a plan where we know
in advance what we are trying to approximate.

For an abstract general linear method, the interpretation
of the input and output quantities is quite general.

Scientific Computation and Differential Equations – p. 25/36

Order of general linear methods

Classical methods are all built on a plan where we know
in advance what we are trying to approximate.

For an abstract general linear method, the interpretation
of the input and output quantities is quite general.

We want to understand order in a similar general way.

Scientific Computation and Differential Equations – p. 25/36

Order of general linear methods

Classical methods are all built on a plan where we know
in advance what we are trying to approximate.

For an abstract general linear method, the interpretation
of the input and output quantities is quite general.

We want to understand order in a similar general way.

The key ideas are

Use a general starting method to represent the input
to a step.

Scientific Computation and Differential Equations – p. 25/36

Order of general linear methods

Classical methods are all built on a plan where we know
in advance what we are trying to approximate.

For an abstract general linear method, the interpretation
of the input and output quantities is quite general.

We want to understand order in a similar general way.

The key ideas are

Use a general starting method to represent the input
to a step.

Require the output to be similarly related to the
starting method applied one time-step later.

Scientific Computation and Differential Equations – p. 25/36

The input to a step is an approximation to some vector of
quantities related to the exact solution atxn−1.

Scientific Computation and Differential Equations – p. 26/36

The input to a step is an approximation to some vector of
quantities related to the exact solution atxn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related toxn.

Scientific Computation and Differential Equations – p. 26/36

The input to a step is an approximation to some vector of
quantities related to the exact solution atxn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related toxn.

If the input is exactly what it is supposed to approximate,
then the “local truncation error” is defined as the error in
the output after a single step.

Scientific Computation and Differential Equations – p. 26/36

The input to a step is an approximation to some vector of
quantities related to the exact solution atxn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related toxn.

If the input is exactly what it is supposed to approximate,
then the “local truncation error” is defined as the error in
the output after a single step.

If this can be estimated in terms ofhp+1, then the method
has orderp.

Scientific Computation and Differential Equations – p. 26/36

The input to a step is an approximation to some vector of
quantities related to the exact solution atxn−1.

When the step has been completed, the vectors
comprising the output are approximations to the same
quantities, but now related toxn.

If the input is exactly what it is supposed to approximate,
then the “local truncation error” is defined as the error in
the output after a single step.

If this can be estimated in terms ofhp+1, then the method
has orderp.

We will refer to the calculation which producesy[n−1]

from y(xn−1) as a “starting method”.
Scientific Computation and Differential Equations – p. 26/36

Let S denote the “starting method”

Scientific Computation and Differential Equations – p. 27/36

Let S denote the “starting method”, that is a mapping
from R

N to R
rN

Scientific Computation and Differential Equations – p. 27/36

Let S denote the “starting method”, that is a mapping
from R

N to R
rN , and letF : R

rN → R
N denote a

corresponding finishing method

Scientific Computation and Differential Equations – p. 27/36

Let S denote the “starting method”, that is a mapping
from R

N to R
rN , and letF : R

rN → R
N denote a

corresponding finishing method, such thatF ◦ S = id.

Scientific Computation and Differential Equations – p. 27/36

Let S denote the “starting method”, that is a mapping
from R

N to R
rN , and letF : R

rN → R
N denote a

corresponding finishing method, such thatF ◦ S = id.

The order of accuracy of a multivalue method is defined
in terms of the diagram

E

S S

M

Scientific Computation and Differential Equations – p. 27/36

Let S denote the “starting method”, that is a mapping
from R

N to R
rN , and letF : R

rN → R
N denote a

corresponding finishing method, such thatF ◦ S = id.

The order of accuracy of a multivalue method is defined
in terms of the diagram

E

S S

M
O(hp+1)

(h = stepsize)

Scientific Computation and Differential Equations – p. 27/36

By duplicating this diagram over many steps, global
error estimates can be found.

Scientific Computation and Differential Equations – p. 28/36

By duplicating this diagram over many steps, global
error estimates can be found.

E E E

S S S S S

M M
M

Scientific Computation and Differential Equations – p. 28/36

By duplicating this diagram over many steps, global
error estimates can be found.

E E E

S S S S S

M M
M

O(hp)

Scientific Computation and Differential Equations – p. 28/36

By duplicating this diagram over many steps, global
error estimates can be found.

E E E

S S S S S

M M
M

O(hp)

F

Scientific Computation and Differential Equations – p. 28/36

By duplicating this diagram over many steps, global
error estimates can be found.

E E E

S S S S S

M M
M

O(hp)

F

O(hp)

Scientific Computation and Differential Equations – p. 28/36

Methods with the IRK Stability property

An important attribute of a numerical method is its
“stability matrix” M(z) defined by

M(z) = V + zB(I − zA)−1U.

Scientific Computation and Differential Equations – p. 29/36

Methods with the IRK Stability property

An important attribute of a numerical method is its
“stability matrix” M(z) defined by

M(z) = V + zB(I − zA)−1U.

This represents the behaviour of the method in the case
of linear problems.

Scientific Computation and Differential Equations – p. 29/36

Methods with the IRK Stability property

An important attribute of a numerical method is its
“stability matrix” M(z) defined by

M(z) = V + zB(I − zA)−1U.

This represents the behaviour of the method in the case
of linear problems.

That is, for the problemy′(x) = qy(x), we have

y[n] = M(z)y[n−1] wherez = hq

Scientific Computation and Differential Equations – p. 29/36

Methods with the IRK Stability property

An important attribute of a numerical method is its
“stability matrix” M(z) defined by

M(z) = V + zB(I − zA)−1U.

This represents the behaviour of the method in the case
of linear problems.

That is, for the problemy′(x) = qy(x), we have

y[n] = M(z)y[n−1] wherez = hq

In the special case of a Runge–Kutta method,M(z) is a
scalarR(z).

Scientific Computation and Differential Equations – p. 29/36

To solve “stiff” problems, we want to use A-stable
methods or, even better L-stable methods.

Scientific Computation and Differential Equations – p. 30/36

To solve “stiff” problems, we want to use A-stable
methods or, even better L-stable methods.

In the case of Runge–Kutta methods the meanings of
these are

Scientific Computation and Differential Equations – p. 30/36

To solve “stiff” problems, we want to use A-stable
methods or, even better L-stable methods.

In the case of Runge–Kutta methods the meanings of
these are

For an A-stable method,

|R(z)| ≤ 1, if Rez ≤ 0.

Scientific Computation and Differential Equations – p. 30/36

To solve “stiff” problems, we want to use A-stable
methods or, even better L-stable methods.

In the case of Runge–Kutta methods the meanings of
these are

For an A-stable method,

|R(z)| ≤ 1, if Rez ≤ 0.

An L-stable method is A-stable and, in addition,

R(∞) = 0.

Scientific Computation and Differential Equations – p. 30/36

A general linear method is said to have
“Runge–Kutta stability”

if the stability matrix for the methodM(z) has
characteristic polynomial of the form

det(wI − M(z)) = wr−1(w − R(z)).

Scientific Computation and Differential Equations – p. 31/36

A general linear method is said to have
“Runge–Kutta stability”

if the stability matrix for the methodM(z) has
characteristic polynomial of the form

det(wI − M(z)) = wr−1(w − R(z)).

This means that the method has exactly the same stability
region as a Runge–Kutta method whose stability
function isR(z).

Scientific Computation and Differential Equations – p. 31/36

Do methods with RK stability exist?

Scientific Computation and Differential Equations – p. 32/36

Do methods with RK stability exist?

Yes, it is even possible to construct them with rational
operations by imposing a condition known as “Inherent
RK stability”.

Scientific Computation and Differential Equations – p. 32/36

Do methods with RK stability exist?

Yes, it is even possible to construct them with rational
operations by imposing a condition known as “Inherent
RK stability”.

Methods exist for both stiff and non-stiff problems for
arbitrary orders and the only question is how to select the
best methods from the large families that are available.

Scientific Computation and Differential Equations – p. 32/36

Do methods with RK stability exist?

Yes, it is even possible to construct them with rational
operations by imposing a condition known as “Inherent
RK stability”.

Methods exist for both stiff and non-stiff problems for
arbitrary orders and the only question is how to select the
best methods from the large families that are available.

We will give just two examples.

Scientific Computation and Differential Equations – p. 32/36

The following third order method is explicit and suitable
for the solution of non-stiff problems

[

AU

BV

]

=

0 0 0 0 1 1
4

1
32

1
384

− 176
1885 0 0 0 1 2237

3770
2237
15080

2149
90480

−335624
311025

29
55 0 0 1 1619591

1244100
260027
904800

1517801
39811200

−67843
6435

395
33 −5 0 1 29428

6435
527
585

41819
102960

−67843
6435

395
33 −5 0 1 29428

6435
527
585

41819
102960

0 0 0 1 0 0 0 0
82
33 −274

11
170
9 −4

3 0 482
99 0 −161

264

−8 −12 40
3 −2 0 26

3 0 0

Scientific Computation and Differential Equations – p. 33/36

The following fourth order method is implicit, L-stable,
and suitable for the solution of stiff problems

1

4
0 0 0 0 1 3

4

1

2

1

4
0

− 513

54272

1

4
0 0 0 1 27649

54272

5601

27136

1539

54272
− 459

6784

3706119

69088256
− 488

3819

1

4
0 0 1 15366379

207264768

756057

34544128

1620299

69088256
− 4854

454528

32161061

197549232
− 111814

232959

134

183

1

4
0 1− 32609017

197549232

929753

32924872

4008881

32924872

174981

3465776

− 135425

2948496
− 641

10431

73

183

1

2

1

4
1 − 367313

8845488
− 22727

1474248

40979

982832

323

25864

− 135425

2948496
− 641

10431

73

183

1

2

1

4
1 − 367313

8845488
− 22727

1474248

40979

982832

323

25864

0 0 0 0 1 0 0 0 0 0
2255

2318
− 47125

20862

447

122
− 11

4

4

3
0 − 28745

20862
− 1937

13908

351

18544

65

976

12620

10431
− 96388

31293

3364

549
− 10

3

4

3
0 − 70634

31293
− 2050

10431
− 187

2318

113

366

414

1159
− 29954

31293

130

61
−1 1

3
0 − 27052

31293
− 113

10431
− 491

4636

161

732

Scientific Computation and Differential Equations – p. 34/36

Implementation questions for IRKS methods

Many implementation questions are similar to those for
traditional methods but there are some new challenges.

Scientific Computation and Differential Equations – p. 35/36

Implementation questions for IRKS methods

Many implementation questions are similar to those for
traditional methods but there are some new challenges.

We want variable order and stepsize and it is even a
realistic aim to change between stiff and non-stiff
methods automatically.

Scientific Computation and Differential Equations – p. 35/36

Implementation questions for IRKS methods

Many implementation questions are similar to those for
traditional methods but there are some new challenges.

We want variable order and stepsize and it is even a
realistic aim to change between stiff and non-stiff
methods automatically.

Because of the variable order and stepsize aims, we wish
to be able to do the following:

Estimate the local truncation error of the current step

Scientific Computation and Differential Equations – p. 35/36

Implementation questions for IRKS methods

Many implementation questions are similar to those for
traditional methods but there are some new challenges.

We want variable order and stepsize and it is even a
realistic aim to change between stiff and non-stiff
methods automatically.

Because of the variable order and stepsize aims, we wish
to be able to do the following:

Estimate the local truncation error of the current step

Estimate the local truncation error of an alternative
method of higher order

Scientific Computation and Differential Equations – p. 35/36

Implementation questions for IRKS methods

Many implementation questions are similar to those for
traditional methods but there are some new challenges.

We want variable order and stepsize and it is even a
realistic aim to change between stiff and non-stiff
methods automatically.

Because of the variable order and stepsize aims, we wish
to be able to do the following:

Estimate the local truncation error of the current step

Estimate the local truncation error of an alternative
method of higher order

Change the stepsize with little cost and with little
impact on stability

Scientific Computation and Differential Equations – p. 35/36

We believe we have solutions to all these problems and
that we can construct methods of quite high orders which
will work well and competitively.

Scientific Computation and Differential Equations – p. 36/36

We believe we have solutions to all these problems and
that we can construct methods of quite high orders which
will work well and competitively.

I would like to name, with gratitude and appreciation, my
principal collaborators in this project:

Scientific Computation and Differential Equations – p. 36/36

We believe we have solutions to all these problems and
that we can construct methods of quite high orders which
will work well and competitively.

I would like to name, with gratitude and appreciation, my
principal collaborators in this project:

Zdzisław Jackiewicz Arizona State University, Phoenix AZ
Helmut Podhaisky Martin Luther Universität, Halle
Will Wright La Trobe University, Melbourne

Scientific Computation and Differential Equations – p. 36/36

We believe we have solutions to all these problems and
that we can construct methods of quite high orders which
will work well and competitively.

I would like to name, with gratitude and appreciation, my
principal collaborators in this project:

Zdzisław Jackiewicz Arizona State University, Phoenix AZ
Helmut Podhaisky Martin Luther Universität, Halle
Will Wright La Trobe University, Melbourne

I also express my thanks to other colleagues who are
closely associated with this project, especially:

Robert Chan, Allison Heard, Shirley Huang,
Nicolette Rattenbury, Gustaf Söderlind, Angela Tsai.

Scientific Computation and Differential Equations – p. 36/36

	centerline {large Overview}
	centerline {large Overview}
	centerline {large Overview}
	centerline {large Overview}
	centerline {large Overview}

	centerline {large Contents}
	centerline {large Contents}
	centerline {large Contents}
	centerline {large Contents}
	centerline {large Contents}
	centerline {large Contents}
	centerline {large Contents}
	centerline {large Contents}

	centerline {large A short history of numerical ODEs}
	centerline {large A short history of numerical ODEs}
	centerline {large A short history of numerical ODEs}

	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}
	centerline {large sub {The Euler method}}

	centerline {large sub {Some important dates}}
	centerline {large Linear multistep methods}
	centerline {large Linear multistep methods}
	centerline {large Linear multistep methods}

	centerline {large Runge--Kutta methods}
	centerline {large Runge--Kutta methods}
	centerline {large Runge--Kutta methods}
	centerline {large Runge--Kutta methods}
	centerline {large Runge--Kutta methods}

	centerline {large General linear methods}
	centerline {large General linear methods}
	centerline {large General linear methods}

	centerline {large Examples of general linear methods}
	centerline {large Examples of general linear methods}
	centerline {large Examples of general linear methods}
	centerline {large Examples of general linear methods}
	centerline {large Examples of general linear methods}
	centerline {large Examples of general linear methods}

	centerline {large sub {A Runge--Kutta method}}
	centerline {large sub {A Runge--Kutta method}}
	centerline {large sub {A Runge--Kutta method}}

	centerline {large sub {A `re-use' method}}
	centerline {large sub {A `re-use' method}}
	centerline {large sub {A `re-use' method}}
	centerline {large sub {A `re-use' method}}

	centerline {large sub {An ARK method}}
	centerline {large sub {An ARK method}}
	centerline {large sub {An ARK method}}

	centerline {large sub {An Adams-Bashforth/Adams-Moulton method}}
	centerline {large sub {An Adams-Bashforth/Adams-Moulton method}}
	centerline {large sub {An Adams-Bashforth/Adams-Moulton method}}
	centerline {large sub {An Adams-Bashforth/Adams-Moulton method}}
	centerline {large sub {An Adams-Bashforth/Adams-Moulton method}}

	centerline {large sub {A modified linear multistep method}}
	centerline {large sub {A modified linear multistep method}}
	centerline {large sub {A modified linear multistep method}}
	centerline {large sub {A modified linear multistep method}}
	centerline {large sub {A modified linear multistep method}}

	centerline {large Order of general linear methods}
	centerline {large Order of general linear methods}
	centerline {large Order of general linear methods}
	centerline {large Order of general linear methods}
	centerline {large Order of general linear methods}

	centerline {large Methods with the IRK Stability property}
	centerline {large Methods with the IRK Stability property}
	centerline {large Methods with the IRK Stability property}
	centerline {large Methods with the IRK Stability property}

	centerline {large Implementation questions for IRKS methods}
	centerline {large Implementation questions for IRKS methods}
	centerline {large Implementation questions for IRKS methods}
	centerline {large Implementation questions for IRKS methods}
	centerline {large Implementation questions for IRKS methods}

